×
29.04.2019
219.017.467f

Результат интеллектуальной деятельности: СПОСОБ ВОССТАНОВЛЕНИЯ ОБВОДНЕННОЙ ГАЗОВОЙ СКВАЖИНЫ СО СМЯТОЙ ЭКСПЛУАТАЦИОННОЙ КОЛОННОЙ В ПРОДУКТИВНОМ ИНТЕРВАЛЕ

Вид РИД

Изобретение

Аннотация: Изобретение относится к нефтегазодобывающей промышленности, а именно к восстановлению обводненной простаивающей газовой скважины со смятой эксплуатационной колонной в продуктивном интервале в условиях аномально низкого пластового давления и незначительной газоносной толщины оставшейся части продуктивного пласта. Обеспечивает дополнительную добычу газа из ранее простаивающей скважины, из ее потерянной для дренирования зоны при минимальных затратах на ее ремонт. Сущность изобретения: по способу отрезают и извлекают верхнюю часть лифтовой колонны, в обводненном основном стволе скважины устанавливают ликвидационный цементный мост, выше него в эксплуатационной колонне основного ствола вырезают окно и бурят дополнительный ствол, не выходящий за пределы призабойной зоны эксплуатационной колонны основного ствола обводненной скважины и с размещением башмака на 2-3 м выше газоводяного контакта - ГВК, обсаживают дополнительный ствол хвостовиком из обсадных труб и цементируют, перфорируют хвостовик на 5-7 м выше ГВК с образованием технологических отверстий под водоизоляцию, закачивают через эти отверстия водоизоляционную композицию, оттесняющую воду в глубину пласта и образующую водоизоляционный экран, докрепляют водоизоляционную композицию продавливаемым под давлением через технологические отверстия под водоизоляцию пластифицированным тампонажным цементным составом с повышенной проникающей способностью, устанавливают в хвостовике изоляционный цементный мост из тампонажного цемента нормальной плотности, перекрывающий технологические отверстия под водоизоляцию, после завершения периода ожидания затвердевания цемента и испытания изоляционного цементного моста на прочность и герметичность перфорируют хвостовик в верхней части продуктивного пласта и осваивают скважину. 3 пр., 1 ил.

Изобретение относится к нефтегазодобывающей промышленности, а именно к восстановлению обводненной простаивающей газовой скважины со смятой эксплуатационной колонной в продуктивном интервале в условиях аномально низкого пластового давления (АНПД) и незначительной газоносной толщины оставшейся части продуктивного пласта.

Большинство нефтегазоконденсатных месторождений Западной Сибири относятся к сложнопостроенным месторождениям с чередованием песчанистых и глинистых прослоек, образующих порою изолированные друг от друга линзы. Месторождения вступили в завершающую стадию разработки, характеризующейся АНПД, внедрением в залежь подошвенных вод и разрушением призабойной зоны пласта (ПЗП). Большое количество скважин на этих месторождениях выбывают из эксплуатации по причине их обводнения и смятия эксплуатационных колонн. Нередки случаи, когда подошвенные воды перекрывают весь интервал перфорации и скважины выходят из действующего фонда, переходя в бездействующий. Осложняющим фактором является наличие смятия эксплуатационной колонны и прихват лифтовой колонны, исключающие возможность попадания ремонтного инструмента в ствол скважины. В этом случае восстановить скважину и вывести ее из бездействующего фонда традиционными методами не всегда удается.

Примером этому могут служить скважины №202, 203, 186, 198, 199 Вынгапуровского месторождения, в которых были выявлены нарушения целостности эксплуатационных колонн, выраженные на скважинах №202, 203 полным смятием эксплуатационных колонн, а в скважинах №186, 198, 199 частичным смятием и смещением эксплуатационных колонн. Обычно такие нарушения происходят в зоне кровли продуктивного пласта, а также в зонах расположения глинистых пропластков. Причем смятие сопровождается срезом эксплуатационной колонны и ее смещением по горизонтали. При этом зачастую происходит прихват лифтовых колонн, извлечь которые практически невозможно, либо для их извлечения необходимы большие временные, технические и финансовые затраты. Таким образом, основной ствол скважины в результате смятия эксплуатационной колонны практически потерян как для добычи, так и для ремонта скважины. Здесь возможны два пути решения этой проблемы: либо ликвидация скважины как объекта добычи, либо проведение дорогостоящего ремонта по бурению бокового ствола с выходом его в недренированную зону, при этом эта часть продуктивного пласта, расположенная вблизи основного ствола, будет потеряна для целей разработки месторождения.

Известен способ восстановления скважины бурением бокового ствола [Техника и технология строительства боковых стволов в нефтяных и газовых скважинах / Шенбергер В.М. и др.- Тюмень: Изд-во «Нефтегазовый университет», 2007, 594 с.].

Недостатком этого способа восстановления обводненной простаивающей газовой скважины со смятой эксплуатационной колонной в условиях АНПД и незначительной газоносной толщины оставшейся части продуктивного пласта являются значительные затраты на ремонт скважины и невозможность вскрытия дренируемой ПЗП обводненной скважины, а значит безвозвратной потери данного участка месторождения для целей добычи.

Известен способ восстановления продуктивности и ввода в эксплуатацию простаивающих нефтяных и газовых скважин, включающий производство ремонтно-изоляционных работ и вскрытие продуктивного пласта [Патент РФ №2273718, Е21В 29/10, опубл. 10.04.2006].

Недостатком этого способа восстановления обводненной простаивающей газовой скважины со смятой эксплуатационной колонной в условиях АНПД и незначительной газоносной толщины оставшейся части продуктивного пласта являются значительные затраты на ремонт скважины и невозможность вскрытия дренируемой ПЗП обводненной скважины, а значит безвозвратной потери данного участка месторождения для целей добычи.

Известен способ восстановления продуктивности и ввода в эксплуатацию простаивающих скважин, включающий производство ремонтно-изоляционных работ и вскрытие продуктивного пласта в обсадной колонне [Патент РФ №2231630, Е21В 43/00, 43/32, опубл. 27.06.2004].

Недостатком этого способа восстановления обводненной простаивающей газовой скважины со смятой эксплуатационной колонной в условиях АНПД и незначительной газоносной толщины оставшейся части продуктивного пласта являются значительные затраты на ремонт скважины и невозможность вскрытия дренируемой ПЗП обводненной скважины, а значит безвозвратной потери данного участка месторождения для целей добычи.

Задача, стоящая при создании изобретения, состоит в разработке надежного способа восстановления обводненной простаивающей газовой скважины со смятой эксплуатационной колонной в условиях АНПД и незначительной газоносной толщины оставшейся части продуктивного пласта.

Достигаемый технический результат, который получается в результате создания изобретения, состоит в получении дополнительной добычи газа из ранее простаивающей скважины, из ее потерянной для дренирования зоны, при минимальных затратах на ее ремонт.

Поставленная задача и технический результат соответственно решаются и достигаются тем, что при восстановлении обводненной газовой скважины со смятой эксплуатационной колонной в продуктивном интервале отрезают и извлекают верхнюю часть лифтовой колонны, в обводненном основном стволе скважины устанавливают ликвидационный цементный мост, выше него в эксплуатационной колонне основного ствола вырезают окно и бурят дополнительный ствол, не выходящий за пределы призабойной зоны основного ствола обводненной скважины и с размещением башмака на 2-3 м выше газоводяного контакта (ГВК), обсаживают дополнительный ствол хвостовиком из обсадных труб и цементируют, перфорируют хвостовик на 5-7 м выше ГВК с образованием технологических отверстий под водоизоляцию, закачивают через эти отверстия водоизоляционную композицию, оттесняющую воду в глубину пласта и образующую водоизоляционный экран, докрепляют водоизоляционную композицию продавливаемым под давлением через технологические отверстия под водоизоляцию пластифицированным тампонажным цементным составом с повышенной проникающей способностью, устанавливают в хвостовике изоляционный цементный мост из тампонажного цемента нормальной плотности, перекрывающий технологические отверстия под водоизоляцию, после завершения периода ожидания затвердевания цемента и испытания изоляционного цементного моста на прочность и герметичность перфорируют хвостовик в верхней части продуктивного пласта и осваивают скважину.

На фиг. показана конструкция восстановленной газовой скважины после ремонта.

Способ реализуется в обводненной простаивающей газовой скважине со смятой эксплуатационной колонной основного ствола 1 и прихваченной лифтовой колонной 2, в которой первоначально эксплуатационная колонна основного ствола 1 была проперфорирована на всю толщину эффективной газоносной части продуктивного пласта 3. В процессе эксплуатации интервал перфорации 4 был частично перекрыт подошвенными водами с размещением ГВК 5 в верхней части интервала перфорации 4.

Первоначально в обводненной простаивающей газовой скважине обрезают лифтовую колонну 2, например, труборезом выше места прихвата и извлекают обрезанную часть лифтовой колонны 2 на поверхность. Причем прихват наиболее вероятен в зоне кровли 6 продуктивного пласта 3 или в зонах расположения глинистых пропластков 7.

Далее в эксплуатационной колонне основного ствола 1 скважины устанавливают ликвидационный цементный мост 8. Отрезанную нижнюю часть лифтовой колонны 2 цементируют в составе ликвидационного цементного моста 8, образуя дополнительную армирующую конструкцию данного цементного моста 8.

Выше ликвидационного цементного моста 8 в эксплуатационной колонне основного ствола 1 вырезают окно 9 на 30-50 м выше кровли 6 продуктивного пласта 3 и с использованием клина-отклонителя 10 и забойной телеметрической системы (на фиг. не показана), например, производства ЗАО НПП «Самарские горизонты» (см. http://www.sagor.ru/cat8.html), бурят дополнительный ствол 11, не выходящий за пределы призабойной зоны основного ствола 1 обводненной простаивающей газовой скважины с размещением башмака на 2-3 м выше ГВК 5. При этом бурение дополнительного ствола 11 в интервале продуктивного пласта 3 осуществляют на буровом растворе на полимерной или углеводородной основе.

Известно, что конфигурация, размеры и гидродинамические характеристики призабойной зоны изменяются в течение всего срока существования скважины. Они определяют гидравлическую связь скважины с пластом и весьма существенно влияют на ее производительность. Конфигурация зоны с измененными гидродинамическими характеристиками пласта в приствольной части скважины не имеет какой-то строгой геометрической формы, и ее морфология, особенно в трещиноватых и трещиновато-поровых коллекторах сложна и многообразна. Качественную и количественную оценку физико-геологических свойств пласта и гидравлического сопротивления призабойной зоны дают гидродинамические исследования скважин. В результате получают не фактические размеры зоны, а размер эквивалентной по гидравлическим свойствам круговой зоны. В связи с этим под пределами призабойной зоны основного ствола 1 понимается участок продуктивного пласта, примыкающий к основному стволу 1 (эквивалентная по гидравлическим свойствам круговая зона) скважины, с радиусом от оси основного ствола, равным 2-3 радиусам скважины, что, например, для скважины с эксплуатационной колонной, равной 168 мм, составляет ориентировочно от 280 до 420 мм. Данные значения являются средними и характеризуют пределы призабойной зоны относительно основного ствола 1 скважины (см., например, http://dic.academic.ru/dic.nsf/polytechnic/). При этом размещение башмака на 2-3 м выше ГВК обусловлено тем, что, с одной стороны, гарантирует, что нижний торец хвостовика 12 не попадет в зону ГВК 5, с другой стороны, при размещении нижнего торца хвостовика 12 на 2-3 м выше ГВК 5 незначительно сокращается толщина оставшейся необводненной зоны продуктивного пласта 3.

Дополнительный ствол 11 обсаживают хвостовиком 12 из обсадных труб, например, диаметром 114 мм при диаметре эксплуатационной колонны 168 мм и цементируют.

Хвостовик 12 перфорируют на 5-7 м выше ГВК 5 с образованием технологических отверстий 13 под водоизоляцию. При этом в качестве перфоратора применяют мощные кумулятивные перфораторы, такие как, PI 2906 Омега, или ЗПКТ 73-ГП, либо ПРК 42С, ПКС-80. Перфорация хвостовика 12 на 5-7 м выше ГВК 5 обусловлена необходимостью сохранения прочностных свойств эксплуатационной колонны, а также стремлением минимально сократить дренированную зону и в то же время создать через этот интервал прочный водоизоляционный экран. Расстояние между нижними и верхними перфорационными отверстиями хвостовика 12 обусловлено конструкцией перфоратора, например, ПКС-80, а именно на одном метре колонны должно быть порядка 10 отверстий.

Закачивают через технологические отверстия 13 водоизоляционную композицию 14, оттесняя подошвенную воду с образованием водоизоляционного экрана 15. Образованный водоизоляционный экран 15 препятствует проникновению воды на забой хвостовика 12. В практике нефтегазовой промышленности в качестве водоизоляционных композиций могут использоваться, например, составы, описанные в книге (Справочная книга по текущему и капитальному ремонту скважин / А.Д.Амиров и др. - М.: Недра, 1979, с. 238-241) и другие составы, приведенные в книгах (Изоляционные работы при заканчивании и эксплуатации нефтяных скважин / И.И.Клещенко и др. - М.: Недра, 1998, 267 с.; Капитальный ремонт скважин. Изоляционные работы / В.Г.Уметбаев и др. - Уфа: РИЦ АНК «Башнефть», 2000, 424 с.; Технология капитального и подземного ремонта нефтяных и газовых скважин: Учебник для вузов / Ю.М.Басарыгин и др. - Крансодар: Сов. Кубань, 2002, 584 с.; Гасумов Р.А., Нерсесов С.В., Мосиенко В.Г. Технология изоляции притока пластовых вод в газовых и газоконденсатных скважинах // Обз. Информ. Сер.: разработка и эксплуатация газовых и газоконденсатных месторождений. - М.: ИРЦ Газпром, 2005, 107 с.).

Помимо этого известны следующие водоизоляционные композиции:

- модификатор (113-63 или 113-65) + этилсиликат (ЭТС-40 или ЭТС-16)+гидрофобная кремнийорганическая жидкость (ГЖК);

- этилсиликат (ЭТС-40 или ЭТС-16) + синтетическая виноградная кислота (СВК) + хлорид кальция (CaCl2);

- поливиниловый спирт (ПВС)+гидрофобная кремнийорганическая жидкость (ГКЖ).

Известны также гелеобразующие водоизоляционные композиции, например, силикатный гель-гелеобразующая основа + хлорид кальция (CaCl2) + соляная кислота (HCl) + сульфат аммония (NH4)2SO4 или полимерный гель-гелеобразующая основа+полиакриламит (ПАА).

Закачку водоизоляционной композиции проводят из расчета ее объема и давления закачки.

Объем водоизоляционной композиции, закачиваемой в пласт, зависит от геолого-физических характеристик объекта и определяется по результатам технико-экономических расчетов (см. например, патент РФ №2124634, стр.3).

Методики промысловых наблюдений включают в себя определение объема водоизоляционной композиции, который, с одной стороны, зависит от свойств реагентов, с другой, - от коллекторских свойств пород и объема промытых зон. Для большинства химреагентов при ограничении водопритоков в скважины этот объем определяется из расчета заполнения ими обводненного участка призабойной зоны пласта, который не всегда соответствует фактическим объемам закачки.

Воздействие на пласт основано на изменении фильтрационного сопротивления его обводненной зоны, а определение объема водоизоляционной композиции производят по остаточному сопротивлению, создаваемому ей в пористой среде (см., например, http://neft.-i-gaz.ru/litera/index0 155.htm).

Водоизоляционную композицию 14 докрепляют пластифицированным тампонажным цементным составом с повышенной проникающей способностью, повышенной прочностью и стойкостью к пластовой воде, продавливаемым в обводненную часть продуктивного пласта 3 под давлением через технологические отверстия 13 под водоизоляцию. Под пластифицированным тампонажным цементным составом понимается цементный состав, содержащий пластифицирующую добавку, составляющую, например, 1,0-3,0% от массы цемента (см., например, http://www.emaco-spb.ru/glenium_sky_591). Такие пластифицированные тампонажные цементные составы обладают повышенной проникающей способностью. Из уровня техники (см., например, www.dobi.oglib.ru/bgl/2684/303.html) известно, что проникающая способность тампонажного цементного состава характеризуется пластической вязкостью. Высокая проникающая способность характерна для тампонажных цементных составов, вязкость которых приближается к вязкости воды. Пластическая вязкость пластифицированного тампонажного цементного состава составляет 30-50 Сп. Отсутствие твердой фазы также обуславливает высокую проникающую способность состава и хорошую фильтруемость в пористой среде.

При закачке водоизоляционной композиции и доукрепляющего пластифицированного тампонажного цементного состава необходимо контролировать давление закачки. Как было установлено экспериментальным путем на скважинах №186, 198, 199 Вынгапуровского месторождения, закачку водоизоляционной композиции и доукрепляющего пластифицированного тампонажного цементного состава вели до давления на 10% ниже давления гидроразрыва.

Дополнительно в хвостовике 12 устанавливают изоляционный цементный мост 16 из тампонажного цемента нормальной плотности, который перекрывает технологические отверстия 13 под водоизоляцию, выполненные в хвостовике 12 дополнительного ствола 10. Под тампонажным цементом нормальной плотности понимается тампонажный цементный состав плотностью 1750-1950 кг/м3 (см., например, http://www.ng-burenie.ru/reastab.php), например, ПТЦ-1-50 - 60%, вода - 40%.

После завершения периода ожидания затвердевания цемента и испытания изоляционного цементного моста 16 на прочность и герметичность перфорируют хвостовик 12 в верхней необводненной менее эффективной низкопроницаемой газоносной части продуктивного пласта 3 с образованием новых перфорационных отверстий 17 под эксплуатацию.

В качестве перфоратора применяют мощные кумулятивные перфораторы, такие как PI 2906 Омега, или ЗПКТ 73-ГП, либо ПРК 42С или ПКС 80. Можно для перфорации хвостовика 12 использовать гидропескоструйную перфорацию либо применить метод щелевой разгрузки с образованием продольных вертикальных щелей.

В заключение в скважину спускают новую лифтовую колонну 18 до глубины верхней кромки вырезанного в эксплуатационной колонне основного ствола 1 окна 9 и осваивают скважину путем вызова притока газа из газоносной части продуктивного пласта 3 через новые перфорационные отверстия 17 под эксплуатацию.

После отработки скважины и проведения газодинамических исследований скважину вводят в эксплуатацию.

Примеры осуществления заявленного способа.

Пример 1.

Способ реализуется на обводненной скважине со смятой эксплуатационной колонной диаметром 168 мм, длиной 1000 м. Подошва пласта размещена на глубине 980 м, кровля пласта на глубине 955 м, а ГВК - на 978 м от поверхности. Обрезают лифтовую колонну выше места прихвата, расположенного в зоне кровли 6 продуктивного пласта 3, труборезом, например труборезом внутренним ТРВ-168, и извлекают на поверхность. Затем в эксплуатационной колонне 1 устанавливают ликвидационный цементный мост 8 из тампонажного цемента нормальной плотности, составляющей 1750 кг/м3, например, из тампонажного цемента ПТЦ-1-50, в соотношении: ПТЦ-1-50 - 60%, вода - 40%. Над ликвидационным мостом 8 в эксплуатационной колонне 1 (с внутренним диаметром, например, 150 мм) вырезают окно 9 на расстоянии 30-50 м выше кровли 6 продуктивного пласта 3. Размещают внутри эксплуатационной колонны 1 клин-отклонитель 10, например, марки КОС-168 плоского типа или КО-168 желобного типа и бурят с использованием забойной телеметрической системы (на фиг. не показана) производства ЗАО НПП «Самарские горизонты» дополнительный ствол 11 не выходящий за пределы призабойной зоны основного ствола обводненной скважины. После этого обсаживают дополнительный ствол 11, хвостовиком 12 диаметром 114 мм. Башмак хвостовика размещают на расстоянии 2 м от ГВК. В нижней части хвостовика проводят перфорацию перфоратором ПКС-80. Нижний ряд технологических перфорационных отверстий расположен на расстоянии 5 м выше ГВК. Верхний ряд перфорационных отверстий 13 размещают на расстоянии 6 м выше ГВК. В перфорационные отверстия 13 последовательно закачивают водоизоляционную композицию (модификатор 113-63 или 113-65)+этилсиликат (ЭТС-40 или ЭТО 16 + гидрофобная кремнийорганическая жидкость (ГЖК), доукрепляют пластифицированным тампонажным цементным раствором с повышенной проницаемостью (ПТЦ-1-50 - 60 мас.% + Мк-85 - 40 мас.% (микрокремнезем конденсированный) + водный раствор хлорида кальция CaCl2 - 150 мас.% (плотностью 1065 кг/м3) + СП-1 - 2 мас.% (суперпластификатор) + 250 EXR - 0,8 мас.% (натросол для понижения водоотдачи).

Затем устанавливают цементный мост 16 из тампонажного цементного состава нормальной плотности, составляющей 1750 кг/м3, например, в соотношении: ПТЦ-1-50 - 60%, вода - 40%, перекрывая им интервал перфорации. После завершения периода ожидания затвердевания цементного моста 16 испытывают его на прочность и герметичность. После перфорируют хвостовик 12 в верхней части продуктивного пласта 3.

В заключение в скважину спускают новую лифтовую колонну 18 диаметром 114 мм до глубины верхней кромки вырезанного в эксплуатационной колонне основного ствола 1 окна 9 и осваивают скважину путем вызова притока газа из газоносной части продуктивного пласта 3 через новые перфорационные отверстия 17 под эксплуатацию.

После отработки скважины и проведения газодинамических исследований скважину вводят в эксплуатацию.

Пример 2.

Способ реализуется на обводненной скважине со смятой эксплуатационной колонной диаметром 219 мм, длиной 1200 м. Подошва пласта размещена на глубине 985 м, кровля пласта на глубине 960 м, а ГВК - на 983 м от поверхности. Обрезают лифтовую колонну выше места прихвата, расположенного в зоне кровли 6 продуктивного пласта 3, труборезом, например труборезом внутренним ТРВ-219, и извлекают на поверхность. Затем в эксплуатационной колонне 1 устанавливают ликвидационный цементный мост 8 из тампонажного цемента нормальной плотности, составляющей 1750 кг/м3, например, в соотношении: ПТЦ-1-50 - 60%, вода - 40%. Над ликвидационным мостом 8 в эксплуатационной колонне 1 (с внутренним диаметром, например, 150 мм) вырезают окно 9 на расстоянии 30-50 м выше кровли 6 продуктивного пласта 3. Размещают внутри эксплуатационной колонны 1 клин-отклонитель 10, например, марки КОС-219 плоского типа и бурят с использованием забойной телеметрической системы (на фиг. не показана) производства ЗАО НПП «Самарские горизонты» дополнительный ствол 11, не выходящий за пределы призабойной зоны основного ствола обводненной скважины. После этого обсаживают дополнительный ствол 11 хвостовиком 12 диаметром 146 мм. Башмак хвостовика размещают на расстоянии 2,5 м от ГВК. В нижней части хвостовика проводят перфорацию перфоратором ПКС-80. Нижний ряд технологических перфорационных отверстий расположен на расстоянии 5,5 м выше ГВК. Верхний ряд перфорационных отверстий 13 размещают на расстоянии 6,5 м выше ГВК. В перфорационные отверстия 13 последовательно закачивают водоизоляционную композицию: этилсиликат (ЭТС-40 или ЭТС-16) + синтетическая кислота (СВК) + хлорид кальция (CaCl2), доукрепляют пластифицированным тампонажным цементным раствором с повышенной проницаемостью (ПТЦ-1-50 - 60 мас.% + Мк-85 - 40 мас.% (микрокремнезем конденсированный)+водный раствор хлорида кальция CaCl2 - 150 мас.% (плотностью 1065 кг/м3) + СП-1 - 2 мас.% (суперпластификатор) + полипропиленовые волокна + 250 EXR - 0,8 мас.% (натросол для понижения водоотдачи).

Затем устанавливают цементный мост 16 из тампонажного цементного состава нормальной плотности, составляющей 1750 кг/м3, например, из тампонажного цемента ПТЦ-1-50, в соотношении: ПТЦ-1-50 - 60%, вода - 40%, перекрывая им интервал перфорации. После завершения периода ожидания затвердевания цементного моста 16 испытывают его на прочность и герметичность. После перфорируют хвостовик 12 в верхней части продуктивного пласта 3.

В заключение в скважину спускают новую лифтовую колонну 18 диаметром 168 мм до глубины верхней кромки вырезанного в эксплуатационной колонне основного ствола 1 окна 9 и осваивают скважину путем вызова притока газа из газоносной части продуктивного пласта 3 через новые перфорационные отверстия 17 под эксплуатацию.

После отработки скважины и проведения газодинамических исследований скважину вводят в эксплуатацию.

Пример 3.

Способ реализуется на обводненной скважине со смятой эксплуатационной колонной диаметром 146 мм, длиной 1450 м, подошва пласта размещена на глубине 1085 м, кровля пласта на глубине 1060 м, а ГВК - на 1083 м от поверхности. Обрезают лифтовую колонну выше места прихвата, расположенного в зоне кровли 6 продуктивного пласта 3, труборезом, например труборезом внутренним ТРВ-146, и извлекают на поверхность. Затем в эксплуатационной колонне 1 устанавливают ликвидационный цементный мост 8 из тампонажного цемента нормальной плотности, составляющей 1750 кг/м3, например, в соотношении: ПТЦ-1-50 - 60%, вода - 40%. Над ликвидационным мостом 8 в эксплуатационной колонне 1 (с внутренним диаметром, например, 150 мм) вырезают окно 9 на расстоянии 30-50 м выше кровли 6 продуктивного пласта 3. Размещают внутри эксплуатационной колонны 1 клин-отклонитель 10, например, марки КОС-168 плоского типа и бурят с использованием забойной телеметрической системы (на фиг. не показана) производства ЗАО НПП «Самарские горизонты» дополнительный ствол 11, не выходящий за пределы призабойной зоны основного ствола обводненной скважины. После этого обсаживают дополнительный ствол 11 хвостовиком 12 диаметром 102 мм. Башмак хвостовика размещают на расстоянии 3 м от ГВК. В нижней части хвостовика проводят перфорацию перфоратором ПКС-80. Нижний ряд технологических перфорационных отверстий расположен на расстоянии 6 м выше ГВК. Верхний ряд перфорационных отверстий 13 размещают на расстоянии 7 м выше ГВК. В перфорационные отверстия 13 последовательно закачивают водоизоляционную композицию (модификатор 113-63 или 113-65) + этилсиликат (ЭТС-40 или ЭТС-16 + гидрофобная кремнийорганическая жидкость (ГЖК), доукрепляют пластифицированным тампонажным цементным раствором с повышенной проницаемостью (ПТЦ-1-50 - 98 мас.% + Мк-85 - 2 мас.% (микрокремнезем конденсированный)+вода 55 мас.% + Окзил - 04 мас.% (пластификатор) + 250 EXR - 0,8 мас.% (натросол для понижения водоотдачи).

Затем устанавливают цементный мост 16 из тампонажного цементного состава нормальной плотности, составляющей 1750 кг/м3, например, из тампонажного цемента ПТЦ-1-50, в соотношении: ПТЦ-1-50 - 60%, вода - 40%, перекрывая им интервал перфорации. После завершения периода ожидания затвердевания цементного моста 16 испытывают его на прочность и герметичность. После перфорируют хвостовик 12 в верхней части продуктивного пласта 3.

В заключение в скважину спускают новую лифтовую колонну 18 диаметром 73 мм до глубины верхней кромки вырезанного в эксплуатационной колонне основного ствола 1 окна 9 и осваивают скважину путем вызова притока газа из газоносной части продуктивного пласта 3 через новые перфорационные отверстия 17 под эксплуатацию.

После отработки скважины и проведения газодинамических исследований скважину вводят в эксплуатацию.

Способ восстановления обводненной газовой скважины со смятой эксплуатационной колонной в продуктивном интервале, при котором отрезают и извлекают верхнюю часть лифтовой колонны, в обводненном основном стволе скважины устанавливают ликвидационный цементный мост, выше него в эксплуатационной колонне основного ствола вырезают окно и бурят дополнительный ствол, не выходящий за пределы призабойной зоны эксплуатационной колонны основного ствола обводненной скважины и с размещением башмака на 2-3 м выше газоводяного контакта - ГВК, обсаживают дополнительный ствол хвостовиком из обсадных труб и цементируют, перфорируют хвостовик на 5-7 м выше ГВК с образованием технологических отверстий под водоизоляцию, закачивают через эти отверстия водоизоляционную композицию, оттесняющую воду в глубину пласта и образующую водоизоляционный экран, докрепляют водоизоляционную композицию продавливаемым под давлением через технологические отверстия под водоизоляцию пластифицированным тампонажным цементным составом с повышенной проникающей способностью, устанавливают в хвостовике изоляционный цементный мост из тампонажного цемента нормальной плотности, перекрывающий технологические отверстия под водоизоляцию, после завершения периода ожидания затвердевания цемента и испытания изоляционного цементного моста на прочность и герметичность перфорируют хвостовик в верхней части продуктивного пласта и осваивают скважину.
Источник поступления информации: Роспатент

Показаны записи 21-30 из 124.
20.09.2014
№216.012.f5e9

Способы выделения двухступенчатой ректификацией инертных газов из хвостовых газов и устройство для его осуществления

Изобретение относится к области газохимии, предназначено для получения инертных газов. Способ выделения инертных газов из газов, содержащих в своем составе аргон, ксенон, криптон, азот и водород, включает охлаждение исходного потока газа, ожижение и разделение посредством двухступенчатой...
Тип: Изобретение
Номер охранного документа: 0002528786
Дата охранного документа: 20.09.2014
20.09.2014
№216.012.f5ed

Способ и устройство для управления внутритрубным объектом

Способ и устройство предназначены для управления внутритрубным объектом. Способ заключается в дистанционном управлении внутритрубным объектом с помощью команд управления по двум каналам управления - низкочастотному электромагнитному каналу и радиоканалу метрового диапазона волн, причем...
Тип: Изобретение
Номер охранного документа: 0002528790
Дата охранного документа: 20.09.2014
20.09.2014
№216.012.f5ef

Способ выделения одноступенчатой ректификацией инертных газов из хвостовых газов и устройство для его осуществления

Изобретение относится к области газохимии, предназначено для получения инертных газов. Способ выделения инертных газов из газов, содержащих в своем составе как минимум аргон, ксенон, криптон, азот и водород, включает охлаждение исходного потока газа, ожижение и разделение посредством...
Тип: Изобретение
Номер охранного документа: 0002528792
Дата охранного документа: 20.09.2014
10.10.2014
№216.012.fab9

Способ разработки нефтегазоконденсатного месторождения (варианты)

Группа изобретений относится к нефтегазодобывающей промышленности, а именно к способам разработки многофазных углеводородных залежей с отсутствием непроницаемых экранов между нефте- и газонасыщенными зонами пласта. Обеспечивает повышение темпов разработки и углеводородоотдачи...
Тип: Изобретение
Номер охранного документа: 0002530031
Дата охранного документа: 10.10.2014
27.11.2014
№216.013.0b43

Способ восстановления обводненной газовой или газокоденсатной скважины и предупреждения ее обводнения при дальнейшей эксплуатации

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для восстановления обводненной газовой или газоконденсатной скважины и предупреждения ее обводнения и самозадавливания при дальнейшей эксплуатации. Обеспечивает повышение продуктивности скважин за счет...
Тип: Изобретение
Номер охранного документа: 0002534291
Дата охранного документа: 27.11.2014
27.11.2014
№216.013.0b96

Способ гидравлического разрыва и крепления пластов

Изобретение относится к горной промышленности и может быть использовано для повышения дебитов и обеспечения устойчивой работы эксплуатационных скважин способом гидравлического разрыва пласта (ГРП) и крепления пород коллекторов. Изобретение относится к горной промышленности и может быть...
Тип: Изобретение
Номер охранного документа: 0002534374
Дата охранного документа: 27.11.2014
27.11.2014
№216.013.0c41

Сорбент для очистки и утилизации отходов и грунтов загрязненных нефтепродуктами

Изобретение относится к сорбентам для очистки поверхностей от углеводородных загрязнений. Сорбент для очистки и утилизации отходов и грунтов, загрязненных нефтепродуктами, содержит негашеную известь, технический жир и метилсиликонат натрия при следующем соотношении компонентов, масс.%:...
Тип: Изобретение
Номер охранного документа: 0002534545
Дата охранного документа: 27.11.2014
27.11.2014
№216.013.0c43

Сорбент для очистки и обезвреживания отходов, загрязненных нефтепродуктами

Изобретение относится к сорбентам, предназначенным для очистки поверхностей от углеводородных загрязнений. Сорбент для очистки и обезвреживания отходов, загрязненных нефтепродуктами, содержит негашеную известь, технический жир и алюмометилсиликонат натрия при следующем соотношении компонентов,...
Тип: Изобретение
Номер охранного документа: 0002534547
Дата охранного документа: 27.11.2014
10.12.2014
№216.013.0d2a

Способ обезвреживания отходов, загрязненных нефтепродуктами

Изобретение относится к переработке нефтесодержащих отходов. В смесителе осуществляют приготовление сорбента, содержащего негашеную известь, технический жир, метилсиликонат натрия и хлорид магния. В смеситель подают отходы, загрязненные нефтепродуктами, и осуществляют перемешивание до получения...
Тип: Изобретение
Номер охранного документа: 0002534787
Дата охранного документа: 10.12.2014
27.12.2014
№216.013.165d

Способ предотвращения детонации горючей газовоздушной смеси в трубе и устройство для его осуществления

Изобретение относится к области обеспечения пожаровзрывобезопасности и может использоваться в газовой, нефтяной, химической и других отраслях промышленности. И более конкретно, для обеспечения безопасности технологических процессов, протекающих с участием горючих газов. В частности, изобретение...
Тип: Изобретение
Номер охранного документа: 0002537149
Дата охранного документа: 27.12.2014
Показаны записи 21-30 из 84.
10.05.2015
№216.013.4afd

Торфощелочной буровой раствор для бурения скважин в многолетнемерзлых породах

Изобретение относится к нефтегазодобывающей промышленности. Технический результат - повышение надежности бурения скважин в глинистых породах, особенно в многолетнемерзлых породах в условиях аномально-низких пластовых давлений, за счет высоких ингибирующих свойств бурового раствора и невысокого...
Тип: Изобретение
Номер охранного документа: 0002550704
Дата охранного документа: 10.05.2015
10.07.2015
№216.013.5c50

Способ разглинизации призабойной зоны низкопроницаемого низкотемпературного терригенного пласта

Изобретение относится к нефтегазодобывающей промышленности. Технический результат - увеличение проницаемости осушенной призабойной зоны пласта, повышение степени разглинизации призабойной зоны и повышение производительности скважин. Способ разглинизации призабойной зоны низкопроницаемого...
Тип: Изобретение
Номер охранного документа: 0002555173
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5e87

Способ вытеснения высоковязкой нефти из нефтяной залежи, расположенной в зоне многолетнемерзлых пород

Изобретение относится к нефтегазодобывающей промышленности, а именно к добыче высоковязкой нефти, в частности к вытеснению высоковязкой нефти из нефтяной залежи, расположенной в зоне распространения многолетнемерзлых пород. Технический результат - обеспечение вытеснения высоковязкой нефти без...
Тип: Изобретение
Номер охранного документа: 0002555740
Дата охранного документа: 10.07.2015
10.08.2015
№216.013.68b1

Устройство подвеса сталеполимерной трубы и способ его применения

Изобретение относится к устройствам для подвески труб на устье скважины. Техническим результатом является улучшение массово-габаритных характеристик устройства подвеса, упрощение схемы отвода жидкости из забоя, повышение эффективности работы скважины. Устройство подвеса сталеполимерной трубы...
Тип: Изобретение
Номер охранного документа: 0002558354
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6a94

Способ восстановления обводненной скважины

Изобретение относится к нефтегазодобывающей промышленности, а именно к восстановлению обводненной скважины и, в частности, к восстановлению обводненной скважины, верхняя часть которой расположена в заглинизированном низкотемпературном терригенном коллекторе вблизи многолетнемерзлых пород....
Тип: Изобретение
Номер охранного документа: 0002558837
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6c3e

Система адаптивного автоматического управления производительностью куста газовых скважин

Изобретение относится к газодобывающей промышленности и может быть использована на газовом промысле для автоматического управления и регулирования технологическими процессами сбора и подготовки газа к дальнему транспорту. Система содержит ПИД-регуляторы расхода газа, подключенные к скважинам и...
Тип: Изобретение
Номер охранного документа: 0002559268
Дата охранного документа: 10.08.2015
20.08.2015
№216.013.71f1

Облегченный спиртово-солевой раствор для растепления газовых скважин в зоне многолетнемерзлых высокольдистых горных пород

Изобретение относится к нефтегазодобывающей промышленности, а именно к растеплению ствола в процессе эксплуатации или ремонта газовых и газоконденсатных скважин, расположенных в зоне многолетнемерзлых высокольдистых горных пород. Технический результат - создание условий для растепления...
Тип: Изобретение
Номер охранного документа: 0002560739
Дата охранного документа: 20.08.2015
10.10.2015
№216.013.8153

Способ изоляции притока подошвенных вод в скважине

Изобретение относится к нефтедобывающей промышленности, а именно к изоляции притока пластовых вод в скважине, забой которой расположен вблизи водонефтяного контакта (ВНК). Технический результат от реализации изобретения заключается в увеличении радиуса водоизоляционного экрана и отсрочки...
Тип: Изобретение
Номер охранного документа: 0002564704
Дата охранного документа: 10.10.2015
10.10.2015
№216.013.8165

Способ эксплуатации залежи углеводородов

Изобретение относится к области нефтяной и газовой промышленности и может быть использовано в процессе всего периода эксплуатации от начальной стадии до завершающей стадии разработки массивных и пластомассивных залежей, подстилаемых активно внедряющейся в продуктивную часть пласта подошвенной...
Тип: Изобретение
Номер охранного документа: 0002564722
Дата охранного документа: 10.10.2015
20.10.2015
№216.013.86ff

Морская скважина для добычи нефти и газа с надводным размещением устьевого оборудования

Изобретение относится к нефтегазодобывающей промышленности, а именно к конструкциям интеллектуальных газовых скважин, эксплуатирующих морские и шельфовые месторождения, включая и арктическую зону. Надводная скважина для добычи нефти и газа в открытом море содержит водоотделяющую колонну и...
Тип: Изобретение
Номер охранного документа: 0002566162
Дата охранного документа: 20.10.2015
+ добавить свой РИД