×
29.04.2019
219.017.4644

Результат интеллектуальной деятельности: СПОСОБ ВЫПЛАВКИ БЕЗУГЛЕРОДИСТОЙ ЖАРОПРОЧНОЙ СТАЛИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии и может быть использовано при производстве жаропрочных сталей для нужд энергетики и создания оборудования, работающего в условиях сверхкритических параметров пара. Способ включает загрузку в вакуумную индукционную печь шихтовых материалов, расплавление, выдержку металла под вакуумом в течение 20-30 мин при температуре, превышающей температуру ликвидус металла на 150-170°С при давлении 5·10-1·10 мм рт.ст., напуск инертного газа, причем раскислители и высокореакционные легирующие добавки вводят после снижения температуры до значений, превышающих температуру ликвидус на 100-110°С в атмосфере инертного газа при давлении 70-250 мм рт.ст., а раскисление металла осуществляют в три стадии сначала алюминием; затем щелочноземельными металлами и окончательное - редкоземельными металлами и борсодержащими лигатурами, а легирование азотом осуществляют после введения всех легирующих добавок, последующей откачки инертного газа, выдержки металла в вакууме в течение 7-10 минут путем введения азотсодержащей лигатуры, при парциальном давлении азота в атмосфере печи 600-700 мм рт.ст., выдержки металла в течение 5-7 минут до полного усвоения азота и его разливки. Способ позволяет выплавить сталь с содержанием углерода на уровне 0,001-0,009%, азота 0,05-0,1%, бора 0,003-0,01%, хорошо раскисленную с содержанием кислорода 0,0015-0,0010%, требуемого уровня жаропрочности. 5 з.п. ф-лы, 2 табл.

Изобретение относится к области металлургии и может быть использовано при производстве жаропрочных сталей с низким содержанием углерода преимущественно для нужд энергетики и создания оборудования, работающего в условиях суперсверхкритических параметров пара.

Одной из базовых проблем при создании тепловых энергоблоков с суперсверхкритическими параметрами уровня температур 650°С и давлении пара от 30 до 35 МПа является необходимость разработки жаропрочных и относительно экономичных конструкционных материалов, в том числе для пароперегревателей и паропроводов. В связи с этим поставлена задача разработки новой жаропрочной стали, обеспечивающей требуемый уровень длительной прочности σ105 не менее 98 Н/мм2 при температуре 650°С и длительной пластичности не менее 10%.

Жаропрочные стали с содержанием углерода выше 0,01% характеризуются тем, что упрочняющей фазой в них выступают карбиды, которые при рабочих температурах выше 540°С коагулируют, сильно увеличиваясь в размерах, тем самым разупрочняя материал. Поэтому для повышения длительной прочности жаропрочных сталей решили перейти от карбидного упрочнения к нитридно-боридному и обеспечить требуемый уровень свойств, необходимый современным энергетическим установкам. (Необходимо отметить, что повышение рабочей температуры пара в энергетических установках с 600°С до 650°С приводит к увеличению их КПД с 44 до 49%.)

Введение в состав стали азота приводит к необходимости проведения в вакуумной индукционной печи новой технологической операции - легирование азотом.

Известен способ выплавки безуглеродистой жаропрочной стали в вакуумной индукционной печи, включающий загрузку шихтовых материалов, откачку печи, расплавление, выдержку металла под вакуумом, напуск инертного газа, введение высокореакционных легирующих добавок, раскисление металла и его разливку (см. Ал.Г.Шалимов, И.Н.Готин, Н.А.Тулин. Интенсификация процессов специальной электрометаллургии, М. «Металлургия», 1988, с.63-74).

Однако этот способ обеспечивает содержание азота в готовой стали на уровне 0,005-0,007% и не предусматривает легирование ее азотом и процессе переплава. Кроме того, снижение содержания углерода в стали до уровня 0,001-0,009% приводит к смещению термодинамического равновесия между кислородом и углеродом в системе Fe-Cr-С-О в сторону увеличения содержания кислорода (до 0,028%). Это приведет к формированию большого количества неметаллических включений в стали, преимущественно оксидов и оксисульфидов, и, следовательно, к резкому снижению качественных характеристик металла (в том числе длительной прочности).

Предложенное техническое решение позволяет избежать недостатков известного аналога и предусматривает проведение следующих операций: загрузку в вакуумную индукционную печь шихтовых материалов, расплавление, выдержку металла под вакуумом в течение 20-30 мин при температуре, превышающей температуру ликвидус металла на 150-170°С при давлении 5·10-3-1·10-2 мм рт.ст., напуск инертного газа, введение высокореакционных легирующих добавок, раскисление металла, легирование его азотом и разливку, причем раскислители и высокореакционные легирующие добавки вводят после снижения температуры до значений, превышающих температуру ликвидус на 100-110°С в атмосфере инертного газа при давлении 70-250 мм рт.ст., а раскисление металла осуществляют в три стадии: сначала алюминием; затем щелочноземельными металлами и окончательное - редкоземельными металлами и борсодержащими лигатурами, а легирование азотом осуществляют после введения всех легирующих добавок, последующей откачки инертного газа, выдержки металла в вакууме в течение 5-6 минут путем введения азотсодержащей лигатуры, например феррохрома, при парциальном давлении азота в атмосфере печи 600-700 мм рт.ст., выдержки металла в течение 5-7 минут до полного усвоения азота и его разливки.

Способ предусматривает выплавку бузуглеродистой жаропрочной стали, легированной азотом, содержащей углерод, кремний, марганец, хром, кобальт, молибден, вольфрам, ванадий, ниобий, алюминий, никель, кальций, церий, азот, бор, фосфор, серу, свинец, олово, мышьяк, магний и железо, при следующем соотношении компонентов, мас.%: углерод от 0,001% до 0,009%; кремний от 0,005% до 0,10%; марганец от 0,2% до 0,4%; хром от 8,5% до 9,5%; кобальт от 2,5% до 4,0%; молибден от 0,4% до 0,6%; вольфрам от 1,8% до 3,0%; ванадий от 0,15% до 0,30%; ниобий от 0,04% до 0,09%; алюминий не более 0,015%; никель не более 0,2%; кальций от 0,005% до 0,05%, азот от 0,04% до 0,10%; церий от 0,02% до 0,05%; магний от 0,005% до 0,05%; бор и г 0,003% до 0,01%; фосфор не более 0,015%, сера не более 0,010%, свинец, олово, мышьяк не более 0,006% каждого; железо - остальное.

В качестве железосодержащей шихтовой составляющей используют железо рафинированное, например ЖР008 или ЖР003.

Парциальное давление азота в атмосфере печи создают путем напуска азота до значений 600-760 мм рт.ст, после выдержки металла в вакууме в течение 5-6 минут.

Окончательное раскисление металла осуществляют после введения азотсодержащей лигатуры и усвоения азота.

Разливку стали осуществляют в атмосфере азота при парциальном его давлении в разливочной камере 600-700 мм рт.ст.

Технический результат от предложенного способа заключается в повышении длительной прочности стали при работе в условиях суперсверхкритических параметров пара. Результат достигается тем, что выплавляют сталь с содержанием углерода на уровне 0,001-0,009%, азота - 0,05-0,1%, бора 0,003-0,01%, хорошо раскисленную с содержанием кислорода 0,0015-0,0010%, с низким содержанием неметаллических включений и достигают требуемого уровня характеристик жаропрочности этой стали (длительная прочность , длительная пластичность ).

Проведение всех операций при выплавке стали в индукционной печи в перечисленной последовательности при соблюдении температурно-временных характеристик и режимов поддержания заданной атмосферы в печи позволяет получить качественные стальные слитки без дефектов усадочного характера и газовых пузырей.

Авторами установлено, что проведение раскисления стали в три стадии дает наиболее желаемый эффект. Поскольку содержание углерода в исходных шихтовых материалах невелико, то рассчитывать на активное вакуум-углеродное раскисление не приходится, а держать металл под вакуумом в течение длительного времени при температуре 1650-1700°С экономически не выгодно, в том числе из-за угара легирующих компонентов. Необходимо ввести такое количество раскислителей, которое позволило бы снизить содержание кислорода по крайней мере до 0,001-0,0015%. В обычных сталях с этой ролью успешно справляются алюминий и кремний. Однако в нашем случае вследствие ограниченного содержания алюминия и кремния нужен дополнительный эффективный раскислитель из группы щелочноземельных металлов. Например, магний. Он обладает высокой раскислительной способностью, продукты взаимодействия его с кислородом легко выводятся из расплава (ассимилируются шлаком). Магний в количестве от 0,005% до 0,05% способствует активному раскислению. Кроме того, содержание магния в количестве от 0,05% до 0,005% способствует глобуляризации неметаллических включений, уменьшает количество оксидных включений типа глинозема и шпинелей, очищает границы зерен и повышает ударную вязкость.

Использование бора в качестве раскислителя, как установлено авторами, повышает длительную прочность и длительную пластичность за счет растворения бора, как поверхностно-активного элемента, в граничных зонах, упрочняя границы зерен и замедляя протекание диффузионных процессов в этих участках. Использование для раскисления редкоземельных металлов позволяет снизить не только содержание кислорода, но и серы до 0,003%.

Поскольку растворимость азота в металле напрямую зависит от парциального давления азота над расплавом (закон Сивертса), то легировать им металл до значений предела растворимости нужно непременно в атмосфере азота, соответствующей или выше по парциальному давлению открытой выплавке. И разливка должна проходить в атмосфере азота, иначе после кристаллизации металл будет поражен газовой (азотной) пористостью.

По предлагаемому способу осуществили выплавку безуглеродистой жаропрочной стали в вакуумной индукционной печи садкой 25 кг. Разливали сталь в изложнице на слитки по массой по 25 кг. Химический состав металла приведен в таблице 1. Параметры плавки и результаты исследования металла приведены в таблице 2.

Таблица 1
Химический состав стали Х9К3В2МФБР, выплавленной в вакуумно-индукционной печи
Номер плавки Содержание элементов, % мас.
С Si Mn Cr Co W Mo V Nb Al В S Р N
прототип 0,0065 0,047 0,296 9,03 3,10 1,94 0,456 0,227 0,05 0,020 - 0,006 0,003 0,006
1 0,0050 0,049 0,282 9,09 3,10 2,02 0,462 0,227 0,067 0,010 0,008 0,006 0,003 0,075
2 0,0054 0,053 0,290 9,22 3,22 2,08 0,476 0,229 0,063 0,014 0,003 0,006 0,003 0,084
3 0,0052 0,057 0,279 9,00 3,13 2,03 0,466 0,219 0,066 0,012 0,007 0,006 0,003 0,085

Содержание кальция и магния в металле плавок 1, 2, 3 - на уровне 0,009-0,01, церия - на уровне 0,03%, а мышьяк, олово и свинец каждый менее 0,001%.

На основании проведенных исследований установлено, что предлагаемый «Способ выплавки безуглеродистой жаропрочной стали» позволяет выплавить сталь с содержанием углерода на уровне 0,001-0,009%, азота - 0,05-0,1%, бора 0,003-0,01%, хорошо раскисленную с содержанием кислорода 0,0015-0,0010%, с низким содержанием неметаллических включений. Такая сталь достигла требуемого уровня жаропрочности (длительная прочность , длительная пластичность ) и пригодна для работы в условиях сверхкритических параметров пара.

Источник поступления информации: Роспатент

Показаны записи 71-80 из 123.
20.08.2016
№216.015.4bba

Мартенситная сталь для криогенной техники

Изобретение относится к области металлургии, а именно к высокопрочным мартенситным сталям, применяемым при изготовлении высоконагруженных изделий криогенной техники, например резервуаров и трубопроводов сжиженных газов. Сталь содержит компоненты при следующем соотношении, мас.%: углерод...
Тип: Изобретение
Номер охранного документа: 0002594572
Дата охранного документа: 20.08.2016
13.01.2017
№217.015.6f29

Способ электрошлаковой выплавки заготовки корпуса запорной арматуры пара

Изобретение относится к электрометаллургии, в частности к изготовлению электрошлаковым переплавом заготовки корпуса запорной арматуры для паровых котлов, паропроводов и коллекторов установок с высокими и сверхкритическими параметрами пара. В способе осуществляют переплав расходуемого электрода...
Тип: Изобретение
Номер охранного документа: 0002597479
Дата охранного документа: 10.09.2016
25.08.2017
№217.015.a0c4

Флюс для электрошлакового переплава

Изобретение относится к металлургии, в частности к флюсам для электрошлаковых технологий, для сталелитейного производства и для рафинирования и модифицирования сталей. Флюс АНФ-6-1 дополнительно содержит фторид церия при следующем соотношении компонентов, мас. %: флюс АНФ-6-1 75-80, фторид...
Тип: Изобретение
Номер охранного документа: 0002606691
Дата охранного документа: 10.01.2017
26.08.2017
№217.015.ed88

Электрод для получения сплава переменного состава

Изобретение относится к области металлургии и может быть использовано для получения путем переплава электродов сплавов переменного состава, используемых для исследований их свойств, а также для изготовления изделий, отдельные части которых находятся в различных эксплуатационных условиях....
Тип: Изобретение
Номер охранного документа: 0002628720
Дата охранного документа: 21.08.2017
29.12.2017
№217.015.f11f

Высокопрочная низколегированная азотосодержащая мартенситная сталь

Изобретение относится к области металлургии, а именно к высокопрочной низколегированной азотосодержащей мартенситной стали, используемой для изготовления высоконагруженных деталей и конструкций в машиностроении и железнодорожном транспорте. Сталь содержит, мас.%: углерод 0,05-0,10, кремний...
Тип: Изобретение
Номер охранного документа: 0002638873
Дата охранного документа: 18.12.2017
29.12.2017
№217.015.f46d

Жаропрочный сплав на основе никеля для изготовления деталей котлов и паровых турбин, работающих при ультрасверхкритических параметрах пара

Изобретение относится к металлургии, в частности к составу жаропрочного коррозионно-стойкого сплава на основе никеля для изготовления деталей котлов и паровых турбин (труб, роторов, дисков), работающих при ультрасверхкритических параметрах пара при температурах до 760°С, методами литья с...
Тип: Изобретение
Номер охранного документа: 0002637844
Дата охранного документа: 07.12.2017
29.12.2017
№217.015.f6d5

Способ производства стали

Изобретение относится к области металлургии, а именно к производству углеродсодержащих высококачественных сталей, таких как корпусные, роторные, высокопрочные, броневые, подшипниковые, инструментальные, специальные. Способ включает выплавку металла с содержанием углерода более 0,03 мас. %,...
Тип: Изобретение
Номер охранного документа: 0002639080
Дата охранного документа: 19.12.2017
19.01.2018
№218.016.028b

Способ выплавки высокохромистых сталей и сплавов в открытых индукционных печах

Изобретение относится к области металлургии и может быть использовано при выплавке в открытых индукционных печах высокохромистых жаропрочных сталей с низким содержанием азота. Способ включает завалку шихты, ее расплавление, введение в печь шлакообразующих материалов, предварительное...
Тип: Изобретение
Номер охранного документа: 0002630101
Дата охранного документа: 05.09.2017
19.01.2018
№218.016.02a3

Способ раскисления стали при электрошлаковом переплаве

Изобретение относится к электрометаллургии и может быть использовано при электрошлаковой выплавке сплошных, полых и фасонных заготовок из высоколегированных сталей с низким содержанием кислорода, в частности роторов среднего и высокого давления, трубопроводов острого пара, изделий запорной и...
Тип: Изобретение
Номер охранного документа: 0002630100
Дата охранного документа: 05.09.2017
20.01.2018
№218.016.178a

Способ определения сдвига критической температуры хрупкости сталей для прогнозирования охрупчивания корпусов реакторов типа ввэр

Изобретение относится к методам испытаний конструкционных материалов, преимущественно для прогнозирования ресурсоспособности сталей, работающих в зонах нейтронного облучения объектов атомной техники. Способ определения сдвига критической температуры хрупкости сталей включает изготовление...
Тип: Изобретение
Номер охранного документа: 0002635658
Дата охранного документа: 15.11.2017
+ добавить свой РИД