×
29.04.2019
219.017.45ef

ДОЗАТОР ПОРОШКОВЫХ МАТЕРИАЛОВ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области порошковой металлургии, в частности к средствам для дозирования порошков из механических смесей композиционных металлокерамических и металлических материалов, и может быть использовано в комплекте с плазменными установками, предназначенными для плазменного напыления защитных покрытий на огневые стенки камер сгорания жидкостных ракетных двигателей. Изобретение направлено на повышение точности дозирования смесей подаваемых порошков и расширение диапазона регулирования их подачи за рабочий цикл, что обеспечивается за счет того, что дозатор содержит полый корпус с каналами для подачи сжатого газа и порошка, а также канал для отвода из полости корпуса дозированного порошка. В полости корпуса имеется выступ и дозирующий элемент, размещенный с возможностью вращения посредством привода, при этом дозирующий элемент выполнен в виде стакана, образующая которого охватывает выступ. На образующей дозирующего элемента по окружности выполнены зубья, каждый второй из которых смещен в радиальном направлении к оси вращения дозатора на одинаковое расстояние. Каждый зуб снабжен ребрами. На выступе корпуса с возможностью регулировочного поворота установлено кольцо, на боковой поверхности которого напротив выпускного и впускного каналов выполнены отверстия. Ребра на зубьях дозирующего элемента расположены под углом 4-8° к плоскости дна дозирующего элемента, причем ребра на соседних равноудаленных от оси вращения дозирующего элемента зубьях направлены навстречу друг другу. 1 з.п. ф-лы, 2 ил.
Реферат Свернуть Развернуть

Изобретение относится к области порошковой металлургии, в частности к устройствам для дозирования порошков из механических смесей композиционных металлокерамических и металлических материалов, и может быть использовано в комплекте с плазменными установками, предназначенными для плазменного напыления защитных покрытий на огневые стенки камер сгорания жидкостных ракетных двигателей.

Известен вибрационный дозатор, содержащий бункер, на крышке которого смонтирован вибратор, сообщающий вертикальную вибрацию установленной в бункере посредством амортизаторов трубке с калиброванными щелями и ребрами. Площадь сечения калиброванных щелей регулируется посредством подвижного штока, связанного с микровинтом. В верхней части бункера установлена загрузочная трубка, а в нижней - выгрузочная.

[А.с. СССР №342062, кл. G01F 13/00, 1970 г.]

В результате анализа выполнения известного дозатора необходимо отметить ограниченность его возможностей применительно к дозированию композиционных металлокерамических смесей порошков вследствие их расслоения при дозировании.

Известен питатель для дозирования порошка, содержащий полый герметичный корпус, на котором размещены накопитель для порошка, соединенный каналом с полостью корпуса, каналы для подачи сжатого газа в полость корпуса и отвода дозированного порошка из полости корпуса. Устройство оснащено дозирующим элементом, выполненным в виде стакана с радиальными отверстиями на его боковых стенках. Дозирующий элемент имеет ось, связанную с приводом вращения дозирующего элемента.

В процессе работы питателя дозируемый порошок из накопителя по каналу подается в полость корпуса, ссыпается на внутреннюю поверхность дозирующего элемента и, проходя через радиальные отверстия, заполняет полость корпуса. При вращении дозирующего элемента его свободные отверстия заполняются порошковым материалом и при повороте перемещаются в верхнее положение, где происходит их опрокидывание, в результате чего порошок попадает в выходной канал, захватывается потоком газа и через выходной канал подается на плазменную установку.

[А.с. СССР №1052273, кл. ВО5В 7/34, 1988 г.] - наиболее близкий аналог.

В результате анализа известного устройства необходимо отметить то, что оно, как и заявленное, предназначено для дозирования порошка и подачи его к плазменным установкам, как и заявленное, выполнено в виде герметичного корпуса, в котором размещен дозирующий элемент, при этом транспортировка дозированного порошка осуществляется в потоке газа. Однако известное устройство не обеспечивает регламентированную подачу порошка в широком диапазоне временного дозирования подаваемого порошка за рабочий цикл.

Технический результат настоящего изобретения заключается в повышении точности дозирования смесей подаваемых порошков и расширения диапазона регулирования их подачи за рабочий цикл путем регламентации во времени подачи разовых доз порошка.

Указанный технический результат обеспечивается за счет того, что в дозаторе порошковых материалов, содержащем полый корпус с каналами для подачи сжатого газа и порошка в полость корпуса, а также канал для отвода из полости корпуса дозированного порошка, в полости корпуса имеется выступ, и размещен с возможностью вращения посредством привода дозирующий элемент, выполненный в виде стакана, образующая которого охватывает выступ, новым является то, что на образующей дозирующего элемента по окружности выполнены зубья, каждый второй из которых смещен в радиальном направлении к оси вращения дозатора на одинаковое расстояние, и каждый зуб снабжен ребрами, при этом на выступе корпуса с возможностью регулировочного поворота установлено кольцо, на боковой поверхности которого напротив выпускного и впускного каналов выполнены отверстия, а ребра на зубьях дозирующего элемента расположены под углом 4-8° к плоскости дна дозирующего элемента, причем ребра на соседних равноудаленных от оси вращения дозирующего элемента зубьях направлены навстречу друг другу.

Сущность заявленного изобретения поясняется графическими материалами, на которых:

- на фиг.1 - дозатор порошковых материалов, осевой разрез;

- на фиг.2 - фрагмент боковой поверхности дозирующего элемента.

Дозатор порошковых материалов содержит корпус 1 (фиг.1) с полостью 2, внутри которой с возможностью вращения размещен дозирующий элемент 3.

В корпусе 1 выполнен канал 4 для подвода в полость корпуса сжатого газа. В полости корпуса имеется выступ 5, размещенный в полости дозирующего элемента. С полостью 2 корпуса 1 посредством канала 6 связан накопитель 7 порошка, установленный на корпусе. На выступе 5 с возможностью поворота размещено кольцо 8. Поворот кольца 8 осуществляется через ось 9, установленную в корпусе 1 в радиусном пазу (не показан).

В выступе 5 корпуса 1 выполнены каналы 10 (впускной) и 11 (выпускной) соответственно для подвода порошков из накопителя и вывода дозированной газопорошковой смеси.

Дозирующий элемент 3 выполнен в виде стакана, с дном которого скреплена ось, кинематически связанная с приводом вращения дозирующего элемента, а на боковой поверхности по окружности выполнены зубья 12 и 13, причем каждый второй зуб (фиг.2) смещен в радиальном направлении к оси вращения дозатора на одинаковое расстояние.

Внутренняя и внешняя поверхности зубьев 12 и 13 дозирующего элемента 3 снабжены ребрами 14 (фиг.2), расположенными под углом 4-8° к плоскости дна дозирующего элемента 3, причем ребра на соседних равноудаленных от оси вращения зубьях направлены навстречу друг другу.

В боковой поверхности расположенного на выступе 5 кольца 8 напротив выходного отверстия впускного канала 10 выполнено отверстие 15, а напротив входного отверстия выпускного канала 11 - отверстие 16.

Дозатор порошковых материалов работает следующим образом.

Для обеспечения работы дозатора канал 4 подсоединяют к системе подачи сжатого газа, а выходной канал - к плазменному распылителю плазменной установки. Дозирующий элемент 3 соединяют с приводом его вращения. Наиболее предпочтительно, чтобы данный привод был выполнен регулируемым по частоте вращения.

Поворотом за ось 9 устанавливают кольцо 8 на выступе 5 в положение, при котором обеспечивается заданное проходное сечение отверстий впускного 10 и выпускного 11 каналов.

Дозируемая порошковая смесь из накопителя 7 по каналу 10 через отверстие 15 кольца 8 ссыпается в нижнюю часть полости 2 корпуса 1 и заполняет пространство между зубьями 12 и 13 дозирующего элемента 3. При вращении дозирующего элемента порошковый материал заполняет свободное пространство между зубьями, которые перемешают его наверх и ссыпают через отверстие 16 кольца 8 в выпускной канал 11. Порошок подхватывается газом, поступающим в корпусе питателя через канал 4, и по трубопроводу газопорошковая смесь подается в плазменный распылитель плазменной установки.

Расход порошка регулируют изменением скорости вращения дозирующего элемента 3 и поворотом кольца 8 относительно выступа 5. При дозировании расслаивающихся механических смесей зубья дозирующего элемента 12 и 13, снабженные ребрами 14, не только перемещают смесь наверх и ссыпают ее в выпускной канал 11, но и интенсивно перемешивают, восстанавливая ее до исходной однородности, что, в свою очередь, позволяет практически полностью воспроизводить в плазменной струе исходный фазовый состав смеси.

Оптимальный наклон ребер по отношению к дну дозирующего элемента, их взаимное расположение на зубьях, а также смещение части зубьев относительно оси вращения выбраны экспериментально из условия качества перемешивания и точности дозирования смесей типа ZrO2 - NiCr, ZrO2 - NiAl с различным гранулометрическим составом компонентов.

Разработанный дозатор был опробован при работе с порошками: Cu, NiAl, NiCr, ZrO2 и механическими смесями: ZrO2 - NiCr, ZrO2 - NiAl дисперсностью частиц от 10 до 100 мкм.

При точности дозирования ±1,5% удалось обеспечить плавную и технологичную регулировку расхода в зависимости от вида порошка вплоть до 2,7-7,5 г/мин. Питатель, описанный в наиболее близком аналоге, на тех же порошках без замены дозирующего элемента позволяет плавно уменьшить расход только до 35-82 г/мин; дальнейшее снижение расхода возможно только при условии установки дозирующего элемента с меньшим числом отверстий в боковых стенках.

В случае дозирования расслаивающейся порошковой смеси ZrO2 - NiCr с размерами частиц ZrO2 и NiCr соответственно 10÷40 мкм и 40÷100 мкм предложенный питатель обеспечивает соответствие фазового состава покрытий составу исходной механической смеси с точностью ±2÷3%, в известном же питателе аналогичная величина составляет ~15÷17%.

Таким образом, экспериментальные исследования заявленного дозатора в составе плазменной установки УПУ-8М с плазменным распылителем УПР-1 показали, что по сравнению с наиболее близким аналогом предложенное устройство обеспечивает технологичную регулировку расхода порошка в значительно более широком (~10 раз) диапазоне дозирования и обеспечивает более точное (~5-7 раз) дозирование.

Источник поступления информации: Роспатент

Показаны записи 1-3 из 3.
27.04.2013
№216.012.3b4d

Способ акустико-эмиссионного контроля

Использование: для акустико-эмиссионного неразрушающего контроля. Сущность изобретения заключается в том, что размещают на поверхности объекта контроля приемные преобразователи, определяют наиболее вероятную скорость акустических волн в объекте контроля и время прихода сигналов АЭ на...
Тип: Изобретение
Номер охранного документа: 0002480742
Дата охранного документа: 27.04.2013
11.03.2019
№219.016.dc25

Станок для электроэрозионного формообразования отверстий

Изобретение относится к электроэрозионному станку, предназначенному для формообразования тангенциальных отверстий в топливных форсунках. Станок содержит основание, на верхней плоскости которого расположены каретка с инструментальной головкой, имеющая возможность поперечного перемещения, каретка...
Тип: Изобретение
Номер охранного документа: 0002455133
Дата охранного документа: 10.07.2012
10.04.2019
№219.017.0777

Способ сферодинамического пластифицирования материалов

Изобретение относится к области обработки металлов давлением. Способ включает размещение заготовки в полости матрицы на сферодинамическом флуктуационном модуле с опорой на толкатель и деформирование ее по высоте круговым вращением и одновременным осевым качением обкатного пуансона. Пуансон...
Тип: Изобретение
Номер охранного документа: 0002455100
Дата охранного документа: 10.07.2012
Показаны записи 1-10 из 25.
20.02.2013
№216.012.2650

Способ сферодинамической обработки инструмента для сферодвижной штамповки

Изобретение относится к области обработки металлов давлением и может быть использовано при изготовлении штампового инструмента. Заготовку размещают в полости матрицы на сферодинамическом флуктуационном модуле с опорой на толкатель. Производят деформирование заготовки пуансоном и модулем,...
Тип: Изобретение
Номер охранного документа: 0002475328
Дата охранного документа: 20.02.2013
27.10.2013
№216.012.7b42

Способ изготовления спиральной защитной оболочки композитного изолятора

Изобретение относится к области электротехники, а именно к способу изготовления спиральной защитной оболочки композитного изолятора, включающему в себя закрепление остова (1) с армированными по торцам фланцами в механизм намотки, вращающий его вокруг продольной оси с одновременным перемещением...
Тип: Изобретение
Номер охранного документа: 0002497216
Дата охранного документа: 27.10.2013
20.11.2013
№216.012.827a

Способ получения эрозионностойких теплозащитных покрытий

Изобретение относится к области порошковой металлургии и может быть использовано для защиты теплонагруженных узлов и элементов конструкции двигательных установок от теплового и эрозионного разрушения в струе высокотемпературных продуктов сгорания топлива, содержащих, в частности,...
Тип: Изобретение
Номер охранного документа: 0002499078
Дата охранного документа: 20.11.2013
27.02.2014
№216.012.a5ea

Установка гидроабразивной резки

Изобретение относится к области машиностроения и может быть использовано для гидроабразивной резки листовых материалов. Установка содержит основание с продольными направляющими, на которых с возможностью возвратно-поступательного перемещения установлен портал с поперечными направляющими. На...
Тип: Изобретение
Номер охранного документа: 0002508189
Дата охранного документа: 27.02.2014
10.12.2014
№216.013.0ce1

Способ получения эрозионностойких теплозащитных покрытий

Изобретение относится к порошковой металлургии. Способ получения эрозионностойких теплозащитных покрытий включает плазменное напыление подслоя нихрома и последующее напыление керметной композиции из механической порошковой смеси, содержащей 50÷80 мас.% диоксида циркония и 50÷20 мас.% порошка...
Тип: Изобретение
Номер охранного документа: 0002534714
Дата охранного документа: 10.12.2014
25.08.2017
№217.015.b972

Способ электронно-лучевой сварки разнородных металлов

Изобретение относится к электронно-лучевой сварке плоских стыков деталей из разнородных металлов. Предварительно собирают детали встык и направляют электронный луч на стык. Электронный луч перемещают по стыку и производят его развертку с частотой 750-850 Гц по окружности диаметром d=(0,6…0,8)h,...
Тип: Изобретение
Номер охранного документа: 0002615101
Дата охранного документа: 03.04.2017
25.08.2017
№217.015.d184

Способ аргонодуговой сварки кольцевых стыков трубчатых деталей

Изобретение относится к способу аргонодуговой сварки кольцевых стыков трубчатых деталей, одна из которых выполнена в форме стакана с центральным отверстием в донной части, а другая трубчатой формы. Формируют пакет из трубчатых деталей путем установки трубчатой детали на опору и установки на ее...
Тип: Изобретение
Номер охранного документа: 0002621539
Дата охранного документа: 06.06.2017
20.02.2019
№219.016.c32a

Установка для электронно-лучевой сварки

Изобретение относится к оборудованию для сборки и электронно-лучевой сварки кольцевых стыков крупногабаритных обечаек из алюминиевых сплавов с локальным вакуумированием зоны сварки и может быть использовано в космической, авиационной, транспортной, химической отраслях промышленности. Установка...
Тип: Изобретение
Номер охранного документа: 0002405664
Дата охранного документа: 10.12.2010
01.03.2019
№219.016.d099

Станок горизонтальный фрезерный многошпиндельный

Изобретение относится к станкостроению и может быть использовано при изготовлении корпусных деталей малой жесткости с ячеистым (вафельным) фоном. Станок содержит две станины. На одной из станин смонтирован инструментальный блок. Выполнен в виде двух разнонаправленных активной и пассивной скоб....
Тип: Изобретение
Номер охранного документа: 0002465104
Дата охранного документа: 27.10.2012
11.03.2019
№219.016.dc25

Станок для электроэрозионного формообразования отверстий

Изобретение относится к электроэрозионному станку, предназначенному для формообразования тангенциальных отверстий в топливных форсунках. Станок содержит основание, на верхней плоскости которого расположены каретка с инструментальной головкой, имеющая возможность поперечного перемещения, каретка...
Тип: Изобретение
Номер охранного документа: 0002455133
Дата охранного документа: 10.07.2012
+ добавить свой РИД