×
29.04.2019
219.017.44cf

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ТРЕХОСНОЙ ОРИЕНТАЦИИ КОСМИЧЕСКОГО АППАРАТА

Вид РИД

Изобретение

Аннотация: Изобретение относится к управлению ориентацией космического аппарата (КА), оснащенного магнитометром для определения вектора напряженности магнитного поля Земли (МПЗ). Способ включает измерение напряженности МПЗ и параметров орбиты КА. При этом стабилизируют КА в инерциальном пространстве, фиксируют направление вектора напряженности МПЗ на момент стабилизации, измеряют угол между фиксированным и текущим направлениями вектора напряженности МПЗ. Фиксируют и запоминают момент достижения острым измеряемым углом максимального значения и измеряют модуль напряженности МПЗ на фиксированный момент. Рассчитывают по положению КА на орбите модуль напряженности магнитного поля Земли на тот же момент. Сравнивают данные значения модуля напряженности МПЗ и определяют значение магнитной помехи от КА. Определяют ориентацию КА по фиксированным значениям вектора напряженности МПЗ в момент стабилизации КА и на момент достижения острым измеряемым углом максимального значения с учетом определенного значения магнитной помехи по формуле Техническим результатом изобретения является возможность определения трехосной ориентации КА на любых участках полета, вне зависимости от освещенности КА Солнцем, а также повышение точности определения ориентации.

Изобретение относится к космической технике и может быть использовано в системах определения ориентации КА, оснащенных магнетометром для определения направления и модуля вектора напряженности МПЗ. Одновременно с определением ориентации КА предложенный метод позволяет определить величину магнитной помехи, создаваемую магнитомягкими и магнитотвердыми материалами, находящимися на борту космического аппарата.

Известны различные способы определения ориентации КА. Для определения ориентации могут использоваться измерения инфракрасных датчиков, солнечных датчиков, звездных датчиков, магнитометров [1].

Все существующие способы определения ориентации КА имеют определенные ограничения и недостатки. Системы определения ориентации, основанные на инфракрасном датчике, имеют большую массу и невысокую точность. Системы, основанные на солнечном датчике, не позволяют определять ориентацию КА в моменты времени, когда он находится на неосвещенной стороне Земли. Звездные датчики имеют большую точность, но могут пострадать от засветки Солнцем, являющимся более мощным источником излучения в оптическом диапазоне, чем любая из звезд.

Наиболее часто для определения трехосной ориентации используются способы, основанные на измерении вектора напряженности МПЗ и вектора направления на Солнце [2]. Данный способ, выбранный авторами за прототип, включает измерение напряженности МПЗ, измерение параметров орбиты и измерение направления на Солнце. Этот способ позволяет надежно определять трехосную ориентацию КА на участках полета по освещенной Солнцем орбите.

Однако при полете КА в тени Земли, где отсутствуют измерения солнечного датчика, данный способ, очевидно, не может быть применен, т.е. способ-прототип не является универсальным. Это является основным недостатком способа-прототипа. Кроме того, точность определения трехосной ориентации КА способом-прототипом оказывается низкой при малых значениях угла между измеряемыми направлениями и при наличии погрешностей в измерениях.

Задачами, решаемыми предлагаемым способом, являются обеспечение возможности определения трехосной ориентации на любых участках полета, вне зависимости от освещенности Солнцем КА, и повышение точности определения ориентации.

Технический результат достигается тем, что в способе определения трехосной ориентации КА, основанном на измерении напряженности МПЗ и измерении параметров орбиты, в отличие от известного стабилизируют КА в инерциальном пространстве, фиксируют направление вектора напряженности МПЗ на момент стабилизации аппарата, измеряют угол между фиксированным и текущим направлениями вектора напряженности МПЗ, фиксируют и запоминают момент достижения острым измеряемым углом максимального значения, измеряют модуль напряженности МПЗ на фиксированный момент, рассчитывают по положению КА на орбите модуль напряженности магнитного поля Земли на тот же момент, сравнивают измеренное и рассчитанное значения модуля напряженности МПЗ и определяют значение магнитной помехи от КА, определяют ориентацию КА по фиксированным значениям вектора напряженности МПЗ в момент стабилизации КА и на момент достижения острым измеряемым углом максимального значения с учетом определенного значения магнитной помехи по формуле

Магнитная помеха на КА определяется следующим образом.

Пусть - вектор напряженности МПЗ, рассчитанный теоретически;

- измеренный вектор напряженности МПЗ;

- вектор напряженности МПЗ;

- вектор магнитной помехи:

где , , - компоненты вектора магнитной помехи в связанной системе координат.

Используем очевидное соотношение:

Для удобства математических расчетов возведем его в квадрат:

Считая, что проводимые измерения независимые, равноточные и что ошибка измерений распределена по нормальному закону с известной дисперсией и нулевым математическим ожиданием, из соотношения (4) с учетом введенных обозначений (2) получим:

где n - количество проведенных измерений, а i - номер измерения.

В соответствии с методом наименьших квадратов составим выражение для невязки i-го измерения:

Введем для удобства дополнительное обозначение:

Характерной величиной наилучшего подбора величин является сумма квадратов невязок всех проведенных измерений:

Раскроем внутренние скобки в выражении (8) получим:

Так как величины , , являются малыми, то можно пренебречь членами второго порядка малости в выражении (9), т.е. членами , , . Тогда получим следующее выражение для G:

Раскроем скобки в выражении (10):

В рамках метода наименьших квадратов компоненты вектора магнитных помех , , определяются из условия минимума суммы квадратов невязок (11). Минимум величины G находится из условия равенства нулю первых производных величины G по переменным , , :

Преобразуем систему уравнений (12) к следующему виду:

. Очевидно, что для n≥2 матрица всегда обратима.

Для расчета величины напряженности МПЗ, входящего в соотношение (3), обычно используется его аналитическое представление, основанное на разработанной Гауссом теории разложения магнитного потенциала Земли в ряд по сферическим функциям [3]:

где a - средний радиус Земли (6371.2 км), r, ϕ, θ - сферические координаты точки наблюдения, - квазинормированный по Шмидту присоединенный полином Лежандра первого рода n-й степени и m-го порядка, - коэффициенты, заданные используемой моделью МПЗ, N - количество гармоник разложения скалярного потенциала МПЗ.

Напряженность МПЗ определяется формулой:

Проекции вектора определяются по формулам:

где X', Y', Z' - проекции вектора напряженности МПЗ на оси географической системы координат.

Квазинормированные по Шмидту функции обозначены волнистой линией. Они связаны с ненормированными функциями следующими соотношениями:

Явный вид функций Лежандра известен, и они могут быть легко вычислены по прямым формулам:

Коэффициент нормировки сферических функций вычисляется по формуле:

где - наибольшее целое положительное число, содержащееся в .

Вековой ход МПЗ может быть учтен пересчетом коэффициентов по формулам:

где t - момент времени, для которого ищутся коэффициенты; (t-2005) - время, исчисляемое в годах, начиная с начала 2005 г. до момента t. Международная аналитическая модель МПЗ позволяет определять компоненты вектора напряженности с точностью порядка 20-50γ.

Определение трехосной ориентации КА по фиксированным значениям вектора напряженности МПЗ в момент стабилизации КА и на момент достижения острым углом максимального значения с учетом определенного значения магнитной помехи осуществляется следующим образом:

где A - матрица перехода от абсолютной к связанной системе координат.

Введем в рассмотрение орты:

Матрицы перехода M1 и M2 от вспомогательной системы координат Opqr соответственно к осям связанной и абсолютной систем имеют вид

Используя матрицы M1 и М2, найдем матрицу перехода от абсолютной системы координат к связанной. Получим

Матрица перехода между орбитальной и связанной системами координат получается аналогичным образом.

Углы ϑ, φ, ψ находятся с помощью матриц A1 и A по формулам

Здесь aij - элементы матрицы A.

Ориентация осей КА относительно орбитальной системы координат задается с помощью матрицы перехода А2 (от системы координат Ox0y0z0 к системе Oξηζ):

где Ψ, Θ, Ф - углы рыскания, тангажа и крена, причем

-π/2≤Θ≤π/2; 0≤Ψ≤2π; 0≤Ф≤2π

Вычислив матрицу по компонентам векторов и , рассчитанным в орбитальной системе координат, с учетом (29), углы тангажа, рыскания и крена находят по формулам:

В настоящее время технически все готово для реализации предложенного способа. Для измерения напряженности МПЗ может использоваться магнитометр СМ-8М, установленный на МКС. Для измерения орбиты КА могут использоваться штатные средства радиоконтроля орбиты или приемники спутниковой навигации GPS и ГЛОНАСС, так же установленные на МКС. Для стабилизации КА в инерциальном пространстве могут использоваться гиродины или двигатели ориентации и штатные ДУС.

Имеющиеся в настоящее время измерительные и вычислительные средства позволяют измерять угол между фиксированным и текущим направлениями вектора напряженности МПЗ, фиксировать и запоминать момент достижения острым измеряемым углом максимального значения, измерять модуль напряженности МПЗ в фиксированный момент, рассчитывать модуль напряженности МПЗ на тот же момент.

Предлагаемый способ позволяет определять трехосную ориентацию КА на всех участках орбиты, т.е. является универсальным для всех участков полета. Кроме того, за счет определения трехосной ориентации в определенный момент времени и учета магнитной помехи в измерениях магнитометра он позволяет повысить точность определения ориентации КА.

Список литературы

1. Алексеев К.Б., Бебенин Г.Г. Управление космическими летательными аппаратами. М.: Машиностроение, 1974.

2. Барышев В.А., Крылов Г.Н. Контроль ориентации, метеорологических спутников. Л.: Гидрометеоиздат, 1968.

3. ГОСТ 25645.126-85. ПОЛЕ ГЕОМАГНИТНОЕ. Модель поля внутриземных источников. Москва, Государственный комитет СССР по управлению качеством продукции и стандартам.

Способ определения трехосной ориентации космического аппарата, включающий измерение напряженности магнитного поля Земли и измерение параметров орбиты космического аппарата, отличающийся тем, что стабилизируют космический аппарат в инерциальном пространстве, фиксируют направление вектора напряженности магнитного поля Земли на момент стабилизации аппарата, измеряют угол между фиксированным и текущим направлением вектора напряженности магнитного поля Земли, фиксируют и запоминают момент достижения острым измеряемым углом максимального значения, измеряют модуль напряженности магнитного поля Земли на фиксированный момент, рассчитывают по положению космического аппарата на орбите модуль напряженности магнитного поля Земли на тот же момент, сравнивают измеренное и рассчитанное значение модуля напряженности магнитного поля Земли, по результатам сравнения определяют значение магнитной помехи от космического аппарата, и определяют ориентацию космического аппарата по фиксированным значениям вектора напряженности магнитного поля Земли на момент стабилизации космического аппарата и на момент достижения указанным острым измеряемым углом максимального значения с учетом определенного значения магнитной помехи по формуле
Источник поступления информации: Роспатент

Показаны записи 271-280 из 370.
26.08.2017
№217.015.de1c

Устройство для измерения массы рабочего тела, газообразного при нормальных условиях, в баллоне электроракетной двигательной установки и способ определения его массы

Предлагаемое изобретение относится к области электроракетных двигательных установок (ЭРДУ) и может быть использовано в системах хранения и подачи рабочего тела ЭРДУ. Устройство для измерения массы рабочего тела, газообразного при нормальных условиях, в баллоне электроракетной двигательной...
Тип: Изобретение
Номер охранного документа: 0002624688
Дата охранного документа: 05.07.2017
26.08.2017
№217.015.de7e

Способ определения выходного тока солнечной батареи космического аппарата

Изобретение относится к электроснабжению космических аппаратов (КА) с помощью солнечных батарей (СБ). Способ включает разворот панели СБ в рабочее положение и измерение тока от СБ в моменты, когда излучение от Земли поступает на нерабочую сторону панели СБ. Определяют текущее значение угла...
Тип: Изобретение
Номер охранного документа: 0002624763
Дата охранного документа: 06.07.2017
26.08.2017
№217.015.df0b

Способ определения характеристик оптического канала передачи информационного сигнала

Способ определения характеристик оптического канала передачи информационного сигнала включает в себя измерение затухания оптического канала от источника оптического излучения до приемника оптического излучения. При этом производят перемещение лазерного пучка согласованно с линейным перемещением...
Тип: Изобретение
Номер охранного документа: 0002624976
Дата охранного документа: 11.07.2017
29.12.2017
№217.015.fa09

Приёмник-преобразователь лазерного излучения

Изобретение может быть использовано в беспроводных системах дистанционного энергопитания воздушных или космических объектов. Предложенный приемник-преобразователь лазерного излучения включает несущую силовую конструкцию с установленной на ней приемной плоскостью площадью S, на внешней стороне...
Тип: Изобретение
Номер охранного документа: 0002639738
Дата охранного документа: 22.12.2017
19.01.2018
№218.016.00b2

Способ контроля текущего состояния панели солнечной батареи космического аппарата

Изобретение относится к космической технике. Способ контроля текущего состояния панели солнечной батареи (СБ) космического аппарата (КА) включает поворот панели СБ в положения, при которых рабочая поверхность СБ освещена Солнцем, измерение значений тока от СБ, сравнение определяемого параметра,...
Тип: Изобретение
Номер охранного документа: 0002629647
Дата охранного документа: 30.08.2017
19.01.2018
№218.016.00c0

Способ управления космическим кораблём при сближении с кооперируемым космическим аппаратом

Изобретение относится к операциям сближения и стыковки космических аппаратов (КА) на околокруговой орбите, например, грузового космического корабля в качестве КА и международной космической станции в качестве кооперируемого КА (ККА). После выведения КА на опорную орбиту определяют параметры...
Тип: Изобретение
Номер охранного документа: 0002629644
Дата охранного документа: 30.08.2017
19.01.2018
№218.016.00e4

Способ регулирования температуры в термокамере

Изобретение относится к проведению тепловакуумных испытаний космических объектов. Способ регулирования температуры в термокамере включает нагрев объекта испытаний в вакууме, измерение текущего значения температуры T на объекте испытаний, измерение текущего значения температуры Т на объекте...
Тип: Изобретение
Номер охранного документа: 0002629645
Дата охранного документа: 30.08.2017
19.01.2018
№218.016.0266

Всенаправленный приёмник-преобразователь лазерного излучения (2 варианта)

Изобретение относится к области оптико-электронного приборостроения и касается всенаправленного приемника-преобразователя лазерного излучения. Приемник-преобразователь включает в себя приемную плоскость, выполненную в виде трех круговых панелей, взаимно пересекающихся между собой...
Тип: Изобретение
Номер охранного документа: 0002630190
Дата охранного документа: 05.09.2017
19.01.2018
№218.016.09ff

Способ воздушного охлаждения тепловыделяющей аппаратуры, расположенной снаружи летательных аппаратов, и система для его реализации

Изобретения относятся к авиационной технике. Способ воздушного охлаждения тепловыделяющей аппаратуры, расположенной снаружи летательных аппаратов, включает тепловой контакт между тепловыделяющими поверхностями аппаратуры и воздушными термоплатами (2), движение атмосферного воздуха через...
Тип: Изобретение
Номер охранного документа: 0002632057
Дата охранного документа: 02.10.2017
20.01.2018
№218.016.1de6

Способ определения с космического аппарата координат источника кольцевых волн на водной поверхности

Изобретение относится к методам наблюдения планеты из космоса и обработки результатов этого наблюдения. Способ включает регистрацию на снимке кольцевых волн, одновременно с которыми регистрируют часть суши, выбирая и идентифицируя на ней не менее четырех характерных объектов, не лежащих на...
Тип: Изобретение
Номер охранного документа: 0002640944
Дата охранного документа: 12.01.2018
Показаны записи 51-57 из 57.
01.07.2020
№220.018.2d0f

Система управления размещенной на космическом корабле переносной аппаратурой наблюдения

Изобретение относится к бортовому оборудованию космического корабля (КК). Система управления содержит блок определения плотности атмосферы на высоте орбиты КК, блок определения положения центра масс и ориентации КК, блок определения границ области расположения объекта наблюдения относительно...
Тип: Изобретение
Номер охранного документа: 0002725012
Дата охранного документа: 29.06.2020
01.07.2020
№220.018.2d29

Способ управления размещенной на космическом корабле переносной аппаратурой наблюдения

Изобретение относится к бортовому оборудованию космического корабля (КК). Способ включает определение плотности атмосферы на высоте орбиты КК, положения центра масс и ориентации КК, прогнозирование границ области расположения объекта наблюдения относительно орбиты КК, формирование команд на...
Тип: Изобретение
Номер охранного документа: 0002725104
Дата охранного документа: 29.06.2020
01.07.2020
№220.018.2d56

Система управления размещенной на космическом корабле переносной аппаратурой наблюдения

Изобретение относится к бортовому оборудованию космического корабля (КК). Система управления содержит блок определения положения объекта наблюдения относительно КК и блок формирования команд управления аппаратурой наблюдения (АН). На иллюминаторе КК установлено устройство управления наведением,...
Тип: Изобретение
Номер охранного документа: 0002725009
Дата охранного документа: 29.06.2020
20.04.2023
№223.018.4ace

Способ мониторинга воздействия невесомости на двигательную активность находящегося на борту космического аппарата оператора

Изобретение относится к медицине, а именно к способу мониторинга воздействия невесомости на двигательную активность находящегося на борту космического аппарата оператора. При исполнении способа измеряют биомеханические параметры двигательной активности оператора, включая углы в суставах....
Тип: Изобретение
Номер охранного документа: 0002777476
Дата охранного документа: 04.08.2022
20.04.2023
№223.018.4ad8

Способ определения воздействия невесомости на двигательную активность находящегося на борту космического аппарата оператора

Изобретение относится к медицине, а именно к способу определения воздействия невесомости на двигательную активность находящегося на борту космического аппарата оператора. При исполнении способа измеряют в наземных условиях биомеханические параметры двигательной активности оператора, включая...
Тип: Изобретение
Номер охранного документа: 0002777477
Дата охранного документа: 04.08.2022
23.05.2023
№223.018.6cba

Устройство управления размещенной на космическом корабле переносной аппаратурой наблюдения

Изобретение относится к аэрокосмической технике. Устройство управления размещенной на космическом корабле (КК) переносной аппаратурой наблюдения (ПАН) содержит узел разъемного крепления ПАН и узел съемной установки устройства управления на иллюминатор (УСУУИ). Узел разъемного крепления ПАН...
Тип: Изобретение
Номер охранного документа: 0002771488
Дата охранного документа: 05.05.2022
17.06.2023
№223.018.7ee6

Устройство управления размещенной на космическом корабле переносной аппаратурой наблюдения

Изобретение относится к аэрокосмической технике. Устройство управления размещенной на космическом корабле (КК) переносной аппаратурой наблюдения (ПАН) содержит узел разъемного крепления ПАН и узел съемной установки устройства управления на иллюминатор (УСУУИ). Узел разъемного крепления снабжен...
Тип: Изобретение
Номер охранного документа: 0002772766
Дата охранного документа: 25.05.2022
+ добавить свой РИД