×
29.04.2019
219.017.4470

Результат интеллектуальной деятельности: ЖАРОПРОЧНАЯ СТАЛЬ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, а именно к составам жаропрочных сталей для тепловых энергетических установок с рабочей температурой пара до 650°С. Сталь содержит, мас.%: углерод 0,01-0,02, кремний 0,05-0,10, марганец 0,2-0,4, хром 8,5-9,5, молибден 0,4-0,6, ванадий 0,15-0,30, ниобий 0,04-0,09, церий 0,02-0,05, кальций 0,005-0,05, азот 0,04-0,07, фосфор не более 0,015, сера не более 0,010, вольфрам 1,8-3,0, кобальт 2,5-4,0, алюминий не более 0,015, никель не более 0,2, лантан 0,005-0,05, бор 0,003-0,01, свинец не более 0,006, олово не более 0,006, мышьяк не более 0,006, железо - остальное. Суммарное содержание углерода, бора и азота составляет 0,05-0,08, отношение содержания ванадия и ниобия составляет 1:4, содержание вольфрама и молибдена удовлетворяет соотношению 2[Mo]+[W]=3±0,5, а разность между хромовым и никелевым эквивалентами удовлетворяет неравенству: 09·Cr-Ni≤7,0, где Cr=[Cr]+2[Si]+1,5[Mo]+5[V]+5,5[Al]+1,75[Nb]+0,75[W], а Ni=[Ni]+[Co]+0,5[Mn]+25[N]+30[C]. Сталь обладает требуемым уровнем длительной прочности σ  не менее 98 Н/мм при температуре 650°С и длительной пластичности не менее 10%. 1 з.п. ф-лы, 2 табл.

Изобретение относится к области металлургии, в частности к составам жаропрочных сталей для тепловых энергетических установок с рабочей температурой пара до 650°С.

Известна сталь, содержащая углерод, кремний, марганец, хром, молибден, ванадий, ниобий, церий, кальций, азот, фосфор и серу при следующем соотношении компонентов, мас.%:

углерод 0,08-0,12
кремний 0,17-0,37
марганец 0,3-0,6
хром 8,0-10,0
молибден 0,6-2,0
ванадий 0,15-0,35
ниобий 0,10-0,20
церий 0,02-0,05
кальций 0,005-0,05
азот 0,03-0,07
фосфор не более 0,03
серы не более 0,015
железо остальное.

(RU 2229532, С22С 38/26, опубликовано 10.02.2004).

Эта сталь имеет опыт эксплуатации в теплоэнергетике в качестве материала трубопроводов и других элементов, работающих при температурах до 580°С включительно.

Одной из базовых проблем при создании тепловых энергоблоков с суперсверхкритическими параметрами уровня температур 650°С и давлении пара от 30 до 35 МПа является необходимость разработки более жаропрочных и относительно экономичных конструкционных материалов, в том числе для пароперегревателей и паропроводов.

Задачей изобретения и ее техническим результатом является создание жаропрочной стали, обеспечивающей требуемый уровень длительной прочности σ105 не менее 98 Н/мм2 при температуре 650°С и длительной пластичности не менее 10%.

Технический результат достигается тем, что жаропрочная сталь содержит углерод, кремний, марганец, хром, молибден, ванадий, ниобий, церий, кальций, азот, фосфор, серу, вольфрам, кобальт, алюминий, никель, лантан, бор, свинец, олово, мышьяк и железо остальное при следующем соотношении компонентов, мас.%:

углерод 0,01-0,02
кремний 0,05-0,10
марганец 0,2-0,4
хром 8,5-9,5
молибден 0,4-0,6
ванадий 0,15-0,30
ниобий 0,04-0,09
церий 0,02-0,05
кальций 0,005-0,05
азот 0,04-0,07
фосфор не более 0,015
сера не более 0,010
вольфрам 1,8-3,0
кобальт 2,5-4,0
алюминий не более 0,015
никель не более 0,2
лантан 0,005-0,05
бор 0,003-0,01
свинец не более 0,006
олово не более 0,006
мышьяк не более 0,006
железо остальное,

при этом разность между хромовым и никелевым эквивалентами удовлетворяет неравенству: 09·Creq-Nieq≤7,0, где

Creq=[Cr]+2[Si]+1,5[Mo]+5[V]+5,5[Al]+1,75[Nb]+0,75[W],

Nieq=[Ni]+[Co]+0,5[Mn]+25[N]+30[C], a

[Cr], [Si], [Mo], [V], [Al], [Nb], [W], [Ni], [Co], [Mn], [N], [С] - концентрация в мас.% хрома, кремния, молибдена, ванадия, алюминия, ниобия, вольфрама, никеля, кобальта, марганца, азота и углерода, суммарное содержание углерода, бора и азота составляет 0,05-0,08, а отношение содержания ванадия и ниобия составляет 1:4.

Технический результат также достигается тем, что содержание вольфрама и молибдена в стали удовлетворяет критерию суммы: 2[Mo]+[W]=3±0,5.

Жаропрочная сталь по изобретению, легированная основными легирующими элементами: молибденом, вольфрамом, кобальтом, ванадием, ниобием, алюминием, никелем, кремнием, и микролегированная кальцием, церием, лантаном, азотом и бором, фосфором, серой, никелем, оловом, свинцом и мышьяком, обеспечивает достижение поставленного технического результата: длительной прочности , и длительной пластичности

Повышение разности эквивалентов хрома и никеля более 7% приводит к появлению в стали ферритной фазы, что существенно снижает ударную вязкость и сопротивление ползучести.

Нитридно-боридное упрочнение стали по изобретению обеспечивает требуемый уровень длительной прочности при сохранении необходимого уровня пластичности при рабочих температурах порядка 650°С. При содержании азота менее 0,04% образования в стали нитридов не наблюдается, при содержании азота более 0,07 (т.е. выше предела его растворимости в стандартных условиях) может привести к образованию раковин и пузырей. Кроме того, превышение содержания азота выше 0,07% может привести к образованию нежелательных нитридов хрома и потери прочностных свойств.

Снижение содержания углерода в стали по изобретению до 0,01%-0,02% при содержании азота 0,04%-0,07% и бора от 0,003% до 0,01% обеспечивает требуемый уровень заданных свойств. Содержание углерода более 0,02% не обеспечивает необходимого уровня длительной прочности, так как при рабочих температурах 650°С карбиды коагулируют, сильно увеличиваясь в размерах, тем самым разупрочняя материал. Выполнение условия - суммарное содержание углерода, бора и азота 0,05-0,08 - гарантирует получение заданной длительной прочности стали. Если суммарное содержание углерода, бора и азота ниже 0,05%, то желаемого эффекта не достигается. Если же оно выше 0,08%, то, во-первых, возможно образование крупных карбонитридов бора, и, как следствие, потеря прочностных свойств, а во-вторых, возможно выделение Z-фазы, что также приводит к потере прочностных свойств.

Введение бора в количестве от 0,003% до 0,01% повышает длительную прочность и длительную пластичность за счет растворения бора, как поверхностно-активного элемента, в граничных зонах, упрочняя границы зерен и замедляя протекание диффузионных процессов в этих участках. Содержание бора ниже 0,003% неэффективно, а выше 0,01% может привести к образованию боридов, которые ухудшают пластичность стали.

Получить содержание углерода менее 0,01% для сегодняшнего уровня развития техники - задача очень сложная и дорогостоящая. Снижение содержания углерода в стали до уровня 0,01-0,02% приводит к смещению термодинамического равновесия между кислородом и углеродом в системе Fe-Cr-С-O в сторону увеличения содержания кислорода (до 0,025%). Это приведет к формированию большого количества неметаллических включений в стали, преимущественно оксидов и оксисульфидов, и, следовательно, к резкому снижению длительной прочности. Поэтому необходимо ввести такое количество раскислителей, которое позволило снизить содержание кислорода по крайней мере до 0,001-0,0015%. В обычных сталях с этой ролью успешно справляются алюминий и кремний. Однако в нашем случае, вследствие ограниченного содержания алюминия и кремния, необходим дополнительный эффективный раскислитель - лантан. Он обладает высокой раскислительной способностью, продукты взаимодействия его с кислородом легко выводятся из расплава (ассимилируются шлаком). Лантан в количестве от 0,005% до 0,05% способствует эффективному раскислению. Введение его в количестве менее 0,005% не дает желаемых результатов, а при концентрации выше 0,05% приводит к росту размеров неметаллических включений. Кроме того, содержание лантана в количестве от 0,05% до 0,005% уменьшает количество оксидных включений типа глинозема и шпинелей, очищает границы зерен и повышает длительную прочность.

Выполнение отношения между ванадием и ниобием способствует получению ультрадисперсных карбонитридов типа MX.

Содержание ванадия в количестве от 0,15% до 0,30% способствует повышению длительной прочности. При содержании ванадия менее 0,15% не обеспечивается нужная жаропрочность, при содержании более 0,30% его влияние отрицательно, так как ванадий, находясь в твердом растворе, уменьшает силы межатомных связей.

Ограничение содержания ниобия до 0,04%-0,09% способствует получению более мелких нитридов NbN и, как следствие, повышению длительной прочности.

Снижение критерия суммы вольфрама и молибдена менее 2,5% приводит к снятию эффекта упрочнения твердого раствора - снижения сопротивления ползучести; превышение критерия суммы более 3,5% приводит к выделению избытка фазы Лавеса, что приводит к обеднению твердого раствора, снижению вязкости стали и снижению сопротивления ползучести.

Введение вольфрама в количестве от 1,8% до 3,0% повышает жаропрочность стали за счет упрочнения твердого раствора и выделения фазы Лавеса Fe2W. При введении вольфрама менее 1,8% не достигается нужный эффект повышения длительной прочности, при введении вольфрама более 3% образуется недопустимое количество δ-феррита в стали и снижается ударная вязкость.

Содержание молибдена от 0,4% до 0,6% обеспечивает жаропрочные свойства стали. Содержание молибдена менее 0,4% не дает нужной степени легирования твердого раствора, карбидной фазы, а следовательно, и жаропрочности, легирование молибденом свыше 0,6% - экономически нецелесообразно.

Введение кобальта в количестве от 2,5% до 4,0% способствует уменьшению скорости диффузии легирующих элементов и, как следствие, увеличению дисперсности упрочняющих карбидных и интерметаллидных частиц, а также уменьшению количества δ-феррита в структуре стали, что приводит к увеличению характеристик длительной прочности.

Присутствие в стали никеля до 0,2% и легкоплавких элементов Sn, Pb, Sb не более 0,006% каждого способствует повышению длительной прочности.

Марганец в количестве от 0,2% до 0,4% использован для раскисления стали. Введение марганца менее 0,2% приводит к низкому раскислительному эффекту, а увеличение его количества более 0,4% практически не влияет на раскислительную способность.

Содержание хрома от 8,5% до 9,5% обеспечивает заданное количество (не более 10%) структурно-свободного феррита, оптимальную технологичность стали в трубном производстве, высокую жаропрочность и ударную вязкость стали. При содержании менее 8,5% хрома понижается жаропрочность стали, при содержании более 9,5% хрома в структуре стали возрастает доля структурно-свободного феррита, понижаются ударная вязкость и технологические свойства.

Содержание кальция от 0,005% до 0,05% повышает изотропность свойств, снижая вторичное окисление стали и способствуя равномерному распределению сульфидных и оксидных включений. Содержание кальция в количестве менее 0,005% нецелесообразно в связи с отсутствием влияния малых концентраций этого элемента на характер неметаллических включений и изотропных свойств стали. Введение кальция в количестве более 0,05% приводит к образованию крупных глобулей и приводит к снижению длительной прочности. Содержание церия в количестве от 0,02% до 0,05% способствует глобуляризации неметаллических включений, уменьшает количество оксидных включений типа глинозема и шпинелей, очищает границы зерен и повышает ударную вязкость. При содержании церия менее 0,02% указанный эффект не достигается. Содержание церия более 0,05% может привести к повышению загрязненности стали сложными включениями.

Ограничение содержания фосфора до 0,015% и серы до 0,010% способствует получению более высоких характеристик пластичности.

Применение принципа поликомпонентного легирования при совокупном влиянии перечисленных элементов в сочетании с последующей нормализацией и отпуском позволило получить сталь с высоким уровнем служебных и экономических характеристик, как то: жаропрочность, пластичность, ударная вязкость, стабильность при длительных изотермических выдержках, технологичность и экономичность в металлургическом производстве.

Химический состав стали приведен в таблице 1, а механические свойства - в таблице 2.

Испытания проводили на материалах, выплавленных в вакуумно-индукционных печах. Испытание на растяжение проводили на цилиндрических образцах с диаметром рабочей части 6 мм по ГОСТ 1497 и ГОСТ 9651, испытания на жаропрочность проводили на цилиндрических образцах с диаметром рабочей части 10 мм по ОСТ 108.901.102-78.

Из таблицы 2 видно, что минимальные значения длительной прочности предлагаемой стали , а

Сталь рекомендуется для изготовления трубопроводов и пароперегревателей котлов со сверхкритическими параметрами (температура до 650°С, давление до 35 МПа).

Источник поступления информации: Роспатент

Показаны записи 11-11 из 11.
29.04.2019
№219.017.45d9

Износостойкий чугун

Изобретение может быть использовано для производства мелющих элементов размольных мельниц, подвергающихся ударно-абразивному износу, например, при дроблении и размоле цемента и гипса. Чугун содержит элементы при следующем соотношении, мас.%: углерод 3,0-4,6; кремний 1,5-3,5; марганец 4,0-6,0;...
Тип: Изобретение
Номер охранного документа: 0002448183
Дата охранного документа: 20.04.2012
Показаны записи 71-80 из 121.
10.06.2016
№216.015.4478

Высокопрочная коррозионно-стойкая свариваемая сталь

Изобретение относится к области металлургии, а именно к составам высокопрочных коррозионно-стойких сталей, используемых для изготовления высоконагруженных деталей и конструкций в машиностроении, судостроении, авиации и железнодорожном транспорте. Сталь содержит, мас.%: углерод 0,01-0,04,...
Тип: Изобретение
Номер охранного документа: 0002586193
Дата охранного документа: 10.06.2016
20.08.2016
№216.015.4bba

Мартенситная сталь для криогенной техники

Изобретение относится к области металлургии, а именно к высокопрочным мартенситным сталям, применяемым при изготовлении высоконагруженных изделий криогенной техники, например резервуаров и трубопроводов сжиженных газов. Сталь содержит компоненты при следующем соотношении, мас.%: углерод...
Тип: Изобретение
Номер охранного документа: 0002594572
Дата охранного документа: 20.08.2016
13.01.2017
№217.015.6f29

Способ электрошлаковой выплавки заготовки корпуса запорной арматуры пара

Изобретение относится к электрометаллургии, в частности к изготовлению электрошлаковым переплавом заготовки корпуса запорной арматуры для паровых котлов, паропроводов и коллекторов установок с высокими и сверхкритическими параметрами пара. В способе осуществляют переплав расходуемого электрода...
Тип: Изобретение
Номер охранного документа: 0002597479
Дата охранного документа: 10.09.2016
25.08.2017
№217.015.a0c4

Флюс для электрошлакового переплава

Изобретение относится к металлургии, в частности к флюсам для электрошлаковых технологий, для сталелитейного производства и для рафинирования и модифицирования сталей. Флюс АНФ-6-1 дополнительно содержит фторид церия при следующем соотношении компонентов, мас. %: флюс АНФ-6-1 75-80, фторид...
Тип: Изобретение
Номер охранного документа: 0002606691
Дата охранного документа: 10.01.2017
26.08.2017
№217.015.ed88

Электрод для получения сплава переменного состава

Изобретение относится к области металлургии и может быть использовано для получения путем переплава электродов сплавов переменного состава, используемых для исследований их свойств, а также для изготовления изделий, отдельные части которых находятся в различных эксплуатационных условиях....
Тип: Изобретение
Номер охранного документа: 0002628720
Дата охранного документа: 21.08.2017
29.12.2017
№217.015.f11f

Высокопрочная низколегированная азотосодержащая мартенситная сталь

Изобретение относится к области металлургии, а именно к высокопрочной низколегированной азотосодержащей мартенситной стали, используемой для изготовления высоконагруженных деталей и конструкций в машиностроении и железнодорожном транспорте. Сталь содержит, мас.%: углерод 0,05-0,10, кремний...
Тип: Изобретение
Номер охранного документа: 0002638873
Дата охранного документа: 18.12.2017
29.12.2017
№217.015.f46d

Жаропрочный сплав на основе никеля для изготовления деталей котлов и паровых турбин, работающих при ультрасверхкритических параметрах пара

Изобретение относится к металлургии, в частности к составу жаропрочного коррозионно-стойкого сплава на основе никеля для изготовления деталей котлов и паровых турбин (труб, роторов, дисков), работающих при ультрасверхкритических параметрах пара при температурах до 760°С, методами литья с...
Тип: Изобретение
Номер охранного документа: 0002637844
Дата охранного документа: 07.12.2017
29.12.2017
№217.015.f6d5

Способ производства стали

Изобретение относится к области металлургии, а именно к производству углеродсодержащих высококачественных сталей, таких как корпусные, роторные, высокопрочные, броневые, подшипниковые, инструментальные, специальные. Способ включает выплавку металла с содержанием углерода более 0,03 мас. %,...
Тип: Изобретение
Номер охранного документа: 0002639080
Дата охранного документа: 19.12.2017
19.01.2018
№218.016.028b

Способ выплавки высокохромистых сталей и сплавов в открытых индукционных печах

Изобретение относится к области металлургии и может быть использовано при выплавке в открытых индукционных печах высокохромистых жаропрочных сталей с низким содержанием азота. Способ включает завалку шихты, ее расплавление, введение в печь шлакообразующих материалов, предварительное...
Тип: Изобретение
Номер охранного документа: 0002630101
Дата охранного документа: 05.09.2017
20.01.2018
№218.016.0f54

Теплостойкая и радиационно-стойкая сталь

Изобретение относится к области металлургии, в частности, к сталям для основного оборудования атомных энергетических установок. Теплостойкая радиационно-стойкая сталь содержит, мас. %: углерод 0,10-0,20; кремний 0,02-0,12; марганец 0,02-0,12; хром 1,70-2,10; никель 3,2-5,00; молибден 0,35-0,70;...
Тип: Изобретение
Номер охранного документа: 0002633408
Дата охранного документа: 12.10.2017
+ добавить свой РИД