×
29.04.2019
219.017.40c8

Результат интеллектуальной деятельности: УСТРОЙСТВО ДЛЯ УЛАВЛИВАНИЯ НАНОПОРОШКОВ

Вид РИД

Изобретение

№ охранного документа
0002397140
Дата охранного документа
20.08.2010
Аннотация: Предлагается устройство для улавливания частиц нанопорошков металлов, их оксидов и сплавов с размерами частиц менее 1 мкм, предназначенных для использования в качестве активных наполнителей в полимерных и композитных материалах. Устройство содержит корпус в виде цилиндрической возвратно-поточной камеры с конусообразным днищем, патрубок для ввода смеси газа и порошка, тангенциально присоединенный к камере, верхний патрубок для вывода очищенного газа, установленный в верхней части камеры, патрубок для вывода частиц порошка, размещенный внизу днища камеры, и соединенный с ним сборник порошка. При этом соотношение внутреннего диаметра (D) возвратно-поточной вихревой камеры и диаметра (d) верхнего патрубка для вывода очищенного газа составляет D:d≥3. Обеспечивается увеличение производительности, непрерывная работа устройства, улучшение качества порошка, повышение экономичности. 2 ил., 1 табл.

Изобретение относится к устройствам для улавливания частиц нанопорошков металлов, их оксидов, сплавов и т.п., предназначенных для использования в качестве активных наполнителей в полимерных и композитных материалах.

Известны способ и устройство для получения нанопорошков в плазменных электродуговых реакторах. Исходный порошкообразный материал испаряют в высокотемпературной зоне плазмы в испарителе, затем осуществляют процесс закалки и конденсации испарившихся частиц и их улавливание на фильтрах (пат. РФ 2207933, МПК В22F 9/12, 10.07.2001).

К недостаткам данного устройства можно отнести забивку фильтра порошком, частую смену фильтрующего материала, а также использование двух фильтров для более полного улавливания порошков.

Известно устройство для улавливания порошков с размерами частиц менее 1 мкм, в котором улавливание осуществляют через плотные лавсановые фильтры. Выгрузку порошка из тканевых фильтров проводят встряхиванием, затем его собирают в бункере-накопителе (пат. РФ 2238174, МПК В22F 9/14, 30.09.2003).

К недостаткам известного устройства можно отнести забивку фильтров и частую выгрузку порошка, что приводит к снижению производительности работы реактора.

Для улавливания мельчайших частиц порошка применяются возвратно-поточные циклоны, в которых улавливание частиц из газового потока осуществляется под действием центробежных сил, возникающих вследствие вращения потока в корпусе аппарата (Гордон Г.М., Пейсахов И.Л. Пылеулавливание и очистка газов. Металлургиздат. - М., 1958). Эти аппараты способны уменьшить частоту выгрузки с фильтров и обеспечить выделение узкой фракции нанопорошков, что позволяет увеличить время непрерывной работы плазменного электродугового реактора.

Наиболее близким по технической сущности к предлагаемому решению, взятый нами за прототип, является циклон для улавливания микронных и субмикронных частиц порошка, который состоит из корпуса с суживающейся книзу конической частью и люком для выгрузки порошка, наклонного под углом 5-25° патрубка в верхней части корпуса, через который подается порошок, и патрубка для подачи газа из компрессора в тангенциальном направлении к внутренней стенки цилиндрической части (JP 2006102657 A, МПК В04С 5/04, 06.10.2004).

К недостаткам описанного устройства можно отнести то, что его трудно использовать при улавливании субмикронных порошков, получаемых в плазменном электродуговом реакторе, так как для обеспечения вращения газового потока внутри циклона смесь газа с порошком вводится в циклон одновременно с автономным вводом чистого газа со стороны, противоположной к вводу газопорошковой смеси. Из электродугового реактора порошок и газ идут единым потоком со скоростью 2500 л/мин (что требуется для быстрого охлаждения паров и закалки порошка), в то время как скорость подачи порошка в описанном циклоне составляет всего 750 л/мин. Кроме того, улавливанию подвергались порошки с размером частиц 290-970 нм и удельной поверхностью 2,8 м2/г, о возможности улавливания порошков с частицами меньшего размера в предложенном циклоне неизвестно.

Задачей настоящего изобретения является создание устройства для улавливания частиц порошков размером 50-250 нм, увеличение производительности за счет непрерывной работы реактора, улучшение качества порошков, повышение экономичности.

Для решения поставленной задачи предложено устройство для улавливания нанопорошков металлов, их оксидов, сплавов и т.п., содержащее корпус в виде цилиндрической возвратно-поточной камеры с конусообразным днищем, патрубок для ввода смеси газа и порошка, тангенциально присоединенный к камере, верхний патрубок для выхода очищенного газа, установленный в верхней части камеры, патрубок для вывода частиц порошка, размещенный внизу днища камеры и соединенный с ним сборник порошка, отличающееся тем, что соотношение внутреннего диаметра (D) возвратно-поточной вихревой камеры и диаметра (d) верхнего патрубка для вывода очищенного газа составляет D:d≥3.

Сущность предлагаемого изобретения состоит в следующем. В существующих циклонах газовый вихрь представляет собой квазитвердое вращение, т.е. V/R=const,

где V - скорость вихря,

R - радиус камеры, т.е. скорость в любой точке потока одинакова.

Если D:d<3, то любая турбулентность или пульсации, вносимые входным газом, не подавляются, в лучшем случае сохраняются, а то и усиливаются. Поэтому все существующие циклоны критичны к входному патрубку (течение газа на входе стараются сделать как можно спокойнее, т.е. ламинарным), который должен создавать условия ламиниризации входного потока.

В предлагаемом устройстве при отношении внутреннего диаметра возвратно-поточной камеры к диаметру патрубка для вывода очищенного газа D:d≥3 в камере создается устойчивое вихревое течение с наибольшей скоростью вращения на границе с диафрагмой, т.е. на внешней стенке выходного патрубка, при этом вихревой поток подчиняется закону сохранения импульса, где V·R=const. В этом случае, чем ближе поток к центральной части аппарата, т.е. чем меньше текущий радиус камеры R, тем больше скорость потока. При таком распределении скоростей можно добиться очень больших центробежных сил за счет больших ускорений, размеров устройства и входных скоростей, т.к. Gy=V2:R, где Gy - центробежное ускорение.

При входной скорости 50 м/с, диаметре камеры 0,2 м и выходном диаметре патрубка 0,025 м центробежное ускорение составит Gy=(50)2:0,025=100000 м/с2.

Предложенное устройство при таких параметрах позволяет улавливать 50% частиц с размерами 50 нм и 65-70% частиц со средним размером 60-85 нм. На фиг.1 представлен общий вид устройства.

Устройство включает в себя корпус 4, состоящий из возвратно-поточной вихревой камеры 1 и конусообразного днища 2, патрубок 3 для вывода частиц порошка, верхний патрубок 5 для выхода очищенного газа, патрубок 6 для ввода смеси газа и порошка, сборник порошка 7.

На фиг.2 представлены внутренний диаметр (D) возвратно-поточной вихревой камеры и диаметр (d) патрубка для выхода очищенного газа.

Смесь газа с частицами порошка со скоростью 60 м/с и температурой 60°С через патрубок 6 поступает в возвратно-поточную вихревую камеру 1 и, приобретая вращательное движение, опускается по спирали вдоль внутренних стенок камеры и конусообразного днища 2. В центральной зоне камеры газовая смесь освобождается от частиц порошка, очищенный газ направляется в верхнюю часть камеры, а затем выводится через патрубок 5, при этом частицы порошка, осаждающиеся на стенках камеры и днища, стекают вниз и через выходной патрубок 3 попадают в сборник 7.

Представленные в таблице данные свидетельствуют о том, что предлагаемое устройство позволяет улавливать до 75% частиц порошка.

Устройство для улавливания нанопорошков металлов, содержащее корпус в виде цилиндрической возвратно-поточной камеры с конусообразным днищем, патрубок для ввода смеси газа и порошка, тангенциально присоединенный к камере, верхний патрубок для вывода очищенного газа, установленный в верхней части камеры, патрубок для вывода частиц порошка, размещенный внизу днища камеры, и соединенный с ним сборник порошка, отличающееся тем, что соотношение внутреннего диаметра (D) возвратно-поточной вихревой камеры и диаметра (d) верхнего патрубка для вывода очищенного газа составляет D:d≥3.
Источник поступления информации: Роспатент

Показаны записи 21-30 из 126.
20.07.2014
№216.012.de2c

Способ нерпрерываемого производства пучка ионов карборана с постоянной самоочисткой ионного источника и компонент системы экстракции ионного имплантатора

Изобретение относится к области очистки поверхностей газонаполненных разрядных приборов в процессе покрытия материалов ионами, вводимыми в разрядное пространство. Технический результат - увеличение производительности установки. В ионизационную камеру подают рабочее вещество на основе карборана...
Тип: Изобретение
Номер охранного документа: 0002522662
Дата охранного документа: 20.07.2014
27.07.2014
№216.012.e4b8

Способ получения поли(органо)(алкокси)(гидрокси)силоксанов с заданной степенью поликонденсации

Изобретение относится к химии и технологии получения поли(органо)(алкокси)(гидрокси)силоксанов с заданными степенями поликонденсации (n1). Предложен способ получения поли(органо)(алкокси)(гидрокси)силоксанов с заданными степенями поликонденсации (n1) ацидогидролитической поликонденсацией...
Тип: Изобретение
Номер охранного документа: 0002524342
Дата охранного документа: 27.07.2014
10.08.2014
№216.012.e613

Способ получения гетероаннулярных 1,1'-бис-(диметилалкоксисилил)ферроценов

Изобретение относится к способам получения симметричных дизамещенных 1,1′-бис-(триорганосилил)ферроценов. Предложен способ получения гетероаннулярных 1,1′-бис-(диметилалкоксисилил)-ферроценов взаимодействием безводного хлористого железа и диметилалкоксисилилциклопентадиенов в среде...
Тип: Изобретение
Номер охранного документа: 0002524692
Дата охранного документа: 10.08.2014
27.09.2014
№216.012.f968

Керамическая суспензия для создания защитных высокотемпературных антиокислительных покрытий на углеродных материалах

Изобретение относится к области химической промышленности, авиационной и космической техники, в частности к получению защитных высокотемпературных антиокислительных покрытий на основе керамических суспензий органоиттрийоксаналюмоксансилоксанов для создания состава YO-AlO-SiO на керамоматричных...
Тип: Изобретение
Номер охранного документа: 0002529685
Дата охранного документа: 27.09.2014
10.10.2014
№216.012.faee

Способ получения графеновых структур

Изобретение относится к нанотехнологии. Графеновые структуры в виде плоских углеродных частиц с поверхностью до 5 мм получают путем сжигания в атмосфере воздуха или инертного газа композитного пресс-материала, полученного из микро- и нанодисперсных порошков активных металлов, таких как...
Тип: Изобретение
Номер охранного документа: 0002530084
Дата охранного документа: 10.10.2014
27.10.2014
№216.013.02da

Способ получения о-люминолятов щелочных металлов

Изобретение относится к способу получения О-люминолятов щелочных металлов. Способ включает взаимодействие 3-нитрофталевой кислоты с гидразингидратом с образованием 5-нитро-2,3-дигидро-1,4-фталазиндиона, последующее восстановление нитрогруппы и получение солей щелочных металлов. При этом реакцию...
Тип: Изобретение
Номер охранного документа: 0002532128
Дата охранного документа: 27.10.2014
20.11.2014
№216.013.082a

Способ получения хемосорбента для очистки инертных газов и газов-восстановителей от примесей

Изобретение относится к способу получения сорбентов для очистки газов. Инертную неорганическую подложку пропитывают раствором литий алюминий гидрида в диэтиловом эфире. Удаляют эфир вакуумированием и осуществляют пиролиз литий алюминий гидрида, нанесенного на подложку, при температуре 100-500°C...
Тип: Изобретение
Номер охранного документа: 0002533491
Дата охранного документа: 20.11.2014
10.12.2014
№216.013.0ed9

Способ твердофазной нейтрализации жидких и твердых отходов синтеза хлорсиланов и алкилхлорсиланов

Изобретение относится к способам переработки отходов процесса синтеза хлорсиланов и алкилхлорсиланов. Предложен способ твердофазной нейтрализации жидких и твердых отходов синтеза хлорсиланов и алкилхлорсиланов, заключающийся в том, что жидкие и твердые отходы любого состава и в любом...
Тип: Изобретение
Номер охранного документа: 0002535218
Дата охранного документа: 10.12.2014
20.12.2014
№216.013.1013

Стеклокерамическое покрытие на основе органоиттрийоксаналюмоксансилоксанов и способ его получения

Изобретение относится к способу получения защитных высокотемпературных антиокислительных покрытий состава YO-AlO-SiO на карбидокремниевых волокнах. Технический результат изобретения заключается в снижении вязкости покрытия. Стеклокерамическое покрытие выполнено на основе...
Тип: Изобретение
Номер охранного документа: 0002535537
Дата охранного документа: 20.12.2014
20.12.2014
№216.013.109e

Способ региоселективного синтеза моногалогенпроизводных 1,2-,1,7-,1,12-дикарба-клозо-додекаборанов(12) с использованием комплексной активации

Изобретение относится к способу получения моногалогенпроизводных 1,2-,1,7-,1,12-дикарба-клозо-додекаборанов(12). Способ включает взаимодействие о(м,п)-карборанов с галогенирующими агентами, в качестве которых используют N-галогенимиды(амиды): N-галоген-сукцинимиды,...
Тип: Изобретение
Номер охранного документа: 0002535677
Дата охранного документа: 20.12.2014
+ добавить свой РИД