×
27.04.2019
219.017.3df9

Результат интеллектуальной деятельности: СПОСОБ ФОРМИРОВАНИЯ МЕТАЛЛИЧЕСКИХ НАНОКЛАСТЕРОВ В СТЕКЛЕ

Вид РИД

Изобретение

Аннотация: Формирование металлических нанокластеров в стекле применяется в интегральной оптике для создания матриц микролинз, плазменных волноводов, оптических переключателей, химических и биосенсоров на основе плазменных наноструктур и метаматериалов. Способ позволяет получать композитные слои с нанокластерами серебра или меди в тонких приповерхностных слоях стекол. Технический результат изобретения - обеспечение повышения точности и технологичности изготовления композитных слоев заданной геометрии, варьирования глубины залегания композитного слоя, толщины и концентрации металлических нанокластеров в нем, пространственное разрешение не хуже 10 нм. Поверхность стекла, содержащего ионы серебра или меди, облучают электронами с энергией 2-50 кэВ и дозой 2-20 мК/см, затем стекло отжигают при температуре 400-600°С в течение 2-10 часов. 2 ил.

Изобретение относится к технологии оптических материалов и может быть использовано в интегральной оптике. Композитные материалы с наночастицами металлов (Ag, Au, Cu, Pt, Pd) находят применение в качестве нелинейно-оптических сред для быстродействующих оптических переключателей [Р.Chakraborty Metal nanoclasters in glasses as non-linear photonic materials // J.Mater. Sci., 1998, Vol.33, P.2235-2249], фотохромных сред [А.V.Dotsenko, L.B.Glebov, V.A.Tsekhomsky Physics and Chemistry of Photochromic Glasses. CRC Press LLC, 1998, 190 p.], метаматериалов [N.A.Litchinitser, I.R.Gabitov, A.I.Maimistov, V.M.Shalaev Negative refractive index metamaterials in optics. Progress in Optics (ed. by E. Wolf), 2008, Vol.51, P.3-60] и для изготовления интегрально-оптических устройств на поверхностных электромагнитных волнах (плазмонах) [А.V.Zayats, I.I.Smolyaninov, A.A.Maradudin Nano-optics of surface plasmon polaritons // Physics Reports. 2005, V.408, P.131-314].

Известен способ формирования нанокластеров серебра и меди в стеклах, заключающийся в том, что стекло облучают ионами серебра или меди, после чего подвергают отжигу [A.L.Stepanov, R.A.Ganeev, A.I.Ryasnyanski et al Non-linear optical properties of metal nanoparticles implanted in silicate glass // Nucl. Instr. and Meth. in Phys. Res. B, 2003, Vol.206, P.624-628]. В процессе облучения ионы внедряются в тонкий приповерхностный слой стекла. При отжиге ионы переходят в атомарное состояние и в результате диффузии формируют металлические нанокластеры. Недостатком способа является необходимость использования дорогостоящих ускорителей ионов с высокими ускоряющими напряжениями для внедрения тяжелых ионов металла в приповерхностный слой стекла.

Известен способ формирования нанокластеров серебра в стеклах, заключающийся в том, что стекла помещают в расплав соли серебра, проводят процесс ионного обмена, после чего подвергают отжигу [НВ. Никоноров, Г.Т. Петровский Стекла для ионного обмена в интегральной оптике: современное состояние и тенденции дальнейшего развития (обзор). // Физ. и хим. стекла, 1999, т.25, №1, с.21-69.]. При ионном обмене ионы серебра внедряются в приповерхностный слой стекла. При отжиге ионы переходят в атомарное состояние и в результате диффузии формируют металлические нанокластеры. Недостатком способа является необходимость использования дополнительных фотолитографических процессов для создания в приповерхностном слое стекла микро- и макроструктур заданной геометрии, содержащих нанокластеры серебра.

Известен способ формирования нанокластеров серебра и меди в стеклах, выбранный в качестве прототипа, заключающийся в том, что стекла, содержащие ионы серебра или меди, либо нанокластеры галогенидов серебра или меди облучают ультрафиолетовым излучением, после чего подвергают отжигу [А.V.Dotsenko, L.B.Glebov, V.A.Tsekhomsky Physics and Chemistry of Photochromic Glasses. CRC Press LLC, 1998, 190 p.]. Ультрафиолетовое облучение приводит к переходу ионов серебра или меди в атомарное состояние. В результате диффузии они формируют металлические нанокластеры. Недостатком способа является большая глубина проникновения ультрафиолетового излучения в стекло, что препятствует созданию тонких (менее 1 мкм) композитных слоев. Недостатком является также то, что относительно большая длина волны излучения (λ=100…350 нм) препятствует созданию композитных слоев заданной геометрии с пространственным разрешением менее 100 нм.

Изобретение решает задачу повышения точности и технологичности изготовления слоев заданной геометрии, содержащих нанокластеры серебра или меди на поверхности и вблизи поверхности стекла.

Сущность заявляемого способа заключается в следующем. Поверхность стекла, содержащего ионы серебра или меди, облучают электронами с энергией 2…50 кэВ и дозой 2…20 мК/см2, а отжиг осуществляют при температуре 400…600°С в течение 2…10 часов.

Облучение электронами приводит к переходу ионов серебра или меди в атомарное состояние. При отжиге в результате диффузии они формируют металлические нанокластеры на поверхности стекла или в тонком приповерхностном слое стекла. Для создания композитных слоев заданной геометрии используют перемещение сфокусированного электронного луча по заданной траектории. Благодаря малой длине волны де Бройля электронов может быть обеспечено пространственное разрешение не хуже 10 нм.

Примеры конкретной реализации изобретения.

Сущность изобретения поясняется фиг.1 и фиг.2. На фиг.1, а показана фотография облученной зоны образца после термообработки. На фиг.1, б показан спектр поглощения образца до облучения электронами (кривая 1) и после облучения и термообработки (кривая 2). На фиг.2 показан спектр поглощения образца до облучения электронами (кривая 1) и после облучения и термообработки (кривая 2).

Пример 1. Облучению электронами подвергают пластину из силикатного стекла следующего состава: 15Na2O-5ZnO-4Al2O3-70SiO2-5NaF-1KBr-0.01Ag2O-0.01CeO2 (мол.%). Образец исходно представляет собой бесцветное и прозрачное стекло. Облучение проводят при комнатной температуре на сканирующем электроннолучевом микроскопе при энергии электронов 20 кэВ и токе 2 нА. Доза облучения составляет 11.4 мК/см2. Размер облучаемой зоны равен 270×350 мкм. При необходимости для обеспечения стока заряда облучаемую зону окружают кольцевым электродом, расположенным на расстоянии 200…300 мкм. После облучения проводят термическую обработку образца при Т=540°С в течение 2 часов. Под действием электронного луча в приповерхностном слое образца формируются нейтральные атомы Ag°. Расчет показывает, что торможение электронов при начальной энергии 20 кэВ происходит на расстоянии от поверхности 2.6 мкм. При последующей термообработке в результате диффузии атомов Ag° возникают нанокластеры серебра - Ag°n. Это приводит к появлению в облученной зоне полосы поглощения, связанной с плазменным резонансом нанокластеров серебра. На фиг.1 показана фотография облученной зоны образца после термообработки и спектр поглощения образца до облучения электронами (кривая 1) и после облучения и термообработки (кривая 2). Глубина залегания композитного слоя с нанокластерами серебра зависит от энергии воздействующих электронов. В данном примере она равна 2.5…2.6 мкм. Толщина композитного слоя по результатам оптических измерений равна 0.8 мкм.

Пример 2. Облучению электронами подвергают пластину из фотохромного силикатного стекла марки ФХС-7, содержащего нанокристаллы CuCl. Образец исходно представляет собой прозрачное стекло со слабой светло-зеленой окраской. Облучение проводят при комнатной температуре на электронно-лучевом микроскопе при энергии электронов 10 кэВ и токе 1 мкА. Доза облучения составляет 20 мК/см2. Диаметр облучаемой зоны равен 2 мм. При необходимости для обеспечения стока заряда облучаемую зону окружают кольцевым электродом. После облучения проводят термическую обработку образца при Т=540°С в течение 2 часов. Под действием электронного луча в приповерхностном слое образца происходит разложение хлорида меди и формируются нейтральные атомы Cu° и нанокластеры Cu°n. Это приводит к появлению в облученной зоне полосы поглощения, связанной с плазменным резонансом нанокластеров меди. При последующей термообработке в результате диффузии атомов меди концентрация и размеры нанокластеров меди увеличиваются. На фиг.2 показан спектр поглощения образца до облучения электронами (кривая 1) и после облучения и термообработки (кривая 2).

Из приведенных примеров следует, что предлагаемое техническое решение позволяет изготавливать композитные слои с нанокластерами серебра или меди в тонких приповерхностных слоях стекол. Использование электронного луча дает возможность повысить точность и технологичность изготовления композитных слоев заданной геометрии, а также варьировать глубину залегания композитного слоя, его толщину и концентрацию металлических нанокластеров в нем.

Предлагаемое техническое решение может найти применение в интегральной оптике для создания матриц микролинз, плазменных волноводов и оптических переключателей, а также для создания химических и биосенсоров на основе плазменных наноструктур и метаматериалов.

Способ формирования металлических нанокластеров в стекле, содержащем ионы серебра или меди, заключающийся в переводе ионов металла в атомарное состояние путем облучения стекла и последующего его отжига, отличающийся тем, что поверхность стекла облучают электронами с энергией 2-50 кэВ и дозой 2-20 мК/см, а отжиг осуществляют при температуре 400-600°С в течение 2-10 ч.
Источник поступления информации: Роспатент

Показаны записи 11-11 из 11.
29.05.2019
№219.017.68f1

Устройство для определения жесткостных характеристик анизотропных стержней

Изобретение относится к измерительной технике и может быть использовано для измерения параметров анизотропных стержней, таких как изгибная жесткость и естественная кривизна. Технический результат - повышение точности измерения параметров анизотропных стержней с одновременным сокращением...
Тип: Изобретение
Номер охранного документа: 0002435153
Дата охранного документа: 27.11.2011
Показаны записи 11-20 из 43.
10.01.2016
№216.013.9f76

Дозиметр ультрафиолетового излучения

Изобретение относится к радиационным измерениям, в частности к измерениям дозы ультрафиолетового (УФ) излучения, и может быть использовано в медицине, сельском хозяйстве, биотехнологии, обеззараживании объектов, материаловедении, экологии, дефектоскопии, криминалистике, искусствоведении....
Тип: Изобретение
Номер охранного документа: 0002572459
Дата охранного документа: 10.01.2016
20.04.2016
№216.015.3672

Способ защиты от обрывов фазных и нулевого проводов четырехпроводной воздушной линии электрической сети напряжением 380 в и устройство для его реализации

Использование: в области электротехники. Технический результат - повышение надежности работы электрических сетей напряжением 380 В и улучшение условий электробезопасности. Способ заключается в использовании для защиты линии трехфазного микропроцессорного счетчика электрической энергии,...
Тип: Изобретение
Номер охранного документа: 0002581607
Дата охранного документа: 20.04.2016
27.04.2016
№216.015.3946

Люминесцентный дозиметр ультрафиолетового излучения

Изобретение относится к области радиационных измерений и касается люминесцентного дозиметра ультрафиолетового излучения. Дозиметр включает в себя чувствительный элемент, передающее оптическое волокно, подвижную кассету с оптическими фильтрами и фотоприемное устройство. Чувствительный элемент...
Тип: Изобретение
Номер охранного документа: 0002582622
Дата охранного документа: 27.04.2016
13.01.2017
№217.015.6d92

Способ получения металлических пленок заданной формы

Изобретение относится к электронно-лучевой технологии и может быть использовано в оптике, фотонике, интегральной оптике, наноплазмонике и электронике. Способ получения металлических пленок заданной формы заключается в том, что на подложку с высоким электрическим сопротивлением предварительно...
Тип: Изобретение
Номер охранного документа: 0002597373
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.7ab0

Способ получения светопоглощающей кремниевой структуры

Изобретение относится к области солнечных фотоэлектрических преобразователей на основе монокристаллического кремния. Способ получения светопоглощающей кремниевой структуры включает нанесение на поверхность образца из монокристаллического кремния слоя ванадия толщиной от 50 нм до 80 нм,...
Тип: Изобретение
Номер охранного документа: 0002600076
Дата охранного документа: 20.10.2016
25.08.2017
№217.015.af2b

Способ определения места установки устройств секционирования воздушной линии напряжением 380 в

Использование: в области электротехники. Технический результат – уменьшение времени срабатывания защиты. Согласно способу рассчитывают минимальные токи однофазного короткого замыкания по длине этой воздушной линии с учетом сопротивления дуги в месте замыкания и эффекта «теплового спада», строят...
Тип: Изобретение
Номер охранного документа: 0002610899
Дата охранного документа: 17.02.2017
25.08.2017
№217.015.c135

Люминесцентное фосфатное стекло

Изобретение относится к люминесцентным материалам. Технический результат изобретения заключается в повышении квантового выхода люминесценции стекол с переходными металлами. Люминесцентное фосфатное стекло содержит, мол.%: NaO – 33, PO– 33, AgO – 0,1, CuO – 0,1 и ZnO – 33,5. 3 ил.
Тип: Изобретение
Номер охранного документа: 0002617662
Дата охранного документа: 25.04.2017
26.08.2017
№217.015.e3b9

Чувствительный элемент датчика температуры

Изобретение относится к измерительной технике и может быть использовано для измерения температуры в диапазоне температур от -50°С до +250°С. Чувствительный элемент датчика температуры содержит диэлектрическую пластину из щелочно-силикатного стекла с металлическими электродами, при этом...
Тип: Изобретение
Номер охранного документа: 0002626222
Дата охранного документа: 24.07.2017
26.08.2017
№217.015.e3ec

Устройство для регистрации оптических параметров жидкого аналита

Изобретение относится к области измерительной техники и касается устройства для регистрации оптических параметров жидкого аналита. Устройство включает в себя подложку, в толще которой сформированы камера, входной и выходной микрофлюидные каналы, сообщающиеся с камерой, источник оптического...
Тип: Изобретение
Номер охранного документа: 0002626299
Дата охранного документа: 25.07.2017
26.08.2017
№217.015.e680

Гетерогенный катализатор жидкофазного окисления органических соединений

Изобретение относится к химической промышленности, а именно к области производства гетерогенных катализаторов процессов жидкофазного окисления органических соединений (в том числе, производных фенолов) и может быть применено на предприятиях различных отраслей промышленности для проведения...
Тип: Изобретение
Номер охранного документа: 0002626964
Дата охранного документа: 02.08.2017
+ добавить свой РИД