×
27.04.2019
219.017.3d46

Результат интеллектуальной деятельности: Одностадийный способ получения добавки-прооксиданта к полиолефинам

Вид РИД

Изобретение

Аннотация: Изобретение относится к химической и нефтехимической отрасли, а именно к способу получения прооксидантов - оксобиоразлагаемых добавок для полимерных материалов с регулируемым сроком службы. Описан способ получения добавки-прооксиданта к полиолефинам, включающий взаимодействие соли металла переменной валентности с натриевым мылом жирной кислоты либо натриевыми мылами, полученными на основе жирных кислот, выделенных из соапстоков светлых растительных масел. Способ осуществляют одностадийно в двухшнековом экструдере, выполняющем одновременно функцию реактора для взаимодействия натриевого мыла жирной кислоты (смеси жирных кислот) с солью или оксидом металла переменной валентности и функцию экструдера для создания добавки-прооксиданта на основе полиолефина и полученного карбоксилата металла. Время нахождения материала в реакционном объеме экструдера составляет 4 - 6 минут при температуре 190 - 200 °С. В качестве соли или оксида металла переменной валентности применяют соли или оксиды кобальта, железа или меди, в качестве полиолефина для получения добавки-прооксиданта применяют полиэтилен. Мольное соотношение натриевого мыла жирной кислоты и соли или оксида металла переменной валентности равно 2 : 1, содержание полиолефина в добавке-прооксиданте составляет 85 - 95 мас.ч, содержание карбоксилата металла переменной валентности в добавке-прооксиданте составляет 5 - 15 мас.ч. Технический результат - усовершенствование и упрощение технологии производства добавок-прооксидантов к полиолефинам, снижение негативного воздействия на окружающую среду, повышение технико-экономических показателей производства. 2 табл., 32 пр.

Изобретение относится к химической и нефтехимической отрасли, а конкретно к способу получения прооксидантов - оксобиоразлагаемых добавок для полимерных материалов с регулируемым сроком службы.

Добавки – прооксиданты на рынке оксибиоразлагаемых материалов представлены в основном зарубежными продуктами, как, например, добавка D2W®, выпускаемая фирмой Symphony Environmental Technologies plc., присутствует на рынке многих стран для производства изделий из полиэтилена и полипропилена, известно, что в качестве активатора деструкции полимерных цепей она содержит органические соли переходных металлов (кобальта, железа, марганца, меди, цинка, церия, никеля). Оксо-биоразлагающая добавка фирмы EPI ENVIRONMENTAL PRODUCTS INC содержит стеарат кобальта, лимонную кислоту и дополнительно может включать оксид кальция [US 5854304 A, опубл. 29.12.1998].

Большинство известных способов получения добавок, инициирующих ускоренную оксодеструкцию полимеров, включают, по меньшей мере, две стадии получения: на первом этапе осуществляется синтез компонента, являющегося активатором деструкции (например, синтез карбоксилата металла переменной валентности путем проведения реакции между натриевой солью карбоновой кислоты и солью металла переменной валентности), на втором этапе реализуется получение добавки – прооксиданта в виде мастербатча, т.е. композиции базового полимера и активатора деструкции, в которой активатор деструкции сконцентрирован для последующего введения в конечный продукт (пленки, пакеты и проч.) в малых долях.

Между тем, технологически и экономически выгодным является проведение процесса в одну стадию при непосредственном взаимодействии полимерной основы добавки-прооксиданта и компонентов, входящих в состав активатора деструкции.

Известен способ [Пат. CA 2821357 A1, опубл. 05.07.2012] получения композиционной добавки, не содержащей природных компонентов, сообщающей полиолефиновым материалам свойство биоразлагаемости после окончания срока их полезного использования. Добавка включает прооксидант (15-30 масс. %), в качестве которого используют один или несколько стеаратов металлов, выбранных из группы, включающей марганец, железо и кобальт, один или несколько фенольных антиоксидантов (10-20 масс. %), наполнитель - карбонат кальция и/или диоксид титана и полимерную основу (полиэтилен или полипропилен). Добавку вводят в базовый полимер в количестве 1-5 масс. %.

Указанный способ требует предварительного получения стеаратов металлов переменной валентности, с последующим получением добавки-прооксиданта на основе базового полимера.

Известен способ получения многослойной пленки [US 20060280923 А1, опубл. 14.12.2006], один из слоев которой выполнен из полиолефина, содержащего 0,1-10 масс. % деградирующей добавки - карбоксилата металла и, по меньшей мере, одной алифатической полигидроксикарбоновой кислоты. Недостатком способа является многостадийность изготовления.

Известна добавка для ускорения биоразложения полиолефинов [US 3797690 А, опубл. 19.03.1974], содержащая 2-этилгексаноат кобальта. Добавку наносят на поверхность полимера в составе покрытия, которое может содержать или быть смешано с другими компонентами. Для проявления оксо-разлагающего действия добавка должна проникнуть из наружного слоя в толщу полимера, способствуя ускорению его разрушения под воздействием природных факторов. Недостатком является необходимость нанесения покрытия на полимер, а также сложность механизма оксобиоразложения.

Известен способ получения [Пат. RU 2540273, опубл. 10.02.2015] оксо-разлагающей добавкаи к полиолефинам, которая включает карбоксилаты металлов или смеси карбоксилатов металлов, нанесенные на инертный носитель в среде органического растворителя, в качестве карбоксилатов металлов используют, например, 2-этилгексаноаты цинка и циркония, в качестве инертного носителя может быть использован карбонат кальция.

Недостатком указанного способа является сложность технологии получения, так как необходимо осуществить целый ряд последовательных операций: получение карбоксилата металла, нанесение карбоксилата металла на инертный носитель в среде органического растворителя, отгонка растворителя, сушка и измельчение активатора деструкции, получение мастербатча на основе базового полимера и активатора деструкции.

В качестве прототипа взят способ [Пат. RU 2336286, опубл. 20.10.2008] получения добавки для создания термопластов, характеризующихся контролируемым разложением, в котором соль металла подвергают взаимодействию с С824 жирной кислотой либо производным С824 жирной кислоты в условиях образования жирорастворимого соединения металла, способ предусматривает промывку жирорастворимого соединения металла с использованием водного раствора пероксида водорода, диспергацию в водном разбавленном растворе пероксида водорода при 35-55°С в течение от 1 до 3 ч, промывку с использованием воды и высушивание в конвекционной сушилке, а также добавление некоторого количества воска для связывания продукта в твердые комки, которые не вызывают пылеобразования.

Недостатком прототипа является многостадийность и длительность технологического процесса, необходимость использования дополнительных стадий диспергации, промывки, просушки и окамкования, и как следствие удорожание конечного продукта.

Технической задачей изобретения является усовершенствование и упрощение способа получения добавки-прооксиданта к полиолефинам за счет проведения процесса в одну стадию в двухшнековом экструдере, выполняющем одновременно функцию реактора для проведения процесса взаимодействия соли или оксида металла переменной валентности и натриевого либо калиевого мыла жирной кислоты с получением карбоксилата металла, и функцию экструдера для получения добавки-прооксиданта на основе базового полимера и карбоксилата металла; кроме того, в задачу изобретения входит повышение экологичности производства за счет отсутствия стадий продувки и промывки карбоксилата металла, являющихся источником образования отходящих газов и сточных вод, а также повышение технико-экономических показателей производства.

Использование двухшнекового экструдера в качестве реактора для взаимодействия компонентов добавки-прооксиданта позволяет интенсифицировать химические превращения за счет проведения процесса в расплаве при более высоких температурах, в отличие от жидких сред.

При осуществлении заявляемого одностадийного способа получения добавки-прооксиданта к полиолефинам рекомендуется применение двухшнекового двухкаскадного экструдера, позволяющего повысить время взаимодействия компонентов добавки-прооксиданта, и интенсифицировать процесс гомогенизации.

Техническая задача изобретения достигается тем, что в способе получения добавки-прооксиданта к полиолефинам, включающем взаимодействие соли металла с С824 жирной кислотой либо производным С824 жирной кислоты, с последующим созданием добавки на основе полиолефина и полученного карбоксилата металла, новым является то, что процесс проводят одностадийно в духшнековом экструдере, выполняющем одновременно функцию реактора для взаимодействия натриевого или калиевого мыла жирной кислоты (смеси жирных кислот) с солью или оксидом металла переменной валентности, и функцию экструдера для создания добавки-прооксиданта на основе полиолефина и полученного карбоксилата металла; процесс проводят при температуре 190 ÷ 200 °С, при этом время нахождения материала в реакционном объеме экструдера составляет 4 ÷ 6 минут; в качестве натриевых или калиевых мыл жирной кислоты (смеси жирных кислот) применяют, в том числе, мыла, полученные на основе жирных кислот, выделенных из соапстоков светлых растительных масел, в качестве соли или оксида металла переменной валентности применяют соли или оксиды кобальта, железа или меди, в качестве полиолефина для получения добавки-прооксиданта применяют полиэтилен; мольное соотношение натриевого или калиевого мыла жирной кислоты и соли или оксида металла переменной валентности равно 2 : 1, содержание полиолефина в добавке-прооксиданте составляет 85 ÷ 95 мас.ч, содержание карбоксилата металла переменной валентности в добавке-прооксиданте составляет 5 ÷ 15 мас.ч.

Технический результат изобретения заключается в усовершенствовании и упрощении способа получения добавки-прооксиданта к полиолефинам за счет проведения процесса в одну стадию в двухшнековом экструдере, повышении экологичности производства, снижении стоимости продукта.

Способ получения добавки-прооксиданта к полиолефинам осуществляют следующим образом.

В приемный бункер двухшнекового экструдера, снабженного зонами дегазации, подают с помощью дозаторов необходимое количество натриевого или калиевого мыла жирных кислот, соль или оксид металла переменной валентности, выбранного из ряда: кобальт, железо, медь (при этом мольное соотношение натриевого или калиевого мыла жирной кислоты и соли или оксида металла переменной валентности равно 2 : 1) и полиэтилен в качестве основы добавки-прооксиданта, далее проводят процесс экструзии при температуре 190 ÷ 200 °С, в течении 4 ÷ 6 минут. Готовый продукт – дабавку-прооксидант к полиолефинам – получают в виде гранул.

Следует отметить, что переработка в экструзионном оборудовании заявляемой добавки-прооксиданта проводится при высоких температурах и критических напряжениях сдвига, а наличие активных каталитических соединений в виде карбоксилатов металлов переменной валентности способствует развитию структурных превращений в полимерной матрице. При изучение реологического поведения заявляемой добавки-прооксиданта с различным содержанием карбоксилата металла переменной валентности при температуре 190 °С и в диапазоне скоростей сдвига от 100 до 250 с-1 установлено, что устойчивое течение отмечается при содержании карбоксилата металла переменной валентности до 15 мас.ч. Режим устойчивого течения сопровождается образованием гладкой поверхности и однородностью цвета экструдата. При повышении содержания карбоксилатов металлов переменной валентности в добавке-прооксиданте до критического значения (более 15 мас.ч) наблюдается нарушение термостабильности расплава и проявление режима неустойчивого течения, характеризующего искажением поверхности экструдата при течении через формующий канал инструмента.

В таблице 1 представлены значения показателя текучести расплава (ПТР) добавки-прооксиданта с различным содержанием стеаратов металлов переменной валентности, отмечено значительное снижение ПТР при повышении содержания стеаратов железа, меди, кобальта.

Таблица 1

Показатель текучести расплава добавки-прооксиданта с различным содержанием карбоксилатов металлов переменной валентности

Содержание
карбоксилата металла переменной валентности в добавке-прооксиданте,
мас. ч.
ПТР ( г /10 мин) при температуре 190 оС и нагрузке 2,16 кг
Стеарат
железа
Стеарат
меди
Стеарат
кобальта
0 2,41 2,41 2,41
5,0 2,28 2,25 2,30
10,0 5,87 2,93 2,84
15,0 9,75 3,98 4,32

Таким образом, не рекомендуется превышать содержание карбоксилата металла переменной валентности в добавке-прооксиданте более 15 мас.ч.

Слишком малое содержание металла переменной валентности, являющегося инициатором оксодеструкции, в добавке-прооксиданте снижает ее целевое назначение, заметно увеличивая сроки разложения конечных изделий в окружающее среде, в связи с этим, не рекомендуется снижать содержание карбоксилата металла переменной валентности в добавке-прооксиданте менее 5 мас.ч.

В способе получения добавки-прооксиданта к полиолефинам используют:

- натриевое или калиевое мыло жирных кислот (ТУ 9145-012-00333693-99), в том числе, полученное на основе жирных кислот, выделенных из соапстока светлых растительных масел (ТУ 10-10-04-02-80-91),

- соли Co, Cu, Fe, или их оксиды (ГОСТ 4467-79  Реактивы. Кобальт (II, III) оксид, ГОСТ 16539-79 Реактивы. Меди (II) оксид),

- полиэтилен в качестве основы добавки-прооксиданта (ТУ 2211-145-05766801-2008).

Способ поясняется следующими примерами.

Пример 1 (прототип)

В реакторе расплавляли 2,180 кг (7,66 моль) стеариновой кислоты. Скорость подачи воздуха регулировали, выдерживая равной приблизительно 200 мл воздуха в минуту, а температуру реактора регулировали, выдерживая равной 120°С. 600 г (2,22 моль) гексагидрата хлорида железа(III) растворяли в 600 мл воды и получали приблизительно 900 мл водного раствора хлорида железа(III). Через одну из загрузочных воронок в раствор хлорида железа(III) при скорости подачи 20 мл в минуту добавляли расплавленную стеариновую кислоту. Добавление водного раствора хлорида железа(III) регулировали таким образом, чтобы количество дистиллированной воды и хлорида водорода соответствовало бы количеству подаваемого водного раствора хлорида железа(III). Непрерывная подача воздуха и добавление водного раствора пероксида водорода с концентрацией 3% при скорости подачи 2 мл в минуту через другую загрузочную воронку обеспечивали поддержание степени окисления (III) для ионов железа(III). После завершения добавления водного раствора хлорида железа(III) смесь кипятили и перегоняли при непрерывном добавлении воздуха и добавлении водного раствора пероксида водорода с концентрацией 3% при скорости подачи 5 мл в минуту до тех пор, пока хорошо определенную желтую окраску водного раствора хлорида железа(III) больше нельзя было наблюдать. После этого получаемый в виде продукта стеарат железа выпускали через донный вентиль в 10 литров водного раствора пероксида водорода с концентрацией 3%. Когда последующее выделение газа было близко к своему завершению, получаемый в виде продукта стеарат железа отфильтровывали от жидкой фазы и тщательно промывали с использованием воды с целью удаления любых остаточных количеств хлорида железа(III). После этого получаемый в виде продукта стеарат железа диспергировали в водном растворе пероксида водорода с концентрацией 1% при 45°С в течение 2 часов, облегчая протекание процесса при помощи рейки для диспергирования. Диспергированный получаемый в виде продукта стеарат железа отфильтровывали от жидкой фазы, тщательно промывали с использованием воды и высушивали в конвекционной сушилке при 50°С.

Далее 10% растворимого в жире железосодержащего продукта из комбинировали с 90% ЛПЭНП, относящегося к типу 0230 (сополимера этен/октен; Exxon) в двухчервячном экструдере (Clextral) при 130°С и при времени пребывания в диапазоне 60-70 секунд.

Образцы для испытаний в виде пленок подвергали ускоренному старению в соответствии с ISO 4892-3. Прибором для испытаний являлся прибор для испытаний на погодостойкость Atlas UVCON (Atlas Inc., США), оснащенный флуоресцентными лампами UVA 340. Цикл испытаний состоял из 4 часов облучения УФ-излучением во время проведения нагревания до 60°С в сухих условиях, 30 минут разбрызгивания воды при 10-12°С и 3 часов 30 минут конденсации при 40°С.

Пример 2

В приемный бункер двухшнекового экструдера, снабженного зонами дегазации, подавали с помощью дозаторов 4,750 кг полиэтилена (ПЭ), 0,245 кг стеарата натрия (C17H35СООNa), 0,030 кг оксида кобальта (CoO) и проводили процесс экструзии при температуре 190 °С, в течении 5 минут. Добавку-прооксидант к полиолефинам, полученную в виде гранул, использовали при получении оксиразлагаемой полиэтиленовой пленки, добавляя 1 мас.% добавки-прооксиданта к полиэтилену марки ПВД-10803-020. Пленку подвергали ускоренному старению под действием УФ- излучения при температуре 25 єС в течении 96 часов; показателями эффективности оксиразложения были выбраны максимальный предел прочности при растяжении и относительное удлинение при разрыве, испытания проводили по ГОСТ 11262-80.

Пример 3

Получали добавку-прооксидант аналогично примеру 2, но количество полиэтилена составляло 4,500 кг, количество стеарата натрия 0,490 кг, количество оксида кобальта 0,060 кг.

Пример 4

Получали добавку-прооксидант аналогично примеру 2, но количество полиэтилена составляло 4,250 кг, количество стеарата натрия 0,735 кг, количество оксида кобальта 0,090 кг.

Пример 5

Получали добавку-прооксидант аналогично примеру 2, но содержание добавки в оксиразлагаемой пленке составляло 2 мас.%.

Пример 6

Получали добавку-прооксидант аналогично примеру 3, но содержание добавки в оксиразлагаемой пленке составляло 2 мас.%.

Пример 7

Получали добавку-прооксидант аналогично примеру 4, но содержание добавки в оксиразлагаемой пленке составляло 2 мас.%.

Пример 8

Получали добавку-прооксидант аналогично примеру 2, но содержание добавки в оксиразлагаемой пленке составляло 3 мас.%.

Пример 9

Получали добавку-прооксидант аналогично примеру 3, но содержание добавки в оксиразлагаемой пленке составляло 3 мас.%.

Пример 10

Получали добавку-прооксидант аналогично примеру 4, но содержание добавки в оксиразлагаемой пленке составляло 3 мас.%.

Пример 11

В приемный бункер двухшнекового экструдера, снабженного зонами дегазации, подавали с помощью дозаторов 4,750 кг полиэтилена (ПЭ), 0,243 кг стеарата натрия, 0,032 кг оксида меди (CuO) и проводили процесс экструзии при температуре 190 °С, в течении 5 минут. Добавку-прооксидант к полиолефинам, полученную в виде гранул, использовали при получении оксиразлагаемой полиэтиленовой пленки, добавляя 1 мас.% добавки-прооксиданта к полиэтилену марки ПВД-10803-020. Пленку подвергали ускоренному старению под действием УФ- излучения при температуре 25 ºС в течении 96 часов; показателями эффективности оксиразложения были выбраны максимальный предел прочности при растяжении и относительное удлинение при разрыве, испытания проводили по ГОСТ 11262-80.

Пример 12

Получали добавку-прооксидант аналогично примеру 11, но количество полиэтилена составляло 4,500 кг, количество стеарата натрия 0,486 кг, количество оксида меди 0,063 кг.

Пример 13

Получали добавку-прооксидант аналогично примеру 11, но количество полиэтилена составляло 4,250 кг, количество стеарата натрия 0,730 кг, количество оксида меди 0,095 кг.

Пример 14

Получали добавку-прооксидант аналогично примеру 11, но содержание добавки в оксиразлагаемой пленке составляло 2 мас.%.

Пример 15

Получали добавку-прооксидант аналогично примеру 12, но содержание добавки в оксиразлагаемой пленке составляло 2 мас.%.

Пример 16

Получали добавку-прооксидант аналогично примеру 13, но содержание добавки в оксиразлагаемой пленке составляло 2 мас.%.

Пример 17

Получали добавку-прооксидант аналогично примеру 11, но содержание добавки в оксиразлагаемой пленке составляло 3 мас.%.

Пример 18

Получали добавку-прооксидант аналогично примеру 12, но содержание добавки в оксиразлагаемой пленке составляло 3 мас.%.

Пример 19

Получали добавку-прооксидант аналогично примеру 13, но содержание добавки- в оксиразлагаемой пленке составляло 3 мас.%.

Пример 20

В приемный бункер двухшнекового экструдера, снабженного зонами дегазации, подавали с помощью дозаторов 4,750 кг полиэтилена (ПЭ), 0,246 кг стеарата натрия, 0,029 кг оксида железа (FeO) и проводили процесс экструзии при температуре 190 °С, в течении 5 минут. Добавку-прооксидант к полиолефинам, полученную в виде гранул, использовали при получении оксиразлагаемой полиэтиленовой пленки, добавляя 1 мас.% добавки-прооксиданта к полиэтилену марки ПВД-10803-020. Пленку подвергали ускоренному старению под действием УФ- излучения при температуре 25 ºС в течении 96 часов; показателями эффективности оксиразложения были выбраны максимальный предел прочности при растяжении и относительное удлинение при разрыве, испытания проводили по ГОСТ 11262-80.

Пример 21

Получали добавку-прооксидант аналогично примеру 20, но количество полиэтилена составляло 4,500 кг, количество стеарата натрия 0,492 кг, количество оксида железа 0,058 кг.

Пример 22

Получали добавку-прооксидант аналогично примеру 20, но количество полиэтилена составляло 4,250 кг, количество стеарата натрия 0,738 кг, количество оксида железа 0,087 кг.

Пример 23

Получали добавку-прооксидант аналогично примеру 20, но содержание добавки в оксиразлагаемой пленке составляло 2 мас.%.

Пример 24

Получали добавку-прооксидант аналогично примеру 21, но содержание добавки в оксиразлагаемой пленке составляло 2 мас.%.

Пример 25

Получали добавку-прооксидант аналогично примеру 22, но содержание добавки в оксиразлагаемой пленке составляло 2 мас.%.

Пример 26

Получали добавку-прооксидант аналогично примеру 20, но содержание добавки в оксиразлагаемой пленке составляло 3 мас.%.

Пример 27

Получали добавку-прооксидант аналогично примеру 21, но содержание добавки в оксиразлагаемой пленке составляло 3 мас.%.

Пример 28

Получали добавку-прооксидант аналогично примеру 22, но содержание добавки в оксиразлагаемой пленке составляло 3 мас.%.

Результаты испытаний по примерам 2 – 28 представлены в таблице 2.

Пример 29

Получали добавку-прооксидант аналогично примеру 20, но время проведения процесса экструзии составляло 3 минуты.

При этом наблюдалось неравномерное распределение компонентов в расплаве, характеризующееся неоднородностью экструдата.

Пример 30

Получали добавку-прооксидант аналогично примеру 20, но время проведения процесса экструзии составляло 4 минуты.

При этом наблюдалось равномерное распределение компонентов в расплаве без дефектов внешнего вида и структуры.

Пример 31

Получали добавку-прооксидант аналогично примеру 20, но время проведения процесса экструзии составляло 6 минут.

При этом наблюдалось равномерное распределение компонентов в расплаве без дефектов внешнего вида и структуры.

Пример 32

Получали добавку-прооксидант аналогично примеру 20, но время проведения процесса экструзии составляло 7 минут.

При этом наблюдались дефекты внешнего вида и структуры экструдата (потемнение цвета, разрыв стренг, неровность поверхности).

Таким образом, время получения добавки - прооксиданта методом экструзии рекомендуется принимать в диапазоне 4 ÷ 6 минут.

Таблица 2

Результаты испытаний пленочных образцов,

содержащих различное количество добавки-прооксиданта

(средние показатели по 5 опытным образцам)

№ примера Содержание карбоксилата металла переменной валентности в добавке-прооксиданте,
мас.ч.
Содержание добавки-прооксиданта
в пленке, мас.%
Данные по примерам
Максимальный предел прочности при растяжении [МПа] Относительное удлинение при разрыве [%]
до
облучения
после 96
часов облучения
до облучения после 96
часов
облучения
1 прототип
ПЭ: С17Н35COONa : СоО
2 5 1 12,5 3,4 550 150
3 10 1 12,5 3,2 550 135
4 15 1 12,5 2,9 550 125
5 5 2 12,5 2,9 550 120
6 10 2 12,5 2,5 550 110
7 15 2 12,5 2,0 550 95
8 5 3 12,5 2,2 550 70
9 10 3 12,5 1,8 550 65
10 15 3 12,5 1,5 550 55
ПЭ: С17Н35COONa : СuО
11 5 1 12,5 3,9 550 205
12 10 1 12,5 3,7 550 195
13 15 1 12,5 3,5 550 170
14 5 2 12,5 3,4 550 165
15 10 2 12,5 3,1 550 150
16 15 2 12,5 2,7 550 135
17 5 3 12,5 2,7 550 130
18 10 3 12,5 2,5 550 115
19 15 3 12,5 2,2 550 105
ПЭ: С17Н35COONa : FeО
20 5 1 12,5 4,8 550 340
21 10 1 12,5 4,6 550 325
22 15 1 12,5 4,5 550 315
23 5 2 12,5 4,4 550 310
24 10 2 12,5 4,3 550 295
25 15 2 12,5 4,1 550 285
26 5 3 12,5 4,0 550 255
27 10 3 12,5 3,8 550 245
28 15 3 12,5 3,7 550 230

Как видно из таблицы 2 заявляемый одностадийный способ получения добавки-прооксиданта к полиолефинам позволяет создать добавку, инициирующую фотоокислительную деструкцию полиолефиновых цепей, при этом наиболее выраженный эффект деструкции наблюдается при использовании в качестве металла переменной валентности кобальта.

Предложенный одностадийный способ получения добавки-прооксиданта к полиолефинам позволяет:

- усовершенствовать и упростить технологию производства добавок-прооксидантов к полиолефинам;

- снизить негативное воздействие на окружающую среду;

- повысить технико-экономические показатели производства;

- заменить импортные оксибиоразлагающие добавки для полимерных материалов на российском рынке отечественными аналогами.

Способ получения добавки-прооксиданта к полиолефинам, включающий взаимодействие соли металла с С-С жирной кислотой либо производным С-С жирной кислоты, с последующим созданием добавки на основе полиолефина и полученного карбоксилата металла, отличающийся тем, что процесс проводят одностадийно в двухшнековом экструдере, выполняющем одновременно функцию реактора для взаимодействия натриевого мыла жирной кислоты (смеси жирных кислот) с солью или оксидом металла переменной валентности и функцию экструдера для создания добавки-прооксиданта на основе полиолефина и полученного карбоксилата металла; процесс проводят при температуре 190 - 200 °С, при этом время нахождения материала в реакционном объеме экструдера составляет 4 - 6 минут; в качестве натриевых мыл жирной кислоты (смеси жирных кислот) применяют, в том числе, мыла, полученные на основе жирных кислот, выделенных из соапстоков светлых растительных масел, в качестве соли или оксида металла переменной валентности применяют соли или оксиды кобальта, железа или меди, в качестве полиолефина для получения добавки-прооксиданта применяют полиэтилен; мольное соотношение натриевого или калиевого мыла жирной кислоты и соли или оксида металла переменной валентности равно 2 : 1, содержание полиолефина в добавке-прооксиданте составляет 85 - 95 мас.ч, содержание карбоксилата металла переменной валентности в добавке-прооксиданте составляет 5 - 15 мас.ч.
Источник поступления информации: Роспатент

Показаны записи 91-100 из 214.
29.05.2018
№218.016.580d

Способ производства сухарей повышенной пищевой ценности

Изобретение относится к пищевой промышленности, в частности к хлебопекарному производству. Способ производства сухарей повышенной пищевой ценности, характеризующийся тем, что тесто готовят безопарным способом из муки цельносмолотого зерна пшеницы, дрожжей хлебопекарных прессованных, соли...
Тип: Изобретение
Номер охранного документа: 0002654790
Дата охранного документа: 22.05.2018
28.07.2018
№218.016.76d4

Способ получения структурированного молокосодержащего продукта

Изобретение относится к пищевой промышленности, в частности к молочной промышленности, и может быть использовано при производстве молокосодержащих продуктов. Способ предусматривает восстановление заменителя сухих сливок в предварительно подогретой до температуры 42±2°С воде в течение 2-3 ч,...
Тип: Изобретение
Номер охранного документа: 0002662662
Дата охранного документа: 26.07.2018
03.10.2018
№218.016.8d0c

Устройство для концентрирования растворов методом вымораживания влаги и получения льда

Изобретение относится к пищевой промышленности и может быть использовано при концентрировании растворов методом вымораживания влаги и получения льда. Устройство для концентрирования растворов методом вымораживания влаги и получения льда содержит камеры образования и роста кристаллов льда,...
Тип: Изобретение
Номер охранного документа: 0002668294
Дата охранного документа: 28.09.2018
04.10.2018
№218.016.8ea8

Способ производства хлебобулочных изделий для профилактического питания

Изобретение относится к пищевой промышленности, в частности к хлебопекарному производству, и может быть использовано для производства хлебобулочных изделий для профилактического питания. Способ производства хлебобулочного изделия включает приготовление теста, его брожение, разделку, расстойку и...
Тип: Изобретение
Номер охранного документа: 0002668670
Дата охранного документа: 02.10.2018
13.10.2018
№218.016.91f1

Способ получения лизоцимсодержащей биологически активной добавки

Изобретение относится к медицине, в частности к способу получения лизоцимсодержащей биологически активной добавки, включающему приемку и подготовку яиц, разделение содержимого яиц на белок и желток, внесение в белок соли поваренной концентрацией 0,4% и кислоты аскорбиновой концентрацией 7%,...
Тип: Изобретение
Номер охранного документа: 0002669349
Дата охранного документа: 10.10.2018
12.12.2018
№218.016.a5a1

Кристаллизатор непрерывного действия для получения чешуйчатого льда

Кристаллизатор непрерывного действия для получения чешуйчатого льда содержит основание, ванну для продукта, сальниковые узлы, ось барабана, приводное устройство, барабан, внутренний объем которого заполнен закрученной в спираль волнистой полиметаллической лентой переменной толщины....
Тип: Изобретение
Номер охранного документа: 0002674456
Дата охранного документа: 10.12.2018
13.12.2018
№218.016.a5ac

Способ приготовления желейного мармелада

Изобретение относится к пищевой промышленности, в частности к кондитерской, и может быть использовано для приготовления желейного мармелада на пектине. Способ приготовления желейного мармелада на основе крахмальной патоки включает приготовление водно-сахаро-пектинового раствора, внесение в него...
Тип: Изобретение
Номер охранного документа: 0002674594
Дата охранного документа: 11.12.2018
13.12.2018
№218.016.a5b1

Способ получения зернового хлеба

Изобретение относится к пищевой промышленности. Способ получения зернового хлеба включает замес теста из хлебопекарной смеси, дрожжей хлебопекарных прессованных, масла растительного и воды, разделку теста в формы, расстойку и выпечку. Тесто замешивают из хлебопекарной смеси, состоящей из сухого...
Тип: Изобретение
Номер охранного документа: 0002674593
Дата охранного документа: 11.12.2018
13.12.2018
№218.016.a63a

Способ производства ферментированного солода

Изобретение относится к солодовенной промышленности. В способе производства ферментированного солода предусматривается замачивание сырья, проращивание солода, ферментация и сушка. При этом в камеру подвяливания сушилки загружают смесь солода после ферментации с предварительно измельченным сухим...
Тип: Изобретение
Номер охранного документа: 0002674607
Дата охранного документа: 11.12.2018
13.12.2018
№218.016.a661

Способ производства флаксов для ахлоридного питания

Изобретение относится к пищевой промышленности, в частности к производству флаксов для ахлоридного питания. Семена льна коричневого предварительно замачивают в воде температурой 20-22˚С в течение 40 мин при соотношении гидромодуля 1:1,5. Вносят обогатители: порошок морской капусты в количестве...
Тип: Изобретение
Номер охранного документа: 0002674627
Дата охранного документа: 11.12.2018
Показаны записи 11-12 из 12.
06.07.2020
№220.018.2fb1

Состав и способ получения биодеградируемой термопластичной композиции

Настоящее изобретение относится к составу биодеградируемой термопластичной композиции и способу получения биодеградируемой термопластичной композиции. Состав биодеградируемой термопластичной композиции содержит: полипропилен 32-34 мас.%, крахмал 55-47 мас.%, карбонат кальция 4,5-8 мас.%,...
Тип: Изобретение
Номер охранного документа: 0002725606
Дата охранного документа: 03.07.2020
17.06.2023
№223.018.7f23

Композитный гидропонный субстрат

Изобретение относится к области растениеводства, в частности, к технологиям гидропоники, и может быть использовано для создания материала гидропонного субстрата, а также может быть использовано при получении бинарных композитов с высоким водопоглощением и влагоудержанием. Композитный...
Тип: Изобретение
Номер охранного документа: 0002773532
Дата охранного документа: 06.06.2022
+ добавить свой РИД