×
27.04.2019
219.017.3d08

Результат интеллектуальной деятельности: ПОЛИИМИДНЫЕ МЕМБРАНЫ С ВЫСОКОЙ ПРОНИЦАЕМОСТЬЮ: ПОВЫШЕНИЕ СЕЛЕКТИВНОСТИ К ГАЗАМ ПОСРЕДСТВОМ УФ-ОБРАБОТКИ

Вид РИД

Изобретение

№ охранного документа
0002686331
Дата охранного документа
25.04.2019
Аннотация: Изобретение относится к обработанной УФ-излучением полиимидной мембране, к способу ее получения и к способу отделения по меньшей мере одного газа из смеси с использованием такой мембраны. Обработанная УФ-излучением полиимидная мембрана выполнена из полиимидного полимера, имеющего нижеуказанную формулу, в которой m и n независимо представляют собой целые числа от 10 до 500 и находятся в соотношении от 1:10 до 10:1. Способ получения обработанной УФ-излучением полиимидной полимерной мембраны заключается в том, что вначале проводят реакцию конденсации пиромеллитового диангидрида (PMDA) со смесью 2,4,6-триметил-1,3-фенилендиамина (TMPDA) и 4,4’-метилен бис(2,6-диметиланилина) (TMMDA) в полярном растворителе с получением полиимидного полимера. Далее из полимера получают полиимидную полимерную мембрану. Затем обрабатывают полиимидную полимерную мембрану УФ-излучением. Способ отделения по меньшей мере одного газа из смеси заключается в том, что осуществляют контактирование смеси газов с одной стороной вышеуказанной полиимидной полимерной мембраны, приводящее к проникновению по меньшей мере одного газа через указанную мембрану. Затем удаляют с другой стороны полиимидной полимерной мембраны газовую композицию пермеата, имеющую в своем составе часть по меньшей мере одного газа, проникшего через мембрану. Смесь газов выбирают из группы, включающей смесь диоксида углерода и метана, смесь водорода и метана, смесь гелия и метана, смесь по меньшей мере одного летучего органического соединения и по меньшей мере одного атмосферного газа, смесь азота и водорода, смесь парафинов и олефинов. Изобретение позволяет получить мембрану, обладающую высокой проницаемостью. 3 н. и 4 з.п. ф-лы, 2 табл., 5 пр.

Притязание на приоритет

Для настоящего изобретения испрашивается приоритет в соответствии с заявкой на патент США № 14/497,353, поданной 26 сентября 2014, полное содержание которой включено в настоящий текст посредством ссылки.

Предпосылки создания изобретения

Мембраны, чаще всего применяемые для коммерческого разделения газов, представляют собой асимметричные полимерные мембраны и имеют тонкий непористый селективный поверхностный слой, который осуществляет разделение. Разделение основано на механизме растворения-диффузии. В этом механизме задействованы взаимодействия на молекулярном уровне между проникающим газом и полимером мембраны. Согласно модели растворения/диффузии, эффективность мембраны в разделении данной пары газов определяется двумя параметрами: коэффициент проницаемости (PA) и селективность (αA/B). PA представляет собой произведение потока газа и толщины селективного поверхностного слоя мембраны, деленное на разницу давлений с двух сторон мембраны. αA/B представляет собой соотношение коэффициентов проницаемости двух газов (αA/B = PA/PB), где PA это проницаемость более легко проходящего через мембрану газа, и PB это проницаемость менее легко проходящего через мембрану газа. Газы могут иметь высокие коэффициенты проницаемости, благодаря высокому коэффициенту растворения, высокому коэффициенту диффузии или благодаря высокому значению обоих коэффициентов. В целом, коэффициент диффузии уменьшается, а коэффициент растворения увеличивается с ростом размера молекул газа. В высокоэффективных полимерных мембранах желательными являются как высокая проницаемость, так и высокая селективность, поскольку высокая проницаемость уменьшает площадь мембраны, необходимой для обработки данного объема газа, тем самым снижая капитальные затраты на мембранные устройства, а более высокая селективность приводит к получению газа более высокой чистоты. Новые мембраны имеют высокую проницаемость, а селективность некоторых описанных мембран можно регулировать путем сшивания их под воздействием УФ-излучения.

Сущность изобретения

В настоящем изобретении описан полиимидный полимер и полиимидная мембрана, имеющие формулу

где m и n независимо представляют собой целые числа от 10 до 500 и находятся в соотношении от 1:10 до 10:1.

В некоторых вариантах осуществления настоящего изобретения полиимидная мембрана обработана УФ-излучением.

В настоящем изобретении описан также способ отделения по меньшей мере одного газа из смеси газов, включающий получение обработанной УФ-излучением полиимидной полимерной мембраны, имеющей формулу

где m и n независимо представляют собой целые числа от 10 до 500 и находятся в соотношении от 1:10 до 10:1; контактирование смеси газов с одной стороной указанной обработанной УФ-излучением ароматической полиимидной мембраны, приводящее к проникновению по меньшей мере одного газа через указанную мембрану; и удаление с другой стороны указанной полиимидной мембраны газовой композиции пермеата, имеющей в своем составе часть указанного по меньшей мере одного газа, проникшего через указанную мембрану

Подробное описание изобретения

Настоящее изобретение касается полиимидных газоразделяющих мембран, и более конкретно - нового класса полиимидных мембран, обладающих высокой проницаемостью. В частности, описана улучшенная полиимидная мембрана с проницаемостью по CO2 и H2 выше 430 Баррер, намного превышающей проницаемость коммерчески доступных полиимидных мембран. Данная проницаемость аналогична прошедшим термообработку полиимидам, описанным в патенте США 8,613,362 B2. Однако в данном случае для достижения такого высокого уровня проницаемости не требуется термообработка, которая может быть проблематичной при изготовлении мембран.

Хотя селективность разделения газов у высокопроницаемых полиимидов, описанных в настоящем изобретении, низка, ее можно значительно повысить с помощью УФ-обработки. Фактически, можно достичь и высокой проницаемости, и высокой селективности в разделении CO2/CH4 с использованием УФ-обработки, как показывают тесты с чистыми газами для мембран в виде плотных пленок, изготовленных из этих полиимидов. Такая чувствительность к УФ-свету также наблюдается у тонкопленочных композитных мембран, в которых описанный полиимид является селективным слоем. В патенте США 4,717,393 на имя Hayes, и в патенте США 7,485,173 на имя Liu с соавторами, описаны фотохимически сшитые ароматические полиимиды. В этих случаях необходима функциональная группа, сшиваемая под действием УФ-света, такая как карбонильная или сульфонильная группа. Однако описанные в настоящем изобретении высокопроницаемые полиимиды не содержат функциональных групп, способных к сшивке под воздействием УФ-света.

Описанные в настоящем изобретении полиимиды не содержат указанных карбонильных или сульфонильных функциональных групп. В патенте США 5,409,524 описан способ повышения селективности полимерных мембран, таких как полисульфоновые, поликарбонатные и полистирольные мембраны, в отсутствие карбонильных или сульфонильных групп, посредством УФ-обработки, но там необходимо нагревание мембраны до температуры в диапазоне 60-300°C. Кроме того, УФ и тепловая обработка полиимидов не были описаны в этом патенте. Однако нагрева для достижения высокой селективности в случае УФ-обработки полиимидов, описанных в настоящем изобретении, не требуется. В US 2006/0177740 Al описан полимер, полученный из пиромеллитового диангидрида (PMDA) и 3,3',5,5'-тетраметил-4,4'-метилен дианилина (TMMDA) в качестве мономеров. Указанный документ не включает полимеры, содержащие 2,4,6-триметил-фенилендиамин (TMPDA). Кроме того, данный полимер применялся для полиимидных матриксных электролитов в батареях, и не рассматривался для применения в качестве полимерной мембраны.

Мембраны, изготовленные в соответствии с настоящим изобретением, имеют приведенную ниже формулу.

где m и n независимо представляют собой целые числа от 10 до 500 и находятся в соотношении от 1:10 до 10:1.

Настоящее изобретение охватывает реакцию конденсации пиромеллитового диангидрида (PMDA) со смесью 2,4,6-триметил-1,3-фенилендиамина (TMPDA) и 4,4'-метилен бис(2,6-диметиланилина) (TMMDA) в полярном растворителе, таком как диметилацетамид (DMAc) или NMP, с образованием полиимида, описанного в настоящем изобретении. Описанная в настоящем изобретении реакция конденсации представляет собой двухстадийный процесс, включающий образование поли(амидокислоты) с последующим процессом химического имидирования в растворе. Уксусный ангидрид применяют в качестве дегидратирующего агента, а пиридин применяют в качестве катализатора имидирования в реакции химического имидирования в растворе. Типичное время реакции составляет 20 часов при 22°C. На второй стадии добавляют уксусный ангидрид, затем пиридин, и смесь нагревают при 95°C в течение 2 часов, после чего смесь оставляют охлаждаться до комнатной температуры. Полученную смесь затем применяют для изготовления полиимидной мембраны, которую впоследствии обрабатывают УФ-излучением, получая полиимидную мембрану с улучшенными свойствами.

Пример 1

Синтез полиимида 1: Поли(PMDA-TMPDA-TMMDA) (m = 2, n = 1)

Ароматический поли(пиромеллитовый диангидрид-2,4,6-триметил-1,3-фенилендиамин-4,4’-метилен бис(2,6-диметиланилин)) полиимид (поли(PMDA-TMPDA-TMMDA)) синтезировали из пиромеллитового диангидрида (PMDA, 3 экв), 2,4,6-триметил-1,3-фенилендиамина (TMPDA, 2 экв) и 4,4’-метилен бис(2,6-диметиланилина) (TMMDA, 1 экв) в N,N-диметилацетамиде (DMAc) в качестве полярного растворителя, двухстадийным способом, включающим образование полиамидокислоты с последующим процессом химического имидирования в растворе. Уксусную кислоту применяли в качестве дегидратирующего агента, а пиридин применяли в качестве катализатора имидирования в реакции химического имидирования в растворе.

Например, в сухую 2-литровую трехгорлую круглодонную колбу, снабженную механической мешалкой и обратным холодильником с вводом азота, загружали TMPDA (17,0 г, 2,00 экв), TMMDA(20,0 г, 1,00 экв) и безводный DMAc (380 г), и полученный раствор интенсивно перемешивали. Добавляли диангидрид, PMDA (44,9 г, 3,00 экв). Медленно добавляли дополнительное количество DMAc (130 г). Реакционную колбу герметично закрывали септой и перемешивали при 22°C в течение 20 часов. Медленно добавляли уксусный ангидрид (43,2 г) в вязкую реакционную смесь в течение 5 минут, затем пиридин (66,5 г) в один прием. Реакционную смесь нагревали при 95°C в течение 2,5 часов, после чего оставляли охлаждаться до комнатной температуры. При добавлении реакционной смеси в смесь изопропанол:ацетон (1:1), из реакционной смеси выпадал осадок в форме тонких белых волокон. Полученное белое твердое вещество нагревали в вакуумном шкафу два дня при 100°C. Полимер выделяли практически с количественным выходом.

Пример 2

Синтез полиимида 2: Поли(PMDA-TMPDA-TMMDA) (m = 1, n = 1)

Ароматический поли(пиромеллитовый диангидрид-2,4,6-триметил-1,3-фенилендиамин-4,4’-метилен бис(2,6-диметиланилин)) полиимид (поли(PMDA-TMPDA-TMMDA)) синтезировали из PMDA (2 экв), TMPDA (1 экв), и TMMDA (1 экв) в DMAc в качестве полярного растворителя, двухстадийным способом, включающим образование полиамидокислоты с последующим процессом химического имидирования в растворе. Уксусную кислоту применяли в качестве дегидратирующего агента, а пиридин применяли в качестве катализатора имидирования в реакции химического имидирования в растворе.

Например, в сухую 2-литровую трехгорлую круглодонную колбу, снабженную механической мешалкой и обратным холодильником с вводом азота, загружали TMPDA (30,0 г, 1,00 экв), TMMDA (50,8 г, 1,00 экв) и безводный DMAc (775 г), и полученный раствор интенсивно перемешивали. Добавляли диангидрид PMDA (89,8 г, 2,00 экв). Медленно добавляли дополнительное количество DMAc (130 г). Реакционную колбу герметично закрывали септой и перемешивали при 22°C в течение 20 часов. Медленно добавляли уксусный ангидрид (86,4 г) в вязкую реакционную смесь в течение 5 минут, затем пиридин (133 г) в один прием. Реакционную смесь нагревали при 95°C в течение 2,5 часов, после чего оставляли охлаждаться до комнатной температуры. При добавлении реакционной смеси в смесь изопропанол:ацетон (1:1), из реакционной смеси выпадал осадок в форме тонких белых волокон. Полученное белое твердое вещество нагревали в вакуумном шкафу два дня при 100°C. Полимер выделяли практически с количественным выходом.

Пример 3

Изготовление полиимидных полимерных мембран из поли(PMDA-TMPDA-TMMDA)

Полиимидную мембрану в виде плотных пленок готовили следующим образом: ароматический поли(PMDA-TMPDA-TMMDA) полиимид растворяли в N-метилпирролидоне (NMP, 18% полимера). Полученную смесь фильтровали, оставляли на ночь дегазироваться и наносили на чистую стеклянную пластину ракельным ножом, имеющим зазор 20 мил. Пленку на стеклянной пластине нагревали при 60°C в течение 6 часов и сушили в вакуумном шкафу при 180°C в течение 48 часов. Полученную пленку тестировали на разделение CO2/CH4 и H2/CH4 при 50°C и давлении чистого газа 689 кПа (100 фунт/кв.дюйм). Пленки также подвергали УФ-обработке при 254 нм на расстоянии 2 см в течение 10 минут при 50°C, и затем снова тестировали под давлением чистого газа. Полученные результаты представлены в таблице 1.

Таблица 1

Результаты теста на пропускание чистых газов через поли(PMDA-TMPDA-TMMDA) мембраны при разделении CO2/CH4 и H2/CH4 a

Мембранаb PCO2 (Баррер) PH2 (Баррер) αCO2/CH4 αH2/CH4
Полиимид-1 434,6 434,7 11,8 11,8
Полиимид-1-УФ 10 мин 114,6 342,8 33,7 100,8
Полиимид-2 436,3 483,0 10,4 11,5
Полиимид-2-УФ 10 мин 117,7 365,0 45,3 140,4

a PCO2, PCH4, и PH2 тестировали при 50°C и 690 кПа (100 фунт/кв.дюйм);

1 Баррер = 10-10см3 (STP)·см/см2·сек·см.рт.ст

b Полиимид 1: PMDA:TMPDA:TMMDA (3:2:1);

Полиимид 2: PMDA-TMPDA:TMMDA (2:1:1).

Пример 4

Изготовление полиимидной тонкопленочной композитной (TFC) мембраны

из поли(PMDA-TMPDA-TMMDA)

2 вес.%-ный раствор полимера Полиимид 1 готовили растворением 0,8 г полимера Полиимид 1, синтезированного в Примере 1, в смеси растворителей, состоящей из 19,6 г 1,2,3-трихлорпропана и 19,6 г дихлорметана. Полученный раствор фильтровали с применением 1-микронного фильтра для удаления всех нерастворившихся примесей и оставляли на ночь дегазироваться. Одну каплю раствора полимера Полиимид 1 наносили на поверхность чистой водяной бани. Раствор Полиимида 1 распределялся по поверхности воды с одновременным испарением растворителя, образуя тонкую полимерную пленку на поверхности воды. Полученную на поверхности воды тонкую полимерную пленку затем ламинировали на поверхность низкоселективной высокопроницаемой пористой поли(эфирсульфоновой) подложечной мембраны. Полученную TFC мембрану сушили при 70°C в течение 1 часа в термошкафу.

Пример 5

УФ-обработка TFC мембраны из Полиимида 1

УФ-обработанные TFC мембраны из Полиимида 1 готовили, подвергая мембрану обработке УФ-лампой с определенного расстояния и в течение периода времени, выбранных на основе целевых разделительных свойств. Например, одну обработанную УФ-излучением TFC мембрану из Полиимида 1 готовили из TFC мембраны из Полиимида 1, полученной в Примере 3, посредством обработки УФ-излучением с длиной волны 254нм, генерируемого УФ-лампой, с расстояния 10 см (3,94 дюйма) от поверхности мембраны до УФ-лампы, и время облучения составляло 10 минут. На поверхность слоя из Полиимида 1 на TFC мембране из Полиимида 1 наносили посредством погружения раствор силиконовой резины RTV615A/615B. Мембрану с нанесенным покрытием сушили в вытяжном шкафу при комнатной температуре в течение 30 минут и затем сушили при 70°C в течение 1 часа в термошкафу.

Таблица 2

Результаты проницаемости смеси газов для TFC мембран из Полиимида 1 и CO2/CH4

Мембрана PCO2/L (GPU) αCO2/CH4
Полиимид 1-TFC 178 7,0
Полиимид 1-TFC-УФ10 мин-2%RTV 13,4 15,8

Условия: Тестировали при 50°C, 6895 кПа (1000 фунт/кв.дюйм), 10% CO2/90% CH4;

Частные варианты осуществления

Хотя дальнейшее описание приведено для частных вариантов осуществления, следует понимать, что данное описание призвано проиллюстрировать, а не ограничить объем приведенного выше описания и приложенной формулы изобретения.

Первым вариантом осуществления настоящего изобретения является полиимидный полимер, имеющий формулу

где m и n независимо представляют собой целые числа от 10 до 500 и находятся в соотношении от 1:10 до 10:1. Вариантом осуществления настоящего изобретения является один, любой или все предшествующие варианты осуществления в данном абзаце для первого варианта осуществления настоящего изобретения, где соотношение m и n находится к диапазоне от 1:5 до 5:1. Вариантом осуществления настоящего изобретения является один, любой или все предшествующие варианты осуществления в данном абзаце для первого варианта осуществления настоящего изобретения, где полиимидная мембрана содержит полиимидный полимер, имеющий приведенную выше формулу. Вариантом осуществления настоящего изобретения является один, любой или все предшествующие варианты осуществления в данном абзаце для первого варианта осуществления настоящего изобретения, где полиимидный полимер обработан УФ-излучением.

Второй вариант осуществления настоящего изобретения представляет собой способ отделения по меньшей мере одного газа из смеси газов, включающий получение обработанной УФ-излучением полиимидной полимерной мембраны, содержащей полиимидный полимер, имеющий формулу

где m и n независимо представляют собой целые числа от 10 до 500 и находятся в соотношении от 1:10 до 10:1; контактирование смеси газов с одной стороной указанной обработанной УФ-излучением полиимидной полимерной мембраны, приводящее к проникновению по меньшей мере одного газа через указанную мембрану; и удаление с другой стороны указанной обработанной УФ-излучением полиимидной полимерной мембраны газовой композиции пермеата, имеющей в своем составе часть указанного по меньшей мере одного газа, проникшего через указанную мембрану. Вариантом осуществления настоящего изобретения является один, любой или все предшествующие варианты осуществления в данном абзаце для второго варианта осуществления настоящего изобретения, где смесь газов представляет собой смесь диоксида углерода и метана. Вариантом осуществления настоящего изобретения является один, любой или все предшествующие варианты осуществления в данном абзаце для второго варианта осуществления настоящего изобретения, где смесь газов представляет собой смесь водорода и метана. Вариантом осуществления настоящего изобретения является один, любой или все предшествующие варианты осуществления в данном абзаце для второго варианта осуществления настоящего изобретения, где смесь газов представляет собой смесь гелия и метана Вариантом осуществления настоящего изобретения является один, любой или все предшествующие варианты осуществления в данном абзаце для второго варианта осуществления настоящего изобретения, где смесь газов представляет собой смесь по меньшей мере одного летучего органического соединения и по меньшей мере одного атмосферного газа. Вариантом осуществления настоящего изобретения является один, любой или все предшествующие варианты осуществления в данном абзаце для второго варианта осуществления настоящего изобретения, где смесь газов представляет собой смесь азота и водорода. Вариантом осуществления настоящего изобретения является один, любой или все предшествующие варианты осуществления в данном абзаце для второго варианта осуществления настоящего изобретения, где смесь газов представляет собой смесь диоксида углерода, кислорода, азота, паров воды, сероводорода, гелия и метана. Вариантом осуществления настоящего изобретения является один, любой или все предшествующие варианты осуществления в данном абзаце для второго варианта осуществления настоящего изобретения, где обработанная УФ-излучением полиимидная полимерная мембрана содержит вещество, сильно адсорбирующее по меньшей мере один газ. Вариантом осуществления настоящего изобретения является один, любой или все предшествующие варианты осуществления в данном абзаце для второго варианта осуществления настоящего изобретения, где смесь газов представляет собой смесь парафинов и олефинов.

Третьим вариантом осуществления настоящего изобретения является способ получения полиимидной полимерной мембраны, включающий реакцию конденсации пиромеллитового диангидрида (PMDA) со смесью 2,4,6-триметил-1,3-фенилендиамина (TMPDA) и 4,4'-метилен бис(2,6-диметиланилина) (TMMDA) в полярном растворителе с получением полиимидного полимера; последующее изготовление полиимидной полимерной мембраны из полученного полиимидного полимера, и обработку полученной полиимидной полимерной мембраны УФ-излучением. Вариантом осуществления настоящего изобретения является один, любой или все предшествующие варианты осуществления в данном абзаце для третьего варианта осуществления настоящего изобретения, где полярный растворитель представляет собой диметилацетамид (DMAc) или N-метилпирролидон (NMP). Вариантом осуществления настоящего изобретения является один, любой или все предшествующие варианты осуществления в данном абзаце для третьего варианта осуществления настоящего изобретения, где указанная реакция конденсации представляет собой двухстадийный процесс, включающий формирование поли(амидокислоты) с последующей реакцией химического имидирования в растворе. Вариантом осуществления настоящего изобретения является один, любой или все предшествующие варианты осуществления в данном абзаце для третьего варианта осуществления настоящего изобретения, где уксусный ангидрид применяют в качестве дегидратирующего агента, а пиридин применяют в качестве катализатора имидирования в реакции химического имидирования в растворе.

Не вдаваясь в детали, авторы настоящего изобретения полагают, что с помощью изложенного выше описания квалифицированный специалист в данной области сможет в полной мере использовать настоящее изобретение и легко выявить существенные характеристики настоящего изобретения, не выходя за рамки его сути и объема, для внесения различных изменений и модификаций в настоящее изобретение и для его адаптации к различным областям и условиям применения. Поэтому описанные выше предпочтительные частные варианты осуществления следует понимать как иллюстративные и не ограничивающие каким-либо образом остальную часть описания, и следует понимать, что настоящее изобретение охватывает различные модификации и эквиваленты, входящие в объем формулы изобретения.

Выше в тексте все значения температур приведены в градусах Цельсия, а все соотношения и проценты приведены по весу, если не указано иное.


ПОЛИИМИДНЫЕ МЕМБРАНЫ С ВЫСОКОЙ ПРОНИЦАЕМОСТЬЮ: ПОВЫШЕНИЕ СЕЛЕКТИВНОСТИ К ГАЗАМ ПОСРЕДСТВОМ УФ-ОБРАБОТКИ
ПОЛИИМИДНЫЕ МЕМБРАНЫ С ВЫСОКОЙ ПРОНИЦАЕМОСТЬЮ: ПОВЫШЕНИЕ СЕЛЕКТИВНОСТИ К ГАЗАМ ПОСРЕДСТВОМ УФ-ОБРАБОТКИ
Источник поступления информации: Роспатент

Показаны записи 11-20 из 309.
27.08.2013
№216.012.638c

Селективный катализатор для конверсии ароматических углеводородов

Изобретение относится к каталитическим материалам. Описан агрегированный материал UZM-14, содержащий глобулярные агрегаты кристаллитов, имеющие каркас морденитного типа с каналами из 12-членных колец, объем мезопор по меньшей мере 0,10 см/г и среднюю длину кристаллитов параллельно направлению...
Тип: Изобретение
Номер охранного документа: 0002491121
Дата охранного документа: 27.08.2013
27.08.2013
№216.012.641f

Способ трансалкилирования

Изобретение относится к способу трансалкилирования сырьевого потока, содержащего C, C, C и C+-ароматические углеводороды для получения потока продукта трансалкилирования с повышенной концентрацией C-ароматических соединений по сравнению с их концентрацией в сырьевом потоке. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002491268
Дата охранного документа: 27.08.2013
27.08.2013
№216.012.6454

Способ и устройство для предварительного нагрева сырья с помощью охладителя отходящих газов

Изобретение относится к утилизации теплоты отходящих газов, отведенных из регенератора катализатора. Изобретение касается устройства для каталитической конверсии углеводородного сырья, содержащего реактор для осуществления контакта углеводородного сырья с катализатором с получением продуктов...
Тип: Изобретение
Номер охранного документа: 0002491321
Дата охранного документа: 27.08.2013
27.08.2013
№216.012.6455

Способ выделения п-ксилола из смеси c и c-ароматических углеводородов и устройство для его осуществления

Изобретение относится к способу выделения п-ксилола из сырьевого потока, содержащего С-ароматические углеводороды и, по меньшей мере, один С-ароматический углеводородный компонент. Способ включает: (a) введение в контакт первого адсорбента, содержащего Y-цеолит или X-цеолит, с сырьевым потоком...
Тип: Изобретение
Номер охранного документа: 0002491322
Дата охранного документа: 27.08.2013
10.10.2013
№216.012.72af

Интеграция способа конверсии оксигенатов в олефины с прямым синтезом диметилового эфира

Изобретение относится к двум вариантам способа использования продуктов синтеза диметилового эфира (DME) для конверсии оксигенатов в олефины. Один из вариантов включает стадии: извлечения из реактора DME исходящего из реактора DME потока, который включает DME, воду и метанол; отделения в...
Тип: Изобретение
Номер охранного документа: 0002495016
Дата охранного документа: 10.10.2013
20.10.2013
№216.012.7629

Полученное из биомассы пиролизное масло с низким содержанием металлов и способы его получения

Изобретение относится к биотопливам, способам их получения. Способ (10) получения произведенного из биомассы пиролизного масла с низким содержанием металлов включает стадии: контактирования полученного из биомассы пиролизного масла, содержащего металлы, с кислотной ионообменной смолой, имеющей...
Тип: Изобретение
Номер охранного документа: 0002495909
Дата охранного документа: 20.10.2013
10.11.2013
№216.012.7d7e

Распределительное устройство для диспергирования углеводородных соединений во флюидизированном потоке катализатора

Изобретение относится к устройству для инжектирования сырья в дисперсию перемещающихся частиц катализатора в реакторе. Устройство содержит: множество внешних трубопроводов, каждый из которых на выходном и входном концах имеет наконечники, находящиеся в жидкостной связи с первым жидким сырьем,...
Тип: Изобретение
Номер охранного документа: 0002497799
Дата охранного документа: 10.11.2013
10.11.2013
№216.012.7e03

Адсорбенты без связующего и их применение для адсорбционного выделения пара-ксилола

Изобретение относится к способу выделения пара-ксилола из смеси, содержащей по меньшей мере один другой С алкилароматический углеводород. При этом способ включает введение в контакт в условиях адсорбции указанной смеси с адсорбентом без связующего, содержащим цеолит Х и имеющим содержание воды...
Тип: Изобретение
Номер охранного документа: 0002497932
Дата охранного документа: 10.11.2013
20.11.2013
№216.012.823a

Композиция пека

Изобретение касается композиции пека, пригодной для транспортирования, содержащей углеводородный материал, кипящий выше 538°C, включающей не больше чем 30 вес.% вакуумного газойля, 1-20 вес.% органического остатка, не растворимого в толуоле, и имеющей концентрацию водорода не больше чем 7,3...
Тип: Изобретение
Номер охранного документа: 0002499014
Дата охранного документа: 20.11.2013
27.11.2013
№216.012.84a1

Алюмосиликатный цеолит uzm-37

Настоящее изобретение относится к семейству алюмосиликатных цеолитов, способу получения цеолитов и способу превращения углеводорода. Описано новое семейство микропористых кристаллических алюмосиликатных цеолитов, имеющих пространственный каркас, по меньшей мере, из тетраэдрических блоков AlO и...
Тип: Изобретение
Номер охранного документа: 0002499631
Дата охранного документа: 27.11.2013
Показаны записи 1-2 из 2.
20.03.2015
№216.013.3388

Микропористые uzm-5 цеолитные неорганические мембраны для разделения газов паров и жидкостей

Группа изобретений раскрывает микропористые UZM-5 цеолитные мембраны, способы их получения и способы разделения газов, паров и жидкостей с их использованием. Микропористые UZM-5 цеолитные мембраны с небольшими порами получают двумя способами. Один из способов включает кристаллизацию in situ...
Тип: Изобретение
Номер охранного документа: 0002544667
Дата охранного документа: 20.03.2015
10.07.2015
№216.013.6224

Полиимидные газоразделительные мембраны

В изобретении раскрыт новый тип полиимидных мембран с высокими проницаемостями и высокими селективностями в отношении разделения газов, а конкретно, и в отношении вариантов разделения CO/CH и H/CH. В отношении разделения CO/CH полиимидные мембраны имеют пропускающую способность по CO, равную 50...
Тип: Изобретение
Номер охранного документа: 0002556666
Дата охранного документа: 10.07.2015
+ добавить свой РИД