×
27.04.2019
219.017.3cdf

Результат интеллектуальной деятельности: ФОТОЭЛЕКТРИЧЕСКИЙ СПОСОБ ОПРЕДЕЛЕНИЯ СРЕДНЕЙ КОНЦЕНТРАЦИИ И СРЕДНЕГО РАЗМЕРА ЧАСТИЦ ПЫЛИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к измерительной технике. Фотоэлектрический способ определения среднего размера и средней концентрации частиц пыли включает преобразование импульсного напряжения в световой поток, зондирование области исследуемой среды световым пучком, разделение светового потока, преобразование данных потоков в электрические сигналы. Часть входного светового потока отводится на первый фотоприемник, сигнал которого пропорционален интенсивности пучка света на входе в исследуемую среду, а вторая часть входного светового потока после прохождения через исследуемую среду разделяется на два субпотока. Первый субпоток поступает на ПЗС-матрицу, в которой по количеству засвеченных пикселов определяется площадь поперечного сечения пучка света, прошедшего через исследуемую среду, а второй субпоток поступает на второй фотоприемник, значение сигнала которого пропорционально интенсивности пучка света, прошедшего через исследуемую среду, измеряется путь прохождения луча через исследуемую среду лазерным дальномером, а полученные сигналы оцифровываются и поступают в ЭВМ, где производится вычисление значений измеряемых параметров. Управление процессами осуществляется ЭВМ синхронно и циклично по сигналу запуска. Изобретение позволяет получить более высокую точность измерения средней концентрации и средних размеров частиц. 2 ил.

Изобретение относится к измерительной технике.

Промышленная применимость изобретения заключается в определении средней концентрации и среднего размера частиц пыли и, в свою очередь, общей доли респирабельной фракции пыли, вызывающей профессиональные легочные заболевания рабочих.

Известен оптический пылемер (Пат. России № 2095792, кл. МПК G01N21/85, опубл. 10.11.1997) для непрерывного измерения запыленности газов. Принцип работы устройства заключается в следующем: в оптическом пылемере первый излучатель расположенный перед рабочей камерой, формирует измерительный канал и оптически связан с фотоприемником через защитные окна рабочей камеры, второй излучатель, расположенный за рабочей камерой, формирует контрольный канал и оптически связан с фотоприемником, третий излучатель расположен внутри устройства за рабочей камерой и формирует дополнительный контрольный канал и оптически связан с фотоприемником через защитное окно. При поочерёдном снятии показаний со всех излучателей определяется уровень запылённости в измерительном канале и сравнивается с данными, полученными с контрольных каналов.

Недостатком указанного способа является низкая точность измерений.

Известен способ определения дисперсной среды (Шифрин К.С, Мороз Б.З., Сахаров А.Н. ”Определение характеристик дисперсной среды по данным её прозрачности” – ДАН СССР, 1971, т. 199, № 3 с 581-598), на основе которого составлено регистрационное устройство для измерения методом флюктуаций (Шифрин К.С”Введение в оптику океана ”,Санкт-Петербург :”Гидрометеоиздат”, 1983 - с. 220-227) выбранное в качестве прототипа.

Принцип работы по указанному способу заключается в следующем. Параллельный пучок от источника света, промодулированный модулятором, проходит сквозь смотровые окна, кюветы с исследуемой средой и попадает на светоделительное зеркало, которое пропускает центральную часть пучка, а остальной свет посылает на фотоприёмник; из прошедшего света диафрагмой формируется узкий пучок, который поступает на фотоприёмник. С фотоприемников сигналы поступают на блок, в котором происходит электрическое выравнивание и вычитание сигналов, затем разностный сигнал подаётся на усилитель и далее на синхронный детектор, опорный сигнал на который поступает от фотодиода. Последний освещается светом, промодулированным модулятором. Спектр флюктуаций регистрируется на записывающем блоке.

Недостатком указанного способа является низкая точность измерений среднего размера и средней концентрации частиц пыли.

Технической задачей предлагаемого изобретения является повышение точности измерений среднего размера и средней концентрации частиц пыли.

Поставленная задача решается тем, что фотоэлектрический способ определения среднего размера и средней концентрации частиц пыли, включающий преобразование импульсного напряжения в световой поток, зондирование области исследуемой среды световым пучком, разделение светового потока, преобразование данных потоков в электрические сигналы, для повышения точности измерений часть входного светового потока отводится на первый фотоприемник, сигнал которого пропорционален интенсивности пучка света на входе в исследуемую среду, а вторая часть входного светового потока после прохождения через исследуемую среду разделяется на два субпотока, причем первый субпоток поступает на ПЗС-матрицу, в которой по количеству засвеченных пикселов определяется площадь поперечного сечения пучка света, прошедшего через исследуемую среду, а второй субпоток поступает на второй фотоприемник, значение сигнала которого пропорционально интенсивности пучка света, прошедшего через исследуемую среду, так же измеряется путь прохождения луча через исследуемую среду лазерным дальномером, а полученные сигналы оцифровываются и поступают в электро-вычислительную машину (ЭВМ), где по производится вычисление значений измеряемых параметров, при этом управление процессами осуществляется ЭВМ синхронно и циклично по сигналу запуска.

На фиг. 1 изображено изменение специальной функции, связывающей дисперсию с оптической толщиной системы и средним числом частиц в просвечиваемом объеме.

На фиг. 2 изображена блок-схема устройства, работающего по данному способу.

Рассмотрим основу способа - метод флюктуаций. Измерение прозрачности позволяет определить оптическую толщину системы. Если частиц в пучке много, то прозрачность системы испытывает заметные флюктуации. Эти флюктуации вызваны случайными перемещениями частиц, при этом частицы по разному перекрывают друг друга. Во флюктуациях содержится ценная информация о свойствах изучаемой дисперсной системы. Дисперсия прозрачности, помимо толщины системы зависит непосредственно от числа частиц в изучаемом объекте, так что одновременное измерение прозрачности и дисперсии среды даёт нам возможность определения как среднего размера, так и концентрации частиц.

В ходе моделирования с помощью теоремы Робинса для дисперсной среды, состоящей из одинаковых частиц сферической формы, получены проекции поперечника ослабления всех частиц, находящихся в освещенном объеме, на поперечное сечение падающего светового пучка. В результате данного моделирования определены следующие выражения для метода флюктуаций.

Средний радиус частиц:

, (1)

где: S0 - средний поперечник ослабления света частицей.

Средний поперечник ослабления света частицей, имеющий размерность площади:

(2)

где: D – дисперсия оптического сигнала;

S – площадь поперечного сечения пучка света;

– интенсивность падающего пучка света;

τ – оптическая толщина системы;

φ(τ) – специальная функция, связывающая дисперсию с оптической толщиной системы и средним числом частиц в просвечиваемом объеме (фиг. 1).

Дисперсия оптического сигнала (определяется на основании статистического анализа результатов многократных измерений):

, (3)

где: – средняя интенсивность прошедшего через среду параллельного пучка света,

Ii - интенсивность прошедшего через среду параллельного пучка света при i-м измерении,

N – количество измерений интенсивности прошедшего через среду параллельного пучка света.

Средняя интенсивность прошедшего через среду параллельного пучка света:

. (4)

Оптическая толщина системы определяется с помощью формулы:

. (5)

Средняя концентрация частиц:

, (6)

где: – длина пути света в исследуемой среде.

Анализ выражений (1)-(6) показывает, что для расчета значений среднего размера частиц пыли и их средней концентрации необходимо произвести серию измерений следующих параметров:

- интенсивности падающего пучка света, т.е. интенсивности изучения на входе в исследуемую среду;

- интенсивности пучка света, прошедшего через исследуемую среду;

- площади поперечного сечения пучка света;

- длины пути света в исследуемой среде.

Устройство, работающее по данному способу, содержит лазерный излучатель 1, отражатель 2, два светоделительных зеркала 3, 8, две диафрагмы 4, 7, два фотоприемника 5, 9, три аналого-цифровых преобразователя 6, 12, 13, лазерный дальномер 10, ПЗС-матрицу 11, ЭВМ 14.

Конструктивно оптический пылемер состоит из передающего и приемного блоков. В состав передающего блока входят: лазерный излучатель 1, отражатель 2, светоделительное зеркало 3, диафрагмы 4 и 7, фотоприемник 5, аналого-цифровой преобразователь 6. Назначение передающего блока – создать регулируемый зондирующий световой поток и измерить интенсивность этого потока на выходе блока. Приемный блок состоит из светоделительного зеркала 8, фотоприемника 9, лазерного дальномера 10, ПЗС-матрицы 11, аналого-цифровых преобразователей 12 и 13, ЭВМ 14.

Приемный блок выполняет следующие функции:

– измерение длины светового луча в исследуемом объёме;

- измерение интенсивности и площади зондирующего светового потока, прошедшего через исследуемый объем воздуха;

- расчет по формулам (1) – (6) значения среднего размера частиц пыли и их средней концентрации.

Процесс измерения оптическим пылемером состоит из трех этапов.

На первом этапе от ЭВМ 14 подается запускающий сигнал на лазерный дальномер 10, который измеряет расстояние до отражателя 2, находящемся в передающем блоке. Положение лазерного дальномера 10 в приемном блоке отрегулировано так, чтобы расстояние до отражателя 2 равнялось расстоянию между центрами светоделительных зеркал 3 и 8. Таким образом, информация о длине пути в исследуемой среде поступает от лазерного дальномера 10 в ЭВМ 14.

На втором этапе производится синхронное циклическое измерение следующих параметров:

- интенсивности падающего пучка света, т.е. интенсивности изучения на входе в исследуемую среду;

- интенсивности пучка света, прошедшего через исследуемую среду;

- площади поперечного сечения пучка света.

Лазерный излучатель 1 постоянно генерирует монохроматический световой поток, который с помощью светоделительного зеркала 3 разделяется на два субпотока.

Первый субпоток, полученный за счет отражения от светоделительного зеркала 3, через диафрагму 4 поступает на фотоприемник 5. Считывание информации с фотоприемника 5 происходит в момент, когда от ЭВМ 14 поступит запускающий сигнал в аналого-цифровой преобразователь 6. Считанные значения, пропорциональные интенсивности пучка света на входе в исследуемую среду, записываются в память ЭВМ 14. Синхронность процесса измерения достигается тем, что на аналого-цифровые преобразователи 6, 12, 13 сигнал запуска в каждом цикле измерения поступает от ЭВМ 14 одновременно.

Второй субпоток, который представляет собой часть светового потока лазерного излучателя 1, прошедшего через светоделительное зеркало 3 и диафрагму 7, после прохождения по исследуемому объему воздуха поступает на светоделительное зеркало 8. Часть второго субпотока, прошедшего через светоделительное зеркало 8 проецируется на ПЗС-матрицу 11. Информация с ПЗС-матрицы 11 поступает в аналого-цифровой преобразователь 12, а затем в ЭВМ 14, где по количеству засвеченных пикселов ПЗС-матрицы 11 определяется - площадь поперечного сечения пучка света, прошедшего через исследуемую среду. Часть второго субпотока, отраженного от светоделительного зеркала 8, поступает на фотоприемник 9. Аналоговый сигнал с выхода фотоприемника 9, значение которого пропорционально интенсивности пучка света, прошедшего через исследуемую среду, преобразуется в аналого-цифровом преобразователе 13 и в дискретной форме поступает в ЭВМ 14. Измерение интенсивности пучка света, прошедшего через исследуемую среду производится для того, чтобы по формулам (3) и (4) определить дисперсию оптического сигнала.

На третьем этапе на основании измеренных данных производится расчет значений среднего размера частиц пыли и их средней концентрации. Так как расчет дисперсии оптического сигнала производится по статистическим данным, то необходимо многократное измерение интенсивности пучка света, прошедшего через исследуемую среду. Это достигается за счет того, что аналого-цифровой преобразователь имеет циклический характер работы. ЭВМ 14 синхронизирует циклы аналого-цифровых преобразователей 6, 12 13 и обеспечивает заданное количество циклов их работы, по истечении которых рассчитываются средние значения интенсивности падающего пучка света и интенсивности пучка света, прошедшего через исследуемую среду. Затем, пользуясь формулами (1)-(3) и (5)-(6) ЭВМ рассчитывает значения среднего размера частиц пыли и их. средней концентрации.

ЭВМ при работе в циклическом режиме в каждом цикле выполняет следующие действия:

1) определяет площадь поперечного сечения пучка света;

2) организует N циклов, состоящих из следующих команд:

- подает на аналого-цифровые преобразователи 6,12 и 13 сигнал запуска,

- получает сигналов с аналого-цифровых преобразователей,

- записывает полученные данные в массивы памяти.

3) рассчитывает среднее значение интенсивности падающего пучка света;

4) рассчитывает среднее значение интенсивности пучка света, прошедшего через исследуемую среду;

5) рассчитывает дисперсию оптического сигнала;

6) рассчитывает оптическую толщину системы;

7) определяет значение специальной функции, связывающей дисперсию с оптической толщиной системы и средним числом частиц в просвечиваемом объеме;

8) рассчитывает средний поперечник ослабления света частицей;

9) рассчитывает средний радиус частиц;

10) рассчитывает среднюю концентрацию частиц;

11) выводит значения среднего радиуса частиц и средней концентрации частиц.

Тарировка оптического пылемера производится в две стадии.

На первой стадии обеспечивается равенство показаний лазерного дальномера длине пути света в исследуемой среде. Для этого передающий и приемный блоки размещают на заданном расстоянии друг от друга. Это расстояние замеряют штангенциркулем, а лазерный дальномер, закрепленный на рейке в приемном блоке, перемещают в положение, когда показания обоих приборов будет совпадать.

На второй стадии производится определение тарировочных коэффициентов при измерении общей концентрации и среднего размера частиц пыли. Для этого в замкнутом ограниченном объёме турбулентного воздуха создаётся облако пыли с заданными параметрами, куда помещают передающий и приемный блоки оптико-электронного пылемера. Затем производят измерение средней концентрации и среднего размера частиц пыли и вычисляют значения тарировочных коэффициентов путем деления фактического значения параметра на его измеренное значение. Тарировочные коэффициенты добавляют в формулы (1) и (6).

Таким образом, рассмотренный способ, в отличие от известных, позволяет получить более высокую точность измерения средней концентрации и размеров частиц. Средний размер частиц пыли позволяет определять уровень респирабельной фракции и прогнозировать возникновение профессиональных заболеваний на различных производствах в зависимости от полученной организмом пылевой нагрузки.

Фотоэлектрический способ определения среднего размера и средней концентрации частиц пыли, включающий преобразование импульсного напряжения в световой поток, зондирование области исследуемой среды световым пучком, разделение светового потока, преобразование данных потоков в электрические сигналы, отличающийся тем, что часть входного светового потока отводится на первый фотоприемник, сигнал которого пропорционален интенсивности пучка света на входе в исследуемую среду, а вторая часть входного светового потока после прохождения через исследуемую среду разделяется на два субпотока, причем первый субпоток поступает на ПЗС-матрицу, в которой по количеству засвеченных пикселов определяется площадь поперечного сечения пучка света, прошедшего через исследуемую среду, а второй субпоток поступает на второй фотоприемник, значение сигнала которого пропорционально интенсивности пучка света, прошедшего через исследуемую среду, так же измеряется путь прохождения луча через исследуемую среду лазерным дальномером, а полученные сигналы оцифровываются и поступают в электро-вычислительную машину, где производится вычисление значений измеряемых параметров, при этом управление процессами осуществляется электро-вычислительной машиной синхронно и циклично по сигналу запуска.
ФОТОЭЛЕКТРИЧЕСКИЙ СПОСОБ ОПРЕДЕЛЕНИЯ СРЕДНЕЙ КОНЦЕНТРАЦИИ И СРЕДНЕГО РАЗМЕРА ЧАСТИЦ ПЫЛИ
ФОТОЭЛЕКТРИЧЕСКИЙ СПОСОБ ОПРЕДЕЛЕНИЯ СРЕДНЕЙ КОНЦЕНТРАЦИИ И СРЕДНЕГО РАЗМЕРА ЧАСТИЦ ПЫЛИ
Источник поступления информации: Роспатент

Показаны записи 51-60 из 186.
04.04.2018
№218.016.350e

Измерительный мост с повышенным быстродействием

Изобретение относится к области измерительной техники и может быть использовано в датчиковых системах для преобразования сигналов сенсоров (ускорения, давления, радиации и т.п.) в напряжение. Технический результат - повышение быстродействия. Измерительный мост с повышенным быстродействием...
Тип: Изобретение
Номер охранного документа: 0002645867
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.36b2

Асинхронный пиковый детектор

Изобретение относится к области измерительной техники. Технический результат заключается в повышении надежности асинхронного пикового детектора в режиме разряда запоминающих конденсаторов. Асинхронный пиковый детектор содержит аналоговый вход (1) и аналоговый выход (2), первый (3) прецизионный...
Тип: Изобретение
Номер охранного документа: 0002646371
Дата охранного документа: 02.03.2018
10.05.2018
№218.016.47a7

Способ определения параметров взвешенных частиц

Использование: в технике измерений, при определении параметров взвешенных частиц. Способ определения параметров взвешенных частиц, сущность которого заключается в измерении перемещения частиц, находящихся в плоскости сечения, за фиксированный интервал времени в измерительной плоскости,...
Тип: Изобретение
Номер охранного документа: 0002650753
Дата охранного документа: 17.04.2018
10.05.2018
№218.016.4896

Дифференциальный усилитель токов

Изобретение относится к устройствам усиления широкополосных сигналов. Технический результат заключается в повышении коэффициента усиления по току ДУТ при сохранении у него опции rail-to-rail. Дифференциальный усилитель токов содержит первый, второй, третий и четвертый дополнительные...
Тип: Изобретение
Номер охранного документа: 0002651221
Дата охранного документа: 18.04.2018
10.05.2018
№218.016.4d3d

Быстродействующий дифференциальный операционный усилитель

Изобретение относится к области радиотехники и связи. Технический результат заключается в повышении максимальной скорости нарастания выходного напряжения при работе входных транзисторов ОУ на основе трех токовых зеркал с микроамперными статическими токами. Технический результат достигается за...
Тип: Изобретение
Номер охранного документа: 0002652504
Дата охранного документа: 26.04.2018
09.06.2018
№218.016.5ba5

Устройство определения параметров взвешенных частиц

Изобретение относится к области для определения параметров взвешенных частиц. Устройство определения параметров взвешенных частиц содержит воздуховод, лазерный излучатель, объектив, матрицу ПЗС для регистрации и обработки не менее двух изображений плоской области потока частиц, «вырезаемой»...
Тип: Изобретение
Номер охранного документа: 0002655728
Дата охранного документа: 29.05.2018
09.06.2018
№218.016.5d90

Способ гигротермической обработки зерна овса

Способ включает увлажнение зерна влажным насыщенным паром, получаемым внутри камеры путем нагрева воды, находящейся в нижней части камеры до температуры 60-80°С при остаточном давлении в ней 0,03-0,05 МПа. Увлажнение заканчивают при достижении остаточного давления 0,06-0,08 МПа. Способ...
Тип: Изобретение
Номер охранного документа: 0002656344
Дата охранного документа: 05.06.2018
09.06.2018
№218.016.5f90

Arc-фильтр нижних частот с независимой настройкой основных параметров

Изобретение относится к радиотехнике и связи и может быть использовано в качестве интерфейса для согласования источника сигнала, например, с аналого-цифровыми преобразователями различного функционального назначения. Технический результат: создание схемы ARC-фильтра нижних частот, которая...
Тип: Изобретение
Номер охранного документа: 0002656728
Дата охранного документа: 06.06.2018
25.06.2018
№218.016.667b

Дифференциальный преобразователь "напряжение-ток" с широким диапазоном линейной работы

Изобретение относится к области электроники и радиотехники и может быть использовано в качестве широкодиапазонного устройства преобразования входного дифференциального напряжения в пропорциональный выходной ток. Технический результат: уменьшение погрешности преобразования входного напряжения...
Тип: Изобретение
Номер охранного документа: 0002658818
Дата охранного документа: 22.06.2018
03.07.2018
№218.016.6a14

Быстродействующий дифференциальный операционный усилитель

Изобретение относится к области радиотехники и аналоговой микроэлектроники и может быть использовано в различных быстродействующих интерфейсах, устройствах преобразования сигналов. Технический результат: повышение на 1-2 порядка максимальной скорости нарастания выходного напряжения при работе...
Тип: Изобретение
Номер охранного документа: 0002659476
Дата охранного документа: 02.07.2018
Показаны записи 21-26 из 26.
10.05.2018
№218.016.4f3a

Способ определения распределения взвешенных частиц по массе

Изобретение относится к технике измерений, в частности к оптическим методам контроля, и может использоваться в электронной и химической промышленности, в медицине, биологии, экологии, порошковой металлургии и других областях науки и техники, связанных с определением параметров взвешенных...
Тип: Изобретение
Номер охранного документа: 0002652654
Дата охранного документа: 28.04.2018
09.06.2018
№218.016.5ba5

Устройство определения параметров взвешенных частиц

Изобретение относится к области для определения параметров взвешенных частиц. Устройство определения параметров взвешенных частиц содержит воздуховод, лазерный излучатель, объектив, матрицу ПЗС для регистрации и обработки не менее двух изображений плоской области потока частиц, «вырезаемой»...
Тип: Изобретение
Номер охранного документа: 0002655728
Дата охранного документа: 29.05.2018
20.06.2019
№219.017.8da7

Оптический пылемер

Пылемер может быть использован для управления вентиляционным оборудованием, а также для определения общей доли респирабельной фракции пыли, вызывающей профессиональные легочные заболевания. Пылемер содержит источник света, два светоделительных зеркала, две диафрагмы, два фотоприемника,...
Тип: Изобретение
Номер охранного документа: 0002691978
Дата охранного документа: 19.06.2019
31.07.2020
№220.018.3a42

Система электроснабжения робота

Изобретение относится к области электротехники, в частности к системам электроснабжения робота, включающая в себя солнечную фотоэлектрическую установку. Технический результат заключается в расширении функциональных возможностей системы электроснабжения робота и в том числе в обеспечении ее...
Тип: Изобретение
Номер охранного документа: 0002727967
Дата охранного документа: 28.07.2020
17.06.2023
№223.018.8059

Устройство для испытания манжетного уплотнения

Использование: в технике измерений, для контроля рабочих характеристик эластомерных уплотнений, например манжетных. Сущность: устройство для испытания манжетного уплотнения, установленного в заполненной электропроводящей жидкостью полости корпуса, снабженное выходящими на поверхность контакта...
Тип: Изобретение
Номер охранного документа: 0002761769
Дата охранного документа: 13.12.2021
17.06.2023
№223.018.8078

Способ испытания манжетных уплотнений

Изобретение относится к области измерительной техники и может быть использовано для контроля рабочих характеристик эластомерных уплотнений, например манжетных, широко применяемых в различных отраслях техники (машиностроении, автомобиле- и тракторостроении, авиации и т.д.). Сущность изобретения...
Тип: Изобретение
Номер охранного документа: 0002761765
Дата охранного документа: 13.12.2021
+ добавить свой РИД