×
27.04.2019
219.017.3cdf

Результат интеллектуальной деятельности: ФОТОЭЛЕКТРИЧЕСКИЙ СПОСОБ ОПРЕДЕЛЕНИЯ СРЕДНЕЙ КОНЦЕНТРАЦИИ И СРЕДНЕГО РАЗМЕРА ЧАСТИЦ ПЫЛИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к измерительной технике. Фотоэлектрический способ определения среднего размера и средней концентрации частиц пыли включает преобразование импульсного напряжения в световой поток, зондирование области исследуемой среды световым пучком, разделение светового потока, преобразование данных потоков в электрические сигналы. Часть входного светового потока отводится на первый фотоприемник, сигнал которого пропорционален интенсивности пучка света на входе в исследуемую среду, а вторая часть входного светового потока после прохождения через исследуемую среду разделяется на два субпотока. Первый субпоток поступает на ПЗС-матрицу, в которой по количеству засвеченных пикселов определяется площадь поперечного сечения пучка света, прошедшего через исследуемую среду, а второй субпоток поступает на второй фотоприемник, значение сигнала которого пропорционально интенсивности пучка света, прошедшего через исследуемую среду, измеряется путь прохождения луча через исследуемую среду лазерным дальномером, а полученные сигналы оцифровываются и поступают в ЭВМ, где производится вычисление значений измеряемых параметров. Управление процессами осуществляется ЭВМ синхронно и циклично по сигналу запуска. Изобретение позволяет получить более высокую точность измерения средней концентрации и средних размеров частиц. 2 ил.

Изобретение относится к измерительной технике.

Промышленная применимость изобретения заключается в определении средней концентрации и среднего размера частиц пыли и, в свою очередь, общей доли респирабельной фракции пыли, вызывающей профессиональные легочные заболевания рабочих.

Известен оптический пылемер (Пат. России № 2095792, кл. МПК G01N21/85, опубл. 10.11.1997) для непрерывного измерения запыленности газов. Принцип работы устройства заключается в следующем: в оптическом пылемере первый излучатель расположенный перед рабочей камерой, формирует измерительный канал и оптически связан с фотоприемником через защитные окна рабочей камеры, второй излучатель, расположенный за рабочей камерой, формирует контрольный канал и оптически связан с фотоприемником, третий излучатель расположен внутри устройства за рабочей камерой и формирует дополнительный контрольный канал и оптически связан с фотоприемником через защитное окно. При поочерёдном снятии показаний со всех излучателей определяется уровень запылённости в измерительном канале и сравнивается с данными, полученными с контрольных каналов.

Недостатком указанного способа является низкая точность измерений.

Известен способ определения дисперсной среды (Шифрин К.С, Мороз Б.З., Сахаров А.Н. ”Определение характеристик дисперсной среды по данным её прозрачности” – ДАН СССР, 1971, т. 199, № 3 с 581-598), на основе которого составлено регистрационное устройство для измерения методом флюктуаций (Шифрин К.С”Введение в оптику океана ”,Санкт-Петербург :”Гидрометеоиздат”, 1983 - с. 220-227) выбранное в качестве прототипа.

Принцип работы по указанному способу заключается в следующем. Параллельный пучок от источника света, промодулированный модулятором, проходит сквозь смотровые окна, кюветы с исследуемой средой и попадает на светоделительное зеркало, которое пропускает центральную часть пучка, а остальной свет посылает на фотоприёмник; из прошедшего света диафрагмой формируется узкий пучок, который поступает на фотоприёмник. С фотоприемников сигналы поступают на блок, в котором происходит электрическое выравнивание и вычитание сигналов, затем разностный сигнал подаётся на усилитель и далее на синхронный детектор, опорный сигнал на который поступает от фотодиода. Последний освещается светом, промодулированным модулятором. Спектр флюктуаций регистрируется на записывающем блоке.

Недостатком указанного способа является низкая точность измерений среднего размера и средней концентрации частиц пыли.

Технической задачей предлагаемого изобретения является повышение точности измерений среднего размера и средней концентрации частиц пыли.

Поставленная задача решается тем, что фотоэлектрический способ определения среднего размера и средней концентрации частиц пыли, включающий преобразование импульсного напряжения в световой поток, зондирование области исследуемой среды световым пучком, разделение светового потока, преобразование данных потоков в электрические сигналы, для повышения точности измерений часть входного светового потока отводится на первый фотоприемник, сигнал которого пропорционален интенсивности пучка света на входе в исследуемую среду, а вторая часть входного светового потока после прохождения через исследуемую среду разделяется на два субпотока, причем первый субпоток поступает на ПЗС-матрицу, в которой по количеству засвеченных пикселов определяется площадь поперечного сечения пучка света, прошедшего через исследуемую среду, а второй субпоток поступает на второй фотоприемник, значение сигнала которого пропорционально интенсивности пучка света, прошедшего через исследуемую среду, так же измеряется путь прохождения луча через исследуемую среду лазерным дальномером, а полученные сигналы оцифровываются и поступают в электро-вычислительную машину (ЭВМ), где по производится вычисление значений измеряемых параметров, при этом управление процессами осуществляется ЭВМ синхронно и циклично по сигналу запуска.

На фиг. 1 изображено изменение специальной функции, связывающей дисперсию с оптической толщиной системы и средним числом частиц в просвечиваемом объеме.

На фиг. 2 изображена блок-схема устройства, работающего по данному способу.

Рассмотрим основу способа - метод флюктуаций. Измерение прозрачности позволяет определить оптическую толщину системы. Если частиц в пучке много, то прозрачность системы испытывает заметные флюктуации. Эти флюктуации вызваны случайными перемещениями частиц, при этом частицы по разному перекрывают друг друга. Во флюктуациях содержится ценная информация о свойствах изучаемой дисперсной системы. Дисперсия прозрачности, помимо толщины системы зависит непосредственно от числа частиц в изучаемом объекте, так что одновременное измерение прозрачности и дисперсии среды даёт нам возможность определения как среднего размера, так и концентрации частиц.

В ходе моделирования с помощью теоремы Робинса для дисперсной среды, состоящей из одинаковых частиц сферической формы, получены проекции поперечника ослабления всех частиц, находящихся в освещенном объеме, на поперечное сечение падающего светового пучка. В результате данного моделирования определены следующие выражения для метода флюктуаций.

Средний радиус частиц:

, (1)

где: S0 - средний поперечник ослабления света частицей.

Средний поперечник ослабления света частицей, имеющий размерность площади:

(2)

где: D – дисперсия оптического сигнала;

S – площадь поперечного сечения пучка света;

– интенсивность падающего пучка света;

τ – оптическая толщина системы;

φ(τ) – специальная функция, связывающая дисперсию с оптической толщиной системы и средним числом частиц в просвечиваемом объеме (фиг. 1).

Дисперсия оптического сигнала (определяется на основании статистического анализа результатов многократных измерений):

, (3)

где: – средняя интенсивность прошедшего через среду параллельного пучка света,

Ii - интенсивность прошедшего через среду параллельного пучка света при i-м измерении,

N – количество измерений интенсивности прошедшего через среду параллельного пучка света.

Средняя интенсивность прошедшего через среду параллельного пучка света:

. (4)

Оптическая толщина системы определяется с помощью формулы:

. (5)

Средняя концентрация частиц:

, (6)

где: – длина пути света в исследуемой среде.

Анализ выражений (1)-(6) показывает, что для расчета значений среднего размера частиц пыли и их средней концентрации необходимо произвести серию измерений следующих параметров:

- интенсивности падающего пучка света, т.е. интенсивности изучения на входе в исследуемую среду;

- интенсивности пучка света, прошедшего через исследуемую среду;

- площади поперечного сечения пучка света;

- длины пути света в исследуемой среде.

Устройство, работающее по данному способу, содержит лазерный излучатель 1, отражатель 2, два светоделительных зеркала 3, 8, две диафрагмы 4, 7, два фотоприемника 5, 9, три аналого-цифровых преобразователя 6, 12, 13, лазерный дальномер 10, ПЗС-матрицу 11, ЭВМ 14.

Конструктивно оптический пылемер состоит из передающего и приемного блоков. В состав передающего блока входят: лазерный излучатель 1, отражатель 2, светоделительное зеркало 3, диафрагмы 4 и 7, фотоприемник 5, аналого-цифровой преобразователь 6. Назначение передающего блока – создать регулируемый зондирующий световой поток и измерить интенсивность этого потока на выходе блока. Приемный блок состоит из светоделительного зеркала 8, фотоприемника 9, лазерного дальномера 10, ПЗС-матрицы 11, аналого-цифровых преобразователей 12 и 13, ЭВМ 14.

Приемный блок выполняет следующие функции:

– измерение длины светового луча в исследуемом объёме;

- измерение интенсивности и площади зондирующего светового потока, прошедшего через исследуемый объем воздуха;

- расчет по формулам (1) – (6) значения среднего размера частиц пыли и их средней концентрации.

Процесс измерения оптическим пылемером состоит из трех этапов.

На первом этапе от ЭВМ 14 подается запускающий сигнал на лазерный дальномер 10, который измеряет расстояние до отражателя 2, находящемся в передающем блоке. Положение лазерного дальномера 10 в приемном блоке отрегулировано так, чтобы расстояние до отражателя 2 равнялось расстоянию между центрами светоделительных зеркал 3 и 8. Таким образом, информация о длине пути в исследуемой среде поступает от лазерного дальномера 10 в ЭВМ 14.

На втором этапе производится синхронное циклическое измерение следующих параметров:

- интенсивности падающего пучка света, т.е. интенсивности изучения на входе в исследуемую среду;

- интенсивности пучка света, прошедшего через исследуемую среду;

- площади поперечного сечения пучка света.

Лазерный излучатель 1 постоянно генерирует монохроматический световой поток, который с помощью светоделительного зеркала 3 разделяется на два субпотока.

Первый субпоток, полученный за счет отражения от светоделительного зеркала 3, через диафрагму 4 поступает на фотоприемник 5. Считывание информации с фотоприемника 5 происходит в момент, когда от ЭВМ 14 поступит запускающий сигнал в аналого-цифровой преобразователь 6. Считанные значения, пропорциональные интенсивности пучка света на входе в исследуемую среду, записываются в память ЭВМ 14. Синхронность процесса измерения достигается тем, что на аналого-цифровые преобразователи 6, 12, 13 сигнал запуска в каждом цикле измерения поступает от ЭВМ 14 одновременно.

Второй субпоток, который представляет собой часть светового потока лазерного излучателя 1, прошедшего через светоделительное зеркало 3 и диафрагму 7, после прохождения по исследуемому объему воздуха поступает на светоделительное зеркало 8. Часть второго субпотока, прошедшего через светоделительное зеркало 8 проецируется на ПЗС-матрицу 11. Информация с ПЗС-матрицы 11 поступает в аналого-цифровой преобразователь 12, а затем в ЭВМ 14, где по количеству засвеченных пикселов ПЗС-матрицы 11 определяется - площадь поперечного сечения пучка света, прошедшего через исследуемую среду. Часть второго субпотока, отраженного от светоделительного зеркала 8, поступает на фотоприемник 9. Аналоговый сигнал с выхода фотоприемника 9, значение которого пропорционально интенсивности пучка света, прошедшего через исследуемую среду, преобразуется в аналого-цифровом преобразователе 13 и в дискретной форме поступает в ЭВМ 14. Измерение интенсивности пучка света, прошедшего через исследуемую среду производится для того, чтобы по формулам (3) и (4) определить дисперсию оптического сигнала.

На третьем этапе на основании измеренных данных производится расчет значений среднего размера частиц пыли и их средней концентрации. Так как расчет дисперсии оптического сигнала производится по статистическим данным, то необходимо многократное измерение интенсивности пучка света, прошедшего через исследуемую среду. Это достигается за счет того, что аналого-цифровой преобразователь имеет циклический характер работы. ЭВМ 14 синхронизирует циклы аналого-цифровых преобразователей 6, 12 13 и обеспечивает заданное количество циклов их работы, по истечении которых рассчитываются средние значения интенсивности падающего пучка света и интенсивности пучка света, прошедшего через исследуемую среду. Затем, пользуясь формулами (1)-(3) и (5)-(6) ЭВМ рассчитывает значения среднего размера частиц пыли и их. средней концентрации.

ЭВМ при работе в циклическом режиме в каждом цикле выполняет следующие действия:

1) определяет площадь поперечного сечения пучка света;

2) организует N циклов, состоящих из следующих команд:

- подает на аналого-цифровые преобразователи 6,12 и 13 сигнал запуска,

- получает сигналов с аналого-цифровых преобразователей,

- записывает полученные данные в массивы памяти.

3) рассчитывает среднее значение интенсивности падающего пучка света;

4) рассчитывает среднее значение интенсивности пучка света, прошедшего через исследуемую среду;

5) рассчитывает дисперсию оптического сигнала;

6) рассчитывает оптическую толщину системы;

7) определяет значение специальной функции, связывающей дисперсию с оптической толщиной системы и средним числом частиц в просвечиваемом объеме;

8) рассчитывает средний поперечник ослабления света частицей;

9) рассчитывает средний радиус частиц;

10) рассчитывает среднюю концентрацию частиц;

11) выводит значения среднего радиуса частиц и средней концентрации частиц.

Тарировка оптического пылемера производится в две стадии.

На первой стадии обеспечивается равенство показаний лазерного дальномера длине пути света в исследуемой среде. Для этого передающий и приемный блоки размещают на заданном расстоянии друг от друга. Это расстояние замеряют штангенциркулем, а лазерный дальномер, закрепленный на рейке в приемном блоке, перемещают в положение, когда показания обоих приборов будет совпадать.

На второй стадии производится определение тарировочных коэффициентов при измерении общей концентрации и среднего размера частиц пыли. Для этого в замкнутом ограниченном объёме турбулентного воздуха создаётся облако пыли с заданными параметрами, куда помещают передающий и приемный блоки оптико-электронного пылемера. Затем производят измерение средней концентрации и среднего размера частиц пыли и вычисляют значения тарировочных коэффициентов путем деления фактического значения параметра на его измеренное значение. Тарировочные коэффициенты добавляют в формулы (1) и (6).

Таким образом, рассмотренный способ, в отличие от известных, позволяет получить более высокую точность измерения средней концентрации и размеров частиц. Средний размер частиц пыли позволяет определять уровень респирабельной фракции и прогнозировать возникновение профессиональных заболеваний на различных производствах в зависимости от полученной организмом пылевой нагрузки.

Фотоэлектрический способ определения среднего размера и средней концентрации частиц пыли, включающий преобразование импульсного напряжения в световой поток, зондирование области исследуемой среды световым пучком, разделение светового потока, преобразование данных потоков в электрические сигналы, отличающийся тем, что часть входного светового потока отводится на первый фотоприемник, сигнал которого пропорционален интенсивности пучка света на входе в исследуемую среду, а вторая часть входного светового потока после прохождения через исследуемую среду разделяется на два субпотока, причем первый субпоток поступает на ПЗС-матрицу, в которой по количеству засвеченных пикселов определяется площадь поперечного сечения пучка света, прошедшего через исследуемую среду, а второй субпоток поступает на второй фотоприемник, значение сигнала которого пропорционально интенсивности пучка света, прошедшего через исследуемую среду, так же измеряется путь прохождения луча через исследуемую среду лазерным дальномером, а полученные сигналы оцифровываются и поступают в электро-вычислительную машину, где производится вычисление значений измеряемых параметров, при этом управление процессами осуществляется электро-вычислительной машиной синхронно и циклично по сигналу запуска.
ФОТОЭЛЕКТРИЧЕСКИЙ СПОСОБ ОПРЕДЕЛЕНИЯ СРЕДНЕЙ КОНЦЕНТРАЦИИ И СРЕДНЕГО РАЗМЕРА ЧАСТИЦ ПЫЛИ
ФОТОЭЛЕКТРИЧЕСКИЙ СПОСОБ ОПРЕДЕЛЕНИЯ СРЕДНЕЙ КОНЦЕНТРАЦИИ И СРЕДНЕГО РАЗМЕРА ЧАСТИЦ ПЫЛИ
Источник поступления информации: Роспатент

Показаны записи 11-20 из 186.
25.08.2017
№217.015.b9ac

Rs-триггер

Изобретение относится к области вычислительной техники. Технический результат: создание RS-триггера, в котором внутреннее преобразование информации производится в многозначной токовой форме сигналов. Для этого предложен RS-триггер, который содержит первый 1 (S) и второй 2 (R) логические входы...
Тип: Изобретение
Номер охранного документа: 0002615069
Дата охранного документа: 03.04.2017
25.08.2017
№217.015.b9bd

Биполярно-полевой дифференциальный операционный усилитель

Изобретение относится к области радиотехники. Технический результат: повышение разомкнутого коэффициента усиления по напряжению операционного усилителя (ОУ) при сохранении высоких показателей по стабильности напряжения смещения нуля. Для этого предложен биполярно-полевой дифференциальный...
Тип: Изобретение
Номер охранного документа: 0002615068
Дата охранного документа: 03.04.2017
25.08.2017
№217.015.ba71

Огнетушащий порошковый состав

Изобретение относится к огнетушащему порошковому составу, включающему хлорид калия, который отличается тем, что дополнительно содержит оксид цинка, алюмокалиевые квасцы, глинозем, при следующем соотношении компонентов, масс.%: хлорид калия – 90-96; оксид цинка – 1-2; алюмокалиевые квасцы – 2-6;...
Тип: Изобретение
Номер охранного документа: 0002615715
Дата охранного документа: 07.04.2017
25.08.2017
№217.015.bc4a

Технологическая линия для производства керамических изделий на основе камнеподобного сырья

Изобретение относится к производству строительных материалов, а именно к изготовлению клинкерного кирпича и стеновых керамических изделий методом компрессионного формования (полусухого прессования) при использовании аргиллитов, аргиллитоподобных глин, глинистых сланцев, опок и техногенного...
Тип: Изобретение
Номер охранного документа: 0002616041
Дата охранного документа: 12.04.2017
25.08.2017
№217.015.bd4d

Способ переработки фосфогипса

Изобретение относится к способам обработки и активации веществ и может найти применение в области строительных материалов и изделий на основе гипсосодержащих отходов химических производств, в частности дигидрата фосфогипса, и может быть использовано при изготовлении гипсовых вяжущих и изделий...
Тип: Изобретение
Номер охранного документа: 0002616308
Дата охранного документа: 14.04.2017
25.08.2017
№217.015.be67

Шнековый смеситель сыпучих материалов

Изобретение относится к устройствам, предназначенным для смешивания сыпучих материалов шнеком. Шнековый смеситель состоит из бункера цилиндро-конической формы, двухзаходного шнека и охватывающего его кожуха с рассеивателем, загрузочного приемника и разгрузочного клапана. Один из витков шнека...
Тип: Изобретение
Номер охранного документа: 0002616709
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.c03e

Инструментальный усилитель с повышенным ослаблением входного синфазного сигнала

Изобретение относится к области измерительной техники и может быть использовано в качестве прецизионного устройства усиления сигналов различных датчиков. Технический результат заключается в повышении коэффициента ослабления входных синфазных сигналов инструментального усилителя....
Тип: Изобретение
Номер охранного документа: 0002616570
Дата охранного документа: 17.04.2017
25.08.2017
№217.015.c05e

Устройство обнаружения и устранения аномальных измерений

Изобретение относится к области вычислительной техники. Технический результат - обнаружение и устранение аномальных измерений при фиксированном значении вероятности ложной тревоги. Устройство содержит блок хранения результатов измерений, коммутаторы, блок разбиения на интервалы, генераторы...
Тип: Изобретение
Номер охранного документа: 0002616568
Дата охранного документа: 17.04.2017
25.08.2017
№217.015.c858

Способ определения толщины однородного покрытия

Изобретение относится к определению геометрических характеристик однородных покрытий, а именно к определению его толщины посредством вдавливания в поверхность материала цилиндрического индентора, и может быть использовано для определения толщины покрытий на подложках из различных материалов....
Тип: Изобретение
Номер охранного документа: 0002619133
Дата охранного документа: 12.05.2017
25.08.2017
№217.015.c9ae

Способ получения удобрения из сапропеля

Изобретение относится к сельскому хозяйству. Способ получения сапропелевого удобрения включает извлечение сапропеля из озера, сушку с перемешиванием и введением модифицирующего наполнителя, причем в качестве наполнителя используется помет в количестве не менее 10%, сапропель и наполнитель...
Тип: Изобретение
Номер охранного документа: 0002619472
Дата охранного документа: 16.05.2017
Показаны записи 11-20 из 26.
20.04.2016
№216.015.33ad

Оптико-электронное устройство для контроля качества моторного масла

Изобретение относится к технике измерений и может использоваться в автомобильной, сельскохозяйственной, авиационной, нефтеперерабатывающей и других отраслях промышленности, где необходимо проводить оперативный анализ качества моторного масла. Оптико-электронное устройство для контроля качества...
Тип: Изобретение
Номер охранного документа: 0002582296
Дата охранного документа: 20.04.2016
10.05.2016
№216.015.3bea

Устройство анализа загрязненности моторного масла двигателя внутреннего сгорания дисперсными частицами

Изобретение относится к технике измерений, может использоваться в автомобильной, сельскохозяйственной, авиационной, нефтеперерабатывающей и других отраслях промышленности, где необходимо проводить оперативный анализ качества моторного масла. Устройство анализа загрязненности моторного масла...
Тип: Изобретение
Номер охранного документа: 0002583344
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3cc4

Способ анализа загрязненности моторного масла двигателя внутреннего сгорания дисперсными частицами

Изобретение относится к технике измерений, где необходимо проводить оперативный анализ качества моторного масла. Способ анализа загрязненности моторного масла двигателя внутреннего сгорания дисперсными частицами включает зондирование исследуемой дисперсной среды пучком маломощного лазерного и...
Тип: Изобретение
Номер охранного документа: 0002583351
Дата охранного документа: 10.05.2016
10.08.2016
№216.015.55ad

Способ подготовки углеводородного газа к транспорту

Изобретение относится к газонефтяной промышленности, в частности к сбору и обработке природного углеводородного газа по технологии абсорбционной осушки, и может применяться в процессах промысловой подготовки к транспорту продукции газовых и газоконденсатных месторождений. Сущность изобретения:...
Тип: Изобретение
Номер охранного документа: 0002593300
Дата охранного документа: 10.08.2016
13.01.2017
№217.015.8fae

Устройство искажения радиолокационного изображения

Изобретение относится к области радиоподавления радиолокационных станций (РЛС). Достигаемый технический результат - снижение погрешности воспроизведения линейно-частотно-модулированных (ЛЧМ) сигналов путем учета доплеровского смещения частоты принимаемого ЛЧМ сигнала, обусловленного взаимным...
Тип: Изобретение
Номер охранного документа: 0002605205
Дата охранного документа: 20.12.2016
26.08.2017
№217.015.d7fe

Способ анализа взвешенных частиц

Изобретение относится к способам анализа. Способ состоит в том, что поток частиц освещают световым пучком и регистрируют изображение частиц, по которым и судят о размерах и формах частиц. Световой пучок после прохождения потока разворачивают по отношению к исходному пучку и вновь пропускают...
Тип: Изобретение
Номер охранного документа: 0002622494
Дата охранного документа: 15.06.2017
26.08.2017
№217.015.e5a0

Оптико-электронное устройство контроля взвешенных частиц

Использование относится к области измерений, связанной с анализом взвешенных частиц. Устройство анализа взвешенных частиц включает источник лазерного излучения, системы объективов и зеркал, где световой пучок разворачивают равномерно под углом к исходному пучку и вновь пропускают через поток...
Тип: Изобретение
Номер охранного документа: 0002626750
Дата охранного документа: 31.07.2017
20.01.2018
№218.016.1a92

Способ сбора и подготовки углеводородного газа к транспорту

Изобретение относится к газовой промышленности, в частности к сбору и обработке природного углеводородного газа по технологии абсорбционной осушки, и может применяться в процессах промысловой подготовки к транспорту продукции газовых месторождений. Согласно способу сбора и подготовки...
Тип: Изобретение
Номер охранного документа: 0002636499
Дата охранного документа: 23.11.2017
10.05.2018
№218.016.47a7

Способ определения параметров взвешенных частиц

Использование: в технике измерений, при определении параметров взвешенных частиц. Способ определения параметров взвешенных частиц, сущность которого заключается в измерении перемещения частиц, находящихся в плоскости сечения, за фиксированный интервал времени в измерительной плоскости,...
Тип: Изобретение
Номер охранного документа: 0002650753
Дата охранного документа: 17.04.2018
10.05.2018
№218.016.4f02

Устройство определения распределения взвешенных частиц по массе

Изобретение относится к технике измерений, в частности к оптическим методам контроля, и может использоваться в электронной и химической промышленности, в медицине, биологии, экологии, порошковой металлургии и других областях науки и техники, связанных с определением параметров взвешенных...
Тип: Изобретение
Номер охранного документа: 0002652662
Дата охранного документа: 28.04.2018
+ добавить свой РИД