×
27.04.2019
219.017.3ca1

Результат интеллектуальной деятельности: ТЕПЛОСТОЙКОЕ ТЕРМОРЕАКТИВНОЕ СВЯЗУЮЩЕЕ ДЛЯ ПОЛИМЕРНОЙ ОСНАСТКИ ИЗ ПОЛИМЕРНЫХ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к теплостойкому связующему для полимерной оснастки из полимерных композиционных материалов, которое может быть использовано в изделиях авиакосмической техники. Теплостойкое термореактивное бисмалеимидное связующее содержит, мас.% от общей массы компонентов: бисмалеимид - N,N'-(4,4-метилендифенил)дималеимид от 47 до 65; 2,2'-диаллилбисфенол А - от 15 до 40; один или несколько сореагентов, таких как диаллиловый эфир фталевой кислоты, 2-аллилфенол, 2,4,6-триаллилокси-1,3,5-триазин или их смесь - от 5 до 27. Предложенное связующее обладает высоким значением температуры стеклования, составляющим 255-285°С, что обеспечивает возможность получения теплостойкой оснастки с рабочей температурой до 250°С при увеличении жизнеспособности до 1 месяца и повышении упруго-прочностных характеристик, а также при упрощении технологии его получения за счет исключения легколетучих токсичных органических растворителей. 3 з.п. ф-лы, 2 табл., 8 пр.

Теплостойкое термореактивное связующее для полимерной оснастки из полимерных композиционных материалов.

Изобретение относится к разработке теплостойкого связующего для изготовления размеростабильной полимерной оснастки из полимерных композиционных материалов (ПКМ) с многократной выдержкой циклов нагрев-охлаждение при температурах до 250°С, применяемых в изделиях авиакосмической техники.

Известно, что бисмалеимидные связующие широко используются в качестве полимерных матриц для производства изделий из полимерных композиционных материалов, эксплуатирующихся при повышенных температурах до 250°С, поскольку в отличие от эпоксидных смол обладают более высокой температурой стеклования (Tg). Кроме того, бисмалеимиды демонстрируют сходные с эпоксидными смолами технологические свойства, но превосходят их относительно низкой потерей массы в ходе теплового старения.

Известно, что в мировой промышленности широко применяют неметаллическую оснастку для выкладки, вакуумное и автоклавное формование пакета препрега, формование давлением (инжекционные и инфузионные технологии) крупногабаритных деталей и узлов сложных форм изделий из ПКМ.

Известен состав бисмалеимидного связующего для препрегов (варианты) (ЕР 0861281 B1, C08F 22/40, опубл. 05.06.2002) перерабатываемый в ПКМ методом автоклавного формования. Недостатки данного состава заключаются в том, что:

- усложнен технологический процесс (из-за наличия стадий получения суспензии одного или нескольких твердых бисмалеимидных мономеров с другими компонентами реакционной системы);

- после охлаждения бисмалеимидного связующего в нем присутствуют мелкие бисмалеимидные частицы, которые служат центрами кристаллизации. Крупные кристаллы приводят к созданию стабильной системы, которая является гетерогенной, трудно обрабатываемой и которая подвержена микротрещинам при использовании для получения композитов, армированных углеродным волокном;

- разработанные составы обеспечивают температуру разложения отвержденного связующего (потерю веса %) при 232°С от 0,64 до 2,47%, а при 260°С от 1,50 до 10,78%, что является невысоким показателем термостойкости для бисмалеимидных связующих.

Известен состав эпоксибисмалеимидной смолы (RU 2587169 С1, C08L 63/00, опубл. 20.06.2016), содержащий в мас. %:

N,N,N',N'-тетраглицидил-4,4'-диамино-3,3'-дихлордифенилметан 29,2-47,6
триглицидилпарааминофенол 10,9-27,1
парааминофенол 0,5-2,1
N,N'-гексаметиленбисмалеимид 13,9-15,8
4,4'-диаминодифенилсульфон 20,9-30,6

Недостатками данного изобретения являются:

- сложность технологического процесса для изготовления промышленных укрупненных партий эпоксибисмалеимидного связующего, поскольку к предварительно нагретым до 120°С эпоксидным смолам и катализатору N,N'-парааминофенолу необходимо добавить и растворить при этой температуре отвердитель 4,4'- диаминодифенилсульфон, а затем снизив температуру в реакционной смеси до 100°С ввести бисмалеимид и перемешивать при этой температуре до его полного растворения. Такой способ изготовления связующего не только значительно снижает его жизнеспособность, но и повышается возможность возникновения самопроизвольной экзотермической реакции отверждения под действием отвердителя, реакционная способность которого при температурах выше 110°С достаточно высока;

- вследствие частичного протекания реакции отверждения под действием отвердителя 4,4'- диаминодифенилсульфона данное связующее будет иметь широкий интервал значений вязкости, что скажется как на технологии его переработки в препрег, так и на жизнеспособности каждой конкретной партии препрега;

- температура стеклования в данном изобретении не превышает 244°С, что объясняется введением в состав эпоксидных смол.

Известен состав (US 7592072 В2, D04H 1/00, опубл. 22.09.2009), основу которого составляют 3 различных по химической структуре мономера бисмалеимида (4,4'-дифенилметан-бис-малеимид, N.N-2,4-толуен-бис-малеимид, N,N'-2,2,4-триметилгексан-бис-малеимид) образуя эвтектическую смесь, кроме того в нее входит в качестве сомономера 2,2'-диаллилбисфенол А или 2,2'-дипропенилбисфенол А, гидрохинон, термопластичная добавка полиимид, отверждающим агентом являются полиамины и алкенильные ароматические соединения, в частности бисалкенилфенол.

К недостаткам данного технического решения относится сложность точного приготовления эвтектической смеси из 3 мономеров бисмалеимида. При этом использование бисмалеимида на основе алифатического амина (N,N'-2,2,4-триметилгексан-бис-малеимида) приводит к значительному снижению температуры стеклования и термостойкости такого связующего, невысокая жизнеспособность препрега (10 дней в условиях окружающей среды) и длительный по энерго и трудозатратам режим формования в ПКМ с использованием дорогостоящего автоклавного оборудования (4 часа в автоклаве при 375°F (190°С) и доотверждение 16 часов при 450°F (232°С).

Кроме того, поскольку бисмалеимиды имеют очень плохую совместимость с традиционно используемыми термопластичными агентами, повышающими вязкость разрушения, введение в состав полиимида приводит либо к затруднению растворения термопластичного материала в базовой эвтектической смеси в ходе получения, либо полному разделению фаз термопластика в процессе отверждения.

Известен состав из полималеимидного компонента и аллилсодержащего преполимера (US 5183865 A, C08F 290/14, опубл. 02.02.1993), при этом аллил со держащий преполимер получается при длительном взаимодействии при температуре 140°С эпоксидиановой эпоксидной смолы и 2,2'-диаллилбисфенола А или 2-аллилфенола. Данное изобретение позволяет получить изделия из ПКМ по препреговой технологии.

Недостатками данного изобретения являются:

- многостадийность процесса получения бисмалеимидного связующего;

- необходимость проведения реакции получения преполимера в течение длительного времени (16 ч. и более) при высокой температуре 140°С, что требует привлечения излишних энерго- и трудозатрат;

- необходимость проведения исследований химической структуры синтезированного преполимера с применением инфрокрасной спектроскопии и ядерного магнитного резонанса.

- полученное в ходе реакции бисмалеимидное связующее необходимо раздробить в порошок, что также требует использования дополнительного оборудования. Кроме того, такое агрегатное состояние связующего накладывает на него ряд ограничений по технологии переработки, т.к. исключает возможность использования инжекционных методов, в то время как для препреговой технологии и метода электростатического напыления к полимерному порошку связующего предъявляются дополнительные требования по гранулометрическому составу частиц, температуре его размягчения, технологической жизнеспособности.

Известен состав из бисмалеимидного связующего (US 4644039 А, В32В 27/10, опубл. 17.02.1987) в котором в качестве катализатора используются комплексы на основе органофосфина и органофосфония (в частности трифенилфосфин). Препреги, изготовленные на основе этих составов бисмалеимидного связующего, могут поддерживать липкость, драпировку в течение 2 недель при комнатной температуре. Изготовленные на его основе ПКМ хотя и обеспечивают высокую прочность в отвержденном состоянии, однако, тем не менее, имеют недостатки: теплостойкость материала не превышает 256°С.

Недостатки данного состава заключаются в том, что:

- невозможно из-за высокой вязкости расплава использовать его в качестве связующего для изготовления изделий инжекционными методами;

- жизнеспособность препрегов на его основе не превышает 2 недель. Известен состав бисмалеимидного связующего (US 5059665 A, C08F 222/40, опубл. 22.10.1991) содержащий: 4,4'-дифенилметан-бис-малеимид -100 масс.ч., диаллилбисфенол А или 2,6-ди(пропенилфенокси)пиридин -5-100 масс, ч., стабилизатор (кислоты Льюиса) - 0,01-2,0 масс, ч., в котором кислоты Льюиса выполняют роль добавки повышающей жизнеспособность препрегов на основе бисмалеимидного связующего.

Недостатком данного изобретения является более энергозатратный режим отверждения препрегов от 150 до 300°С, а также в изобретении достигаются недостаточно высокие теплостойкие и механические характеристики отвержденных изделий из ПКМ.

За прототип принят состав (US 4743647 A, C07D 207/452, опубл. 10.05.1988) для изготовления препрегов на основе бисмалеимидного связующего, характеризующегося наличием в его молекулярной структуре трех ароматических колец. В данном изобретении синтезированы ароматические бисмалеимиды, такие как альфа, альфа'-бис (4-малеимидофенил)-мета-диизопропилбензил и альфа, альфа'-бис (4-малеимидофенил)-пара-диизопропилбензил. В качестве сореагентов в изобретении указаны соединения содержащие одну или несколько двойных связей (алильные, винильные и акрилатные производные), в частности диаллилбисфенол А, а также добавки термопластичного полимера.

Недостатки прототипа заключаются в том, что изготовление заявленных в изобретении альфа'-бис (4-малеимидофенил)-мета-диизопропилбензила и альфа, альфа'-бис (4-малеимидофенил)-пара-диизопропилбензила представляет собой длительный многостадийный синтез (одна из стадий требует нагревания при 40°С с уксусным ангидридом и триэтиламином в течение 16-20 часов), включающий также многократную промывку целевого продукта водой и использование растворителей (ацетона и дихлор метана), что создает сложности для изготовления укрупненных партий, а также не позволяет полностью очистить их от следов растворителей, что приведет к пористости изделий из ПКМ на их основе.

Задачей изобретения является создание теплостойкого термореактивного связующего для полимерной оснастки из полимерных композиционных материалов упрощение и удешевление технологии получения бисмалеимидного связующего перерабатываемого по инжекционным технологиям (вакуумная инфузия, пропитка под давлением).

Техническим результатом заявленного изобретения является увеличение температуры стеклования связующего для обеспечения многократной выдержки цикл нагрев-охлаждение при температурах до 250°С, снижение пористости, увеличение срока годности при хранении связующего, снижение отходов, упрощенный технологический процесс получения теплостойкого термореактивного связующего, повышение термостойкости, повышение упруго - прочностных характеристик.

Для достижения поставленного технического результата предложено теплостойкое термореактивное бисмалеимидное связующее для полимерной оснастки из полимерных композиционных материалов, содержащее бисмалеимид, 2,2'-диаллилбисфенол А, при этом в качестве бисмалеимида используется N,N'-(4,4-метилендифенил)дималеимид в количестве от 47 масс. % до 65 масс. % от общей массы компонентов, 2,2'-диаллилбисфенол А в количестве от 15 масс. % до 40 масс. % от общей массы компонентов, содержащее один или несколько со реагентов, таких как диаллиловый эфир фталевой кислоты, 2-аллилфенол, 2,4,6-триаллилокси-1,3,5-триазин или их смесь в количестве от 5 масс. % до 27 масс. % от общей массы компонентов.

Предпочтительно, вышеупомянутое связующее дополнительно содержит один или несколько со реагентов, таких как диглицидиловый эфир бисфенола А, N,N',N'-триглицидиламинофенол, N,N,N'N'-тетраглицидил-4'4-диаминодифенилметан или их смесь в количестве составляющем от 1 масс. % до 4 масс. % от общей массы компонентов.

Предпочтительно, вышеупомянутое связующее дополнительно содержит ингибитор полимеризации в количестве не превышающем 1,0 масс. % от общей массы компонентов и содержит в качестве факультативной добавки наполнитель нанодисперсный оксид алюминия или оксид кремния в количестве не превышающем 5,0 масс. % от общей массы компонентов.

Предпочтительно, в качестве ингибитора полимеризации используется бензол-1,4-диол или 2,6-ди-трет-бутил-4-метилфенол.

Выбор связующего для данной технологии требует достаточно низкую вязкость расплава менее 0,6 Па⋅с, поскольку при инжектировании оно должно равномерно распределяться между частицами наполнителя или армирующего компонента, не задерживаться в нем, иначе полученные ПКМ будут иметь пустоты или дефекты.

Для снижения вязкости данных композиций используют различные активные разбавители. Однако, из опыта работы по созданию низковязких связующих известно, что введение подобных разбавителей приводит к пластификации полимерной матрицы и уменьшению хрупкости отвержденной композиции, но значительно снижает ее термостойкость, что не позволяет получить материал, обеспечивающий рабочую температуру до 250°С.

Одними из наиболее перспективных со реагентов для системы 2,2'-диаллилбисфенол А - бисмалеимид являются аллильные производные, такие как диаллиловый эфир фталевой кислоты, 2-аллилфенол, 2,4,6-триаллилокси-1,3,5-триазин или их смесь, содержащие концевые двойные связи. Они позволяют регулировать вязкость композиции, не снижая при этом термомеханические свойства отвержденного полимера. Кроме того, использование небольших количеств аллильных производных в качестве активных разбавителей позволяет увеличить степень сшивки полимерной матрицы отвержденного связующего и уменьшить температуру совмещения реакционной смеси с бисмалеимидом, что позволит увеличить жизнеспособность готового связующего. Таким образом, повышение стеклования и термостойкости происходит вследствие увеличения степени сшивки полимерной матрицы, за счет повышения содержания мономеров с одной (2-аллилфенол) или более (диаллиловый эфир фталевой кислоты, 2,4,6-триаллилокси-1,3,5-триазин) двойными связями, расположенными недалеко друг от друга и связанными через жесткий мостик.

Изготовление связующего представляет собой технологически простой одностадийный процесс, в котором в реактор последовательно добавляются химические компоненты, не требующие дополнительной очистки, а также отсутствуют в составе легколетучие токсичные органические растворители (ацетон, хлористый метелен и др.), что позволяет уменьшить отходы на производстве, то есть повысить его экологическую безопасность и снизить пористость изделий из ПКМ.

Кроме того, отсутствие в разработанном связующем каталитических добавок (например, аминных (ди- или триэтиламин, бензилдиметиламин), октоата кобольта, комплексов на основе органофосфина и органофосфония (в частности трифенилфосфин)) позволяет хранить его в течение до 1 месяца при комнатной температуре без значительной потери его технологических характеристик.

Другим перспективным модификатором для улучшения технологических характеристик (снижение температуры формообразования) связующего является введение в состав эпоксидиановых или азотсодержащих эпоксидных смол (диглицидиловый эфир бисфенола А, N,N'N'-триглицидиламинофенол, N,N,N'N'-тетраглицидил-4'4-диаминодифенилметан или их смесь), что позволяет повысить упруго-прочностные характеристики изделий из ПКМ. Однако, следует учесть, что увеличение полифункциональных эпоксидных смол в количестве более 5 масс. % приводит к значительному снижению термостойкости изделия.

В частных воплощениях изобретения для придания дополнительной жизнеспособности бисмалеимидное связующее может дополнительно содержать до 1 масс. % от общей массы компонентов ингибитора в частности бензол-1,4-диол или 2,6-ди-трет-бутил-4-метилфенол.

Кроме того в качестве факультативной добавки бисмалеимидное связующее может содержать наполнитель, который вводится для улучшения некоторых технологических или эксплуатационных свойств, который вводится в количестве не превышающем 5 масс. % от общей массы компонентов. В качестве наполнителя могут быть использованы такие вещества как нанодисперсный оксид алюминия или оксид кремния (например, Аэросил А 300, Аэросил А 380 и др.).

Заявляемое теплостойкое эпоксибисмалеимидное связующее, которое может быть использовано для получения размеростабильной полимерной оснастки из ПКМ с температурой эксплуатации до 250°С, обладает динамической вязкостью менее 0,6 Па⋅с при температуре переработки (110-120°С) и сохраняя технологическую вязкость (до 1 Па⋅с) не менее 1,5 часов, пригодно для изготовления изделий инжекционными методами, что особенно важно для изготовления крупногабаритных изделий.

Примеры составов и свойства эпоксибисмалеимидного связующего представлены в таблицах 1 и 2.

Состав и получение связующего.

Пример 1

В реактор загружают 2,2'-диаллилбисфенол А, диаллиловый эфир фталевой кислоты, 2-аллилфенол и 2,4,6-триаллилокси-1,3,5-триазин, которые нагревают при перемешивании до температуры 110-115°С и вводят эпоксидную смолу диглицидиловый эфир бисфенола А. Затем при интенсивном перемешивании в течение 5 минут добавляют N,N'-(4,4-метилендифенил)дималеимид, причем температура расплава падает до 90-95°С. После растворения последней порции N,N'-(4,4-метилендифенил)дималеимида, в реакционную смесь добавляют ингибитор (2,6-ди-трет-бутил-4-метилфенол) и продолжают интенсивное перемешивание в течение 0,5 ч при температуре 100°С и сливают готовое связующее в сухие емкости.

Состав, соотношение компонентов связующего и его свойства приведены в таблицах 1 и 2.

Образцы для механических испытаний отвержденной матрицы готовили методом отливки в форму с последующим отверждением по следующему режиму: 180°С - 3 часа, 220°С-3 часа и 240°С - 4 часов.

Пример 2

В реактор загружают 2,2'-диаллилбисфенол А, 2-аллилфенол и 2,4,6-триаллилокси-1,3,5-триазин, которые нагревают при перемешивании до температуры 110-115°С и вводят эпоксидную смолу N,N,N'N'-тетраглицидил-4'4-диаминодифенилметан. Затем при интенсивном перемешивании в течение 5 минут добавляют N,N'-(4,4-метилендифенил)дималеимид, причем температура расплава падает до 90-95°С. После растворения последней порции N,N'-(4,4-метилендифенил)дималеимида, в реакционную смесь добавляют ингибитор (2,6-ди-трет-бутил-4-метилфенол) и продолжают интенсивное перемешивание в течение 0,5 ч при температуре 100°С и сливают готовое связующее в сухие емкости.

Состав, соотношение компонентов связующего и его свойства приведены в таблицах 1 и 2.

Пример 3

В реактор загружают 2,2'-диаллилбисфенол А, диаллиловый эфир фталевой кислоты, которые нагревают при перемешивании до температуры 110-115°С. Затем при интенсивном перемешивании в течение 5 минут добавляют N,N'-(4,4-метилендифенил)дималеимид, причем температура расплава падает до 90-95°С. После растворения последней порции N,N'-(4,4-метилендифенил)дималеимида продолжают интенсивное перемешивание в течение 0,5 ч при температуре 100°С и сливают готовое связующее в сухие емкости. Состав, соотношение компонентов связующего и его свойства приведены в таблицах 1 и 2.

Пример 4

В реактор загружают 2,2'-диаллилбисфенол А, диаллиловый эфир фталевой кислоты, которые нагревают при перемешивании до температуры 110-115°С и вводят эпоксидные смолы N,N'N'-триглицидиламинофенол и диглицидиловый эфир бисфенола А. Затем при интенсивном перемешивании в течение 5 минут добавляют N,N'-(4,4-метилендифенил)дималеимида, причем температура расплава падает до 90-95°С. После растворения последней порции 1Ч,М'-(4,4-метилендифенил)дималеимида, в реакционную смесь добавляют сначала ингибитор (бензол-1,4-диол), затем оксид кремния и продолжают интенсивное перемешивание в течение 0,5 ч при температуре 100°С и сливают готовое связующее в сухие емкости.

Состав, соотношение компонентов связующего и его свойства приведены в таблицах 1 и 2.

Пример 5

В реактор загружают 2,2'-диаллилбисфенол А, диаллиловый эфир фталевой кислоты и 2,4,6-триаллилокси-1,3,5-триазин, которые нагревают при перемешивании до температуры 110-115°С и вводят эпоксидную смолу N,N,N'N'-тетраглицидил-4'4-диаминодифенилметан. Затем при интенсивном перемешивании в течение 5 минут добавляют N,N'-(4,4-метилендифенил)дималеимид, причем температура расплава падает до 90-95°С. После растворения последней порции N,N'-(4,4-метилендифенил)дималеимида, в реакционную смесь добавляют сначала ингибитор (бензол-1,4-диол), затем оксид кремния и продолжают интенсивное перемешивание в течение 0,5 ч при температуре 100°С и сливают готовое связующее в сухие емкости.

Состав, соотношение компонентов связующего и его свойства приведены в таблицах 1 и 2.

Пример 6

В реактор загружают 2,2'-диаллилбисфенол А и 2,4,6-триаллилокси-1,3,5-триазин, которые нагревают при перемешивании до температуры 110-115°С и вводят эпоксидные смолы диглицидиловый эфир бисфенола А, N,N'N'-триглицидиламинофенол и N,N,N'N'-тетраглицидил-4'4-диаминодифенилметан. Затем при интенсивном перемешивании в течение 5 минут добавляют N,N'-(4,4-метилендифенил)дималеимид, причем температура расплава падает до 90-95°С. После растворения последней порции N,N'-(4,4-метилендифенил)дималеимида, в реакционную смесь добавляют сначала ингибитор (2,6-ди-трет-бутил-4-метилфенол), затем нанодисперсный оксид алюминия и продолжают интенсивное перемешивание в течение 0,5 ч при температуре 100°С и сливают готовое связующее в сухие емкости.

Состав, соотношение компонентов связующего и его свойства приведены в таблицах 1 и 2.

Пример 7

В реактор загружают 2,2'-диаллилбисфенол А, диаллиловый эфир фталевой кислоты и 2-аллилфенол, которые нагревают при перемешивании до температуры 110-115°С и вводят эпоксидную смолу N,N'N'-триглицидиламинофенол. Затем при интенсивном перемешивании в течение 5 минут добавляют N,N'-(4,4-метилендифенил)дималеимида, причем температура расплава падает до 90-95°С. После растворения последней порции N,N'-(4,4-метилендифенил)дималеимида, в реакционную смесь добавляют нанодисперсный оксид алюминия и продолжают интенсивное перемешивание в течение 0,5 ч при температуре 100°С и сливают готовое связующее в сухие емкости.

Состав, соотношение компонентов связующего и его свойства приведены в таблицах №1 и №2.

Пример 8

В реактор загружают 2,2'-диаллилбисфенол А, 2-аллилфенол, которые нагревают при перемешивании до температуры 110-115°С и вводят эпоксидную смолу N,N'N'-триглицидиламинофенол. Затем при интенсивном перемешивании в течение 5 минут добавляют N,N'-(4,4-метилендифенил)дималеимида, причем температура расплава падает до 90-50°С. После растворения последней порции N,N'-(4,4-метилендифенил)дималеимида, в реакционную смесь добавляют сначала ингибитор (бензол-1,4-диол), затем оксид кремния и продолжают интенсивное перемешивание в течение 0,5 ч при температуре 100°С и сливают готовое связующее в сухие емкости.

Состав, соотношение компонентов связующего и его свойства приведены в таблицах №1 и №2.

Из таблицы №2 видно, что заявленные связующие в сравнении с прототипом имеют значительно более высокие значения температуры стеклования, таким образом, может быть обеспечена возможность получения теплостойкой оснастки с рабочей температурой до 250°С. В изобретении приведены составы (примеры 3, 4) отличающиеся более низкими значениями водопоглощения по сравнению с приведенными в прототипе. Кроме того, хотя оснастка не несет конструкционной нагрузки, но при этом разработанная полимерная матрица способна выдержать умеренные нагрузки, а реологические характеристики и жизнеспособность связующего позволяют провести пропитку пакета с углеродным или стеклянным волокнистым наполнителем даже для изготовления крупногабаритного изделия из ПКМ.

Источник поступления информации: Роспатент

Показаны записи 271-280 из 354.
19.04.2019
№219.017.2bbc

Препрег и изделие, выполненное из него

Изобретение относится к препрегу и изделию, выполненному из него, используемому в качестве материала несущих элементов конструкций авиационной и космической техники. Препрег содержит 24-50 мас.% полимерного связующего и 50-76 мас.% волокнистого наполнителя. В качестве волокнистого наполнителя...
Тип: Изобретение
Номер охранного документа: 0002278028
Дата охранного документа: 20.06.2006
19.04.2019
№219.017.2c3f

Способ получения изделия из жаропрочного никелевого сплава

Изобретение относится к области металлургии, а именно к получению полуфабрикатов из жаропрочных высоколегированных деформируемых сплавов на основе никеля, предназначенных преимущественно для изготовления дисков газотурбинных двигателей или других изделий, работающих в условиях предельных...
Тип: Изобретение
Номер охранного документа: 0002285736
Дата охранного документа: 20.10.2006
19.04.2019
№219.017.2c52

Коррозионно-стойкая сталь и изделие, выполненное из нее

Изобретение относится к области металлургии, а именно к созданию коррозионно-стойкой стали, используемой в качестве листов или фольги в паяных сотовых панелях, деталях обшивки, в деталях внутреннего набора, работающих до 450°С. Предлагаемая коррозионно-стойкая сталь имеет следующий химический...
Тип: Изобретение
Номер охранного документа: 0002288966
Дата охранного документа: 10.12.2006
19.04.2019
№219.017.2d1e

Способ термомеханической обработки полуфабрикатов из алюминиевых сплавов

Изобретение относится к области металлургии сплавов на основе алюминия, в том числе сплавов системы Al-Mg-Li, используемых в виде тонкостенных прессованных полуфабрикатов для стрингерного и силового набора фюзеляжа в клепаных и сварных конструкциях авиакосмической техники и судостроения....
Тип: Изобретение
Номер охранного документа: 0002256720
Дата охранного документа: 20.07.2005
19.04.2019
№219.017.2d22

Способ получения изделия из жаропрочного никелевого сплава

Изобретение относится к области металлургии, а именно к получению изделий из жаропрочных никелевых сплавов, работающих при температурах выше 600°С, в частности дисков ГТД. Предложен способ получения изделия из жаропрочного никелевого сплава, включающий вакуумно-индукционную выплавку, получение...
Тип: Изобретение
Номер охранного документа: 0002256722
Дата охранного документа: 20.07.2005
19.04.2019
№219.017.2d30

Устройство для получения отливок с направленной и монокристаллической структурой

Изобретение может быть использовано для получения отливок из жаропрочных сплавов, в частности турбинных лопаток газотурбинных двигателей и установок. Устройство содержит зону нагрева с нагревателем и зону охлаждения, разделенные теплоизолирующим экраном. В зоне нагрева расположен нагреватель с...
Тип: Изобретение
Номер охранного документа: 0002258578
Дата охранного документа: 20.08.2005
19.04.2019
№219.017.2dba

Способ получения литого трубного катода из сплавов на основе алюминия для ионно-плазменного нанесения покрытий

Изобретение относится к области металлургической промышленности. Способ включает плавление сплава из шихты и его заливку расплава в предварительно нагретую литейную форму в вакууме, осуществляемые в вакуумно-индукционной печи. Шихта содержит алюминий и один или несколько элементов, выбранных из...
Тип: Изобретение
Номер охранного документа: 0002340426
Дата охранного документа: 10.12.2008
19.04.2019
№219.017.2dc0

Способ защиты стальных деталей машин от солевой коррозии

Изобретение относится к области машиностроения и металлургии и может быть использовано в авиационном и энергетическом турбиностроении, преимущественно для защиты деталей компрессора газотурбинного двигателя от солевой коррозии. Способ включает последовательное нанесение на поверхность детали...
Тип: Изобретение
Номер охранного документа: 0002344198
Дата охранного документа: 20.01.2009
19.04.2019
№219.017.2dc6

Способ получения литых трубных изделий из сплавов на основе никеля и/или кобальта

Изобретение относится к области металлургической промышленности. Способ включает плавление шихтовых материалов и заливку расплава в предварительно нагретую литейную форму, осуществляемые в двухкамерной вакуумно-индукционной печи. Заливку литейной формы расплавом осуществляют со скоростью 20-50...
Тип: Изобретение
Номер охранного документа: 0002344019
Дата охранного документа: 20.01.2009
19.04.2019
№219.017.2dce

Способ получения алюминидного покрытия на поверхности изделия из жаропрочного сплава

Изобретение относится к металлургии и может быть использовано в авиационном и энергетическом турбиностроении для защиты лопаток турбин от высокотемпературного окисления и сульфидной коррозии. Размещают изделие и сплав на основе алюминия в зоне обработки. Создают вакуум в зоне обработки, подают...
Тип: Изобретение
Номер охранного документа: 0002348739
Дата охранного документа: 10.03.2009
Показаны записи 271-280 из 323.
19.04.2019
№219.017.3218

Способ термомеханической обработки изделий из титановых сплавов

Изобретение относится к области цветной металлургии, в частности к термомеханической обработке изделий (полуфабрикатов, деталей, узлов и др.) из титановых сплавов Способ термомеханической обработки изделий из титановых сплавов включает термомеханическую обработку, которую проводят в двенадцать...
Тип: Изобретение
Номер охранного документа: 0002457273
Дата охранного документа: 27.07.2012
19.04.2019
№219.017.3246

Флюс для плавки и рафинирования магниевых сплавов, содержащих иттрий

Изобретение относится к металлургии цветных сплавов, в частности к флюсам для плавки и рафинирования деформируемых магниевых сплавов, содержащих иттрий. Флюс характеризуется повышенной рафинирующей способностью от металлических примесей, препятствует потере иттрия и имеет следующий состав,...
Тип: Изобретение
Номер охранного документа: 0002451762
Дата охранного документа: 27.05.2012
19.04.2019
№219.017.339e

Сплав на основе алюминия

Предлагаемое изобретение относится к области цветной металлургии и может быть использовано в авиакосмической промышленности и транспортном машиностроении. Сплав содержит следующие компоненты, мас.%: медь 3,50-4,50, магний 1,20-1,60, марганец 0,30-0,60, цирконий 0,01-0,15, серебро 0,01-0,50,...
Тип: Изобретение
Номер охранного документа: 0002447173
Дата охранного документа: 10.04.2012
19.04.2019
№219.017.339f

Теплостойкая подшипниковая сталь

Изобретение относится к области металлургии, а именно к созданию теплостойких сталей для подшипников, работающих при температуре до 500°С и используемых, например, для авиационных газотурбинных двигателей (ГТД) и редукторов вертолетов. Сталь содержит углерод, марганец, кремний, хром, вольфрам,...
Тип: Изобретение
Номер охранного документа: 0002447183
Дата охранного документа: 10.04.2012
27.04.2019
№219.017.3bb6

Жаропрочный литейный сплав на основе кобальта и изделие, выполненное из него

Изобретение относится к металлургии, в частности к жаропрочным сплавам для деталей горячего тракта газотурбинных двигателей и установок, длительно работающих в агрессивных средах при температурах 750-1000°С. Жаропрочный литейный сплав на основе кобальта содержит, мас.%: углерод 0,15-0,35,...
Тип: Изобретение
Номер охранного документа: 0002685895
Дата охранного документа: 23.04.2019
27.04.2019
№219.017.3bd4

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, в частности к коррозионно-стойким жаропрочным сплавам на основе никеля для деталей горячего тракта газотурбинных двигателей и установок, длительно работающих в агрессивных средах при температурах 800-1000°С. Жаропрочный литейный сплав на основе никеля...
Тип: Изобретение
Номер охранного документа: 0002685908
Дата охранного документа: 23.04.2019
27.04.2019
№219.017.3bea

Интерметаллидный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к жаропрочным интерметаллидным сплавам на основе никеля, предназначенным для изготовления методами точного литья деталей газотурбинных двигателей. Сплав на основе интерметаллида никеля содержит, мас.%: 8,1 - 8,6 Аl, 5,6 - 6,3 Сr 4,5 - 5,5...
Тип: Изобретение
Номер охранного документа: 0002685926
Дата охранного документа: 23.04.2019
27.04.2019
№219.017.3bf1

Антибликовый экран на основе силикатного стекла, антибликовое и антибликовое электрообогревное покрытия для него

Изобретение относится к области антибликового остекления приборов радиоэлектронной техники. Антибликовое покрытие содержит первый внутренний слой из TiO толщиной 10-17 нм, второй слой из SiO толщиной 27-36 нм, третий слой из TiO толщиной 102-120 нм и четвертый слой из SiO толщиной 87-95 нм....
Тип: Изобретение
Номер охранного документа: 0002685887
Дата охранного документа: 23.04.2019
29.04.2019
№219.017.4540

Сплав на основе интерметаллида nial

Изобретение относится к области металлургии, а именно к литейным сплавам на основе интерметаллида NiAl и изделиям, получаемым методом точного литья по выплавляемым моделям с поликристаллической и направленной столбчатой структурами, таким как, например, сопловые лопатки, блоки сопловых лопаток,...
Тип: Изобретение
Номер охранного документа: 0002405851
Дата охранного документа: 10.12.2010
08.05.2019
№219.017.48f9

Металлокерамический композиционный материал на основе интерметаллидной матрицы и способ его получения

Изобретение относится к металлургии, а именно к высокотемпературным композиционным материалам на основе интерметаллидной матрицы для обеспечения двигателей повышенной мощности и ресурса. Металлокерамический композиционный материал с интерметаллидной матрицей на основе NiAl содержит, масс.%: Al...
Тип: Изобретение
Номер охранного документа: 0002686831
Дата охранного документа: 30.04.2019
+ добавить свой РИД