×
27.04.2019
219.017.3ca1

Результат интеллектуальной деятельности: ТЕПЛОСТОЙКОЕ ТЕРМОРЕАКТИВНОЕ СВЯЗУЮЩЕЕ ДЛЯ ПОЛИМЕРНОЙ ОСНАСТКИ ИЗ ПОЛИМЕРНЫХ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к теплостойкому связующему для полимерной оснастки из полимерных композиционных материалов, которое может быть использовано в изделиях авиакосмической техники. Теплостойкое термореактивное бисмалеимидное связующее содержит, мас.% от общей массы компонентов: бисмалеимид - N,N'-(4,4-метилендифенил)дималеимид от 47 до 65; 2,2'-диаллилбисфенол А - от 15 до 40; один или несколько сореагентов, таких как диаллиловый эфир фталевой кислоты, 2-аллилфенол, 2,4,6-триаллилокси-1,3,5-триазин или их смесь - от 5 до 27. Предложенное связующее обладает высоким значением температуры стеклования, составляющим 255-285°С, что обеспечивает возможность получения теплостойкой оснастки с рабочей температурой до 250°С при увеличении жизнеспособности до 1 месяца и повышении упруго-прочностных характеристик, а также при упрощении технологии его получения за счет исключения легколетучих токсичных органических растворителей. 3 з.п. ф-лы, 2 табл., 8 пр.

Теплостойкое термореактивное связующее для полимерной оснастки из полимерных композиционных материалов.

Изобретение относится к разработке теплостойкого связующего для изготовления размеростабильной полимерной оснастки из полимерных композиционных материалов (ПКМ) с многократной выдержкой циклов нагрев-охлаждение при температурах до 250°С, применяемых в изделиях авиакосмической техники.

Известно, что бисмалеимидные связующие широко используются в качестве полимерных матриц для производства изделий из полимерных композиционных материалов, эксплуатирующихся при повышенных температурах до 250°С, поскольку в отличие от эпоксидных смол обладают более высокой температурой стеклования (Tg). Кроме того, бисмалеимиды демонстрируют сходные с эпоксидными смолами технологические свойства, но превосходят их относительно низкой потерей массы в ходе теплового старения.

Известно, что в мировой промышленности широко применяют неметаллическую оснастку для выкладки, вакуумное и автоклавное формование пакета препрега, формование давлением (инжекционные и инфузионные технологии) крупногабаритных деталей и узлов сложных форм изделий из ПКМ.

Известен состав бисмалеимидного связующего для препрегов (варианты) (ЕР 0861281 B1, C08F 22/40, опубл. 05.06.2002) перерабатываемый в ПКМ методом автоклавного формования. Недостатки данного состава заключаются в том, что:

- усложнен технологический процесс (из-за наличия стадий получения суспензии одного или нескольких твердых бисмалеимидных мономеров с другими компонентами реакционной системы);

- после охлаждения бисмалеимидного связующего в нем присутствуют мелкие бисмалеимидные частицы, которые служат центрами кристаллизации. Крупные кристаллы приводят к созданию стабильной системы, которая является гетерогенной, трудно обрабатываемой и которая подвержена микротрещинам при использовании для получения композитов, армированных углеродным волокном;

- разработанные составы обеспечивают температуру разложения отвержденного связующего (потерю веса %) при 232°С от 0,64 до 2,47%, а при 260°С от 1,50 до 10,78%, что является невысоким показателем термостойкости для бисмалеимидных связующих.

Известен состав эпоксибисмалеимидной смолы (RU 2587169 С1, C08L 63/00, опубл. 20.06.2016), содержащий в мас. %:

N,N,N',N'-тетраглицидил-4,4'-диамино-3,3'-дихлордифенилметан 29,2-47,6
триглицидилпарааминофенол 10,9-27,1
парааминофенол 0,5-2,1
N,N'-гексаметиленбисмалеимид 13,9-15,8
4,4'-диаминодифенилсульфон 20,9-30,6

Недостатками данного изобретения являются:

- сложность технологического процесса для изготовления промышленных укрупненных партий эпоксибисмалеимидного связующего, поскольку к предварительно нагретым до 120°С эпоксидным смолам и катализатору N,N'-парааминофенолу необходимо добавить и растворить при этой температуре отвердитель 4,4'- диаминодифенилсульфон, а затем снизив температуру в реакционной смеси до 100°С ввести бисмалеимид и перемешивать при этой температуре до его полного растворения. Такой способ изготовления связующего не только значительно снижает его жизнеспособность, но и повышается возможность возникновения самопроизвольной экзотермической реакции отверждения под действием отвердителя, реакционная способность которого при температурах выше 110°С достаточно высока;

- вследствие частичного протекания реакции отверждения под действием отвердителя 4,4'- диаминодифенилсульфона данное связующее будет иметь широкий интервал значений вязкости, что скажется как на технологии его переработки в препрег, так и на жизнеспособности каждой конкретной партии препрега;

- температура стеклования в данном изобретении не превышает 244°С, что объясняется введением в состав эпоксидных смол.

Известен состав (US 7592072 В2, D04H 1/00, опубл. 22.09.2009), основу которого составляют 3 различных по химической структуре мономера бисмалеимида (4,4'-дифенилметан-бис-малеимид, N.N-2,4-толуен-бис-малеимид, N,N'-2,2,4-триметилгексан-бис-малеимид) образуя эвтектическую смесь, кроме того в нее входит в качестве сомономера 2,2'-диаллилбисфенол А или 2,2'-дипропенилбисфенол А, гидрохинон, термопластичная добавка полиимид, отверждающим агентом являются полиамины и алкенильные ароматические соединения, в частности бисалкенилфенол.

К недостаткам данного технического решения относится сложность точного приготовления эвтектической смеси из 3 мономеров бисмалеимида. При этом использование бисмалеимида на основе алифатического амина (N,N'-2,2,4-триметилгексан-бис-малеимида) приводит к значительному снижению температуры стеклования и термостойкости такого связующего, невысокая жизнеспособность препрега (10 дней в условиях окружающей среды) и длительный по энерго и трудозатратам режим формования в ПКМ с использованием дорогостоящего автоклавного оборудования (4 часа в автоклаве при 375°F (190°С) и доотверждение 16 часов при 450°F (232°С).

Кроме того, поскольку бисмалеимиды имеют очень плохую совместимость с традиционно используемыми термопластичными агентами, повышающими вязкость разрушения, введение в состав полиимида приводит либо к затруднению растворения термопластичного материала в базовой эвтектической смеси в ходе получения, либо полному разделению фаз термопластика в процессе отверждения.

Известен состав из полималеимидного компонента и аллилсодержащего преполимера (US 5183865 A, C08F 290/14, опубл. 02.02.1993), при этом аллил со держащий преполимер получается при длительном взаимодействии при температуре 140°С эпоксидиановой эпоксидной смолы и 2,2'-диаллилбисфенола А или 2-аллилфенола. Данное изобретение позволяет получить изделия из ПКМ по препреговой технологии.

Недостатками данного изобретения являются:

- многостадийность процесса получения бисмалеимидного связующего;

- необходимость проведения реакции получения преполимера в течение длительного времени (16 ч. и более) при высокой температуре 140°С, что требует привлечения излишних энерго- и трудозатрат;

- необходимость проведения исследований химической структуры синтезированного преполимера с применением инфрокрасной спектроскопии и ядерного магнитного резонанса.

- полученное в ходе реакции бисмалеимидное связующее необходимо раздробить в порошок, что также требует использования дополнительного оборудования. Кроме того, такое агрегатное состояние связующего накладывает на него ряд ограничений по технологии переработки, т.к. исключает возможность использования инжекционных методов, в то время как для препреговой технологии и метода электростатического напыления к полимерному порошку связующего предъявляются дополнительные требования по гранулометрическому составу частиц, температуре его размягчения, технологической жизнеспособности.

Известен состав из бисмалеимидного связующего (US 4644039 А, В32В 27/10, опубл. 17.02.1987) в котором в качестве катализатора используются комплексы на основе органофосфина и органофосфония (в частности трифенилфосфин). Препреги, изготовленные на основе этих составов бисмалеимидного связующего, могут поддерживать липкость, драпировку в течение 2 недель при комнатной температуре. Изготовленные на его основе ПКМ хотя и обеспечивают высокую прочность в отвержденном состоянии, однако, тем не менее, имеют недостатки: теплостойкость материала не превышает 256°С.

Недостатки данного состава заключаются в том, что:

- невозможно из-за высокой вязкости расплава использовать его в качестве связующего для изготовления изделий инжекционными методами;

- жизнеспособность препрегов на его основе не превышает 2 недель. Известен состав бисмалеимидного связующего (US 5059665 A, C08F 222/40, опубл. 22.10.1991) содержащий: 4,4'-дифенилметан-бис-малеимид -100 масс.ч., диаллилбисфенол А или 2,6-ди(пропенилфенокси)пиридин -5-100 масс, ч., стабилизатор (кислоты Льюиса) - 0,01-2,0 масс, ч., в котором кислоты Льюиса выполняют роль добавки повышающей жизнеспособность препрегов на основе бисмалеимидного связующего.

Недостатком данного изобретения является более энергозатратный режим отверждения препрегов от 150 до 300°С, а также в изобретении достигаются недостаточно высокие теплостойкие и механические характеристики отвержденных изделий из ПКМ.

За прототип принят состав (US 4743647 A, C07D 207/452, опубл. 10.05.1988) для изготовления препрегов на основе бисмалеимидного связующего, характеризующегося наличием в его молекулярной структуре трех ароматических колец. В данном изобретении синтезированы ароматические бисмалеимиды, такие как альфа, альфа'-бис (4-малеимидофенил)-мета-диизопропилбензил и альфа, альфа'-бис (4-малеимидофенил)-пара-диизопропилбензил. В качестве сореагентов в изобретении указаны соединения содержащие одну или несколько двойных связей (алильные, винильные и акрилатные производные), в частности диаллилбисфенол А, а также добавки термопластичного полимера.

Недостатки прототипа заключаются в том, что изготовление заявленных в изобретении альфа'-бис (4-малеимидофенил)-мета-диизопропилбензила и альфа, альфа'-бис (4-малеимидофенил)-пара-диизопропилбензила представляет собой длительный многостадийный синтез (одна из стадий требует нагревания при 40°С с уксусным ангидридом и триэтиламином в течение 16-20 часов), включающий также многократную промывку целевого продукта водой и использование растворителей (ацетона и дихлор метана), что создает сложности для изготовления укрупненных партий, а также не позволяет полностью очистить их от следов растворителей, что приведет к пористости изделий из ПКМ на их основе.

Задачей изобретения является создание теплостойкого термореактивного связующего для полимерной оснастки из полимерных композиционных материалов упрощение и удешевление технологии получения бисмалеимидного связующего перерабатываемого по инжекционным технологиям (вакуумная инфузия, пропитка под давлением).

Техническим результатом заявленного изобретения является увеличение температуры стеклования связующего для обеспечения многократной выдержки цикл нагрев-охлаждение при температурах до 250°С, снижение пористости, увеличение срока годности при хранении связующего, снижение отходов, упрощенный технологический процесс получения теплостойкого термореактивного связующего, повышение термостойкости, повышение упруго - прочностных характеристик.

Для достижения поставленного технического результата предложено теплостойкое термореактивное бисмалеимидное связующее для полимерной оснастки из полимерных композиционных материалов, содержащее бисмалеимид, 2,2'-диаллилбисфенол А, при этом в качестве бисмалеимида используется N,N'-(4,4-метилендифенил)дималеимид в количестве от 47 масс. % до 65 масс. % от общей массы компонентов, 2,2'-диаллилбисфенол А в количестве от 15 масс. % до 40 масс. % от общей массы компонентов, содержащее один или несколько со реагентов, таких как диаллиловый эфир фталевой кислоты, 2-аллилфенол, 2,4,6-триаллилокси-1,3,5-триазин или их смесь в количестве от 5 масс. % до 27 масс. % от общей массы компонентов.

Предпочтительно, вышеупомянутое связующее дополнительно содержит один или несколько со реагентов, таких как диглицидиловый эфир бисфенола А, N,N',N'-триглицидиламинофенол, N,N,N'N'-тетраглицидил-4'4-диаминодифенилметан или их смесь в количестве составляющем от 1 масс. % до 4 масс. % от общей массы компонентов.

Предпочтительно, вышеупомянутое связующее дополнительно содержит ингибитор полимеризации в количестве не превышающем 1,0 масс. % от общей массы компонентов и содержит в качестве факультативной добавки наполнитель нанодисперсный оксид алюминия или оксид кремния в количестве не превышающем 5,0 масс. % от общей массы компонентов.

Предпочтительно, в качестве ингибитора полимеризации используется бензол-1,4-диол или 2,6-ди-трет-бутил-4-метилфенол.

Выбор связующего для данной технологии требует достаточно низкую вязкость расплава менее 0,6 Па⋅с, поскольку при инжектировании оно должно равномерно распределяться между частицами наполнителя или армирующего компонента, не задерживаться в нем, иначе полученные ПКМ будут иметь пустоты или дефекты.

Для снижения вязкости данных композиций используют различные активные разбавители. Однако, из опыта работы по созданию низковязких связующих известно, что введение подобных разбавителей приводит к пластификации полимерной матрицы и уменьшению хрупкости отвержденной композиции, но значительно снижает ее термостойкость, что не позволяет получить материал, обеспечивающий рабочую температуру до 250°С.

Одними из наиболее перспективных со реагентов для системы 2,2'-диаллилбисфенол А - бисмалеимид являются аллильные производные, такие как диаллиловый эфир фталевой кислоты, 2-аллилфенол, 2,4,6-триаллилокси-1,3,5-триазин или их смесь, содержащие концевые двойные связи. Они позволяют регулировать вязкость композиции, не снижая при этом термомеханические свойства отвержденного полимера. Кроме того, использование небольших количеств аллильных производных в качестве активных разбавителей позволяет увеличить степень сшивки полимерной матрицы отвержденного связующего и уменьшить температуру совмещения реакционной смеси с бисмалеимидом, что позволит увеличить жизнеспособность готового связующего. Таким образом, повышение стеклования и термостойкости происходит вследствие увеличения степени сшивки полимерной матрицы, за счет повышения содержания мономеров с одной (2-аллилфенол) или более (диаллиловый эфир фталевой кислоты, 2,4,6-триаллилокси-1,3,5-триазин) двойными связями, расположенными недалеко друг от друга и связанными через жесткий мостик.

Изготовление связующего представляет собой технологически простой одностадийный процесс, в котором в реактор последовательно добавляются химические компоненты, не требующие дополнительной очистки, а также отсутствуют в составе легколетучие токсичные органические растворители (ацетон, хлористый метелен и др.), что позволяет уменьшить отходы на производстве, то есть повысить его экологическую безопасность и снизить пористость изделий из ПКМ.

Кроме того, отсутствие в разработанном связующем каталитических добавок (например, аминных (ди- или триэтиламин, бензилдиметиламин), октоата кобольта, комплексов на основе органофосфина и органофосфония (в частности трифенилфосфин)) позволяет хранить его в течение до 1 месяца при комнатной температуре без значительной потери его технологических характеристик.

Другим перспективным модификатором для улучшения технологических характеристик (снижение температуры формообразования) связующего является введение в состав эпоксидиановых или азотсодержащих эпоксидных смол (диглицидиловый эфир бисфенола А, N,N'N'-триглицидиламинофенол, N,N,N'N'-тетраглицидил-4'4-диаминодифенилметан или их смесь), что позволяет повысить упруго-прочностные характеристики изделий из ПКМ. Однако, следует учесть, что увеличение полифункциональных эпоксидных смол в количестве более 5 масс. % приводит к значительному снижению термостойкости изделия.

В частных воплощениях изобретения для придания дополнительной жизнеспособности бисмалеимидное связующее может дополнительно содержать до 1 масс. % от общей массы компонентов ингибитора в частности бензол-1,4-диол или 2,6-ди-трет-бутил-4-метилфенол.

Кроме того в качестве факультативной добавки бисмалеимидное связующее может содержать наполнитель, который вводится для улучшения некоторых технологических или эксплуатационных свойств, который вводится в количестве не превышающем 5 масс. % от общей массы компонентов. В качестве наполнителя могут быть использованы такие вещества как нанодисперсный оксид алюминия или оксид кремния (например, Аэросил А 300, Аэросил А 380 и др.).

Заявляемое теплостойкое эпоксибисмалеимидное связующее, которое может быть использовано для получения размеростабильной полимерной оснастки из ПКМ с температурой эксплуатации до 250°С, обладает динамической вязкостью менее 0,6 Па⋅с при температуре переработки (110-120°С) и сохраняя технологическую вязкость (до 1 Па⋅с) не менее 1,5 часов, пригодно для изготовления изделий инжекционными методами, что особенно важно для изготовления крупногабаритных изделий.

Примеры составов и свойства эпоксибисмалеимидного связующего представлены в таблицах 1 и 2.

Состав и получение связующего.

Пример 1

В реактор загружают 2,2'-диаллилбисфенол А, диаллиловый эфир фталевой кислоты, 2-аллилфенол и 2,4,6-триаллилокси-1,3,5-триазин, которые нагревают при перемешивании до температуры 110-115°С и вводят эпоксидную смолу диглицидиловый эфир бисфенола А. Затем при интенсивном перемешивании в течение 5 минут добавляют N,N'-(4,4-метилендифенил)дималеимид, причем температура расплава падает до 90-95°С. После растворения последней порции N,N'-(4,4-метилендифенил)дималеимида, в реакционную смесь добавляют ингибитор (2,6-ди-трет-бутил-4-метилфенол) и продолжают интенсивное перемешивание в течение 0,5 ч при температуре 100°С и сливают готовое связующее в сухие емкости.

Состав, соотношение компонентов связующего и его свойства приведены в таблицах 1 и 2.

Образцы для механических испытаний отвержденной матрицы готовили методом отливки в форму с последующим отверждением по следующему режиму: 180°С - 3 часа, 220°С-3 часа и 240°С - 4 часов.

Пример 2

В реактор загружают 2,2'-диаллилбисфенол А, 2-аллилфенол и 2,4,6-триаллилокси-1,3,5-триазин, которые нагревают при перемешивании до температуры 110-115°С и вводят эпоксидную смолу N,N,N'N'-тетраглицидил-4'4-диаминодифенилметан. Затем при интенсивном перемешивании в течение 5 минут добавляют N,N'-(4,4-метилендифенил)дималеимид, причем температура расплава падает до 90-95°С. После растворения последней порции N,N'-(4,4-метилендифенил)дималеимида, в реакционную смесь добавляют ингибитор (2,6-ди-трет-бутил-4-метилфенол) и продолжают интенсивное перемешивание в течение 0,5 ч при температуре 100°С и сливают готовое связующее в сухие емкости.

Состав, соотношение компонентов связующего и его свойства приведены в таблицах 1 и 2.

Пример 3

В реактор загружают 2,2'-диаллилбисфенол А, диаллиловый эфир фталевой кислоты, которые нагревают при перемешивании до температуры 110-115°С. Затем при интенсивном перемешивании в течение 5 минут добавляют N,N'-(4,4-метилендифенил)дималеимид, причем температура расплава падает до 90-95°С. После растворения последней порции N,N'-(4,4-метилендифенил)дималеимида продолжают интенсивное перемешивание в течение 0,5 ч при температуре 100°С и сливают готовое связующее в сухие емкости. Состав, соотношение компонентов связующего и его свойства приведены в таблицах 1 и 2.

Пример 4

В реактор загружают 2,2'-диаллилбисфенол А, диаллиловый эфир фталевой кислоты, которые нагревают при перемешивании до температуры 110-115°С и вводят эпоксидные смолы N,N'N'-триглицидиламинофенол и диглицидиловый эфир бисфенола А. Затем при интенсивном перемешивании в течение 5 минут добавляют N,N'-(4,4-метилендифенил)дималеимида, причем температура расплава падает до 90-95°С. После растворения последней порции 1Ч,М'-(4,4-метилендифенил)дималеимида, в реакционную смесь добавляют сначала ингибитор (бензол-1,4-диол), затем оксид кремния и продолжают интенсивное перемешивание в течение 0,5 ч при температуре 100°С и сливают готовое связующее в сухие емкости.

Состав, соотношение компонентов связующего и его свойства приведены в таблицах 1 и 2.

Пример 5

В реактор загружают 2,2'-диаллилбисфенол А, диаллиловый эфир фталевой кислоты и 2,4,6-триаллилокси-1,3,5-триазин, которые нагревают при перемешивании до температуры 110-115°С и вводят эпоксидную смолу N,N,N'N'-тетраглицидил-4'4-диаминодифенилметан. Затем при интенсивном перемешивании в течение 5 минут добавляют N,N'-(4,4-метилендифенил)дималеимид, причем температура расплава падает до 90-95°С. После растворения последней порции N,N'-(4,4-метилендифенил)дималеимида, в реакционную смесь добавляют сначала ингибитор (бензол-1,4-диол), затем оксид кремния и продолжают интенсивное перемешивание в течение 0,5 ч при температуре 100°С и сливают готовое связующее в сухие емкости.

Состав, соотношение компонентов связующего и его свойства приведены в таблицах 1 и 2.

Пример 6

В реактор загружают 2,2'-диаллилбисфенол А и 2,4,6-триаллилокси-1,3,5-триазин, которые нагревают при перемешивании до температуры 110-115°С и вводят эпоксидные смолы диглицидиловый эфир бисфенола А, N,N'N'-триглицидиламинофенол и N,N,N'N'-тетраглицидил-4'4-диаминодифенилметан. Затем при интенсивном перемешивании в течение 5 минут добавляют N,N'-(4,4-метилендифенил)дималеимид, причем температура расплава падает до 90-95°С. После растворения последней порции N,N'-(4,4-метилендифенил)дималеимида, в реакционную смесь добавляют сначала ингибитор (2,6-ди-трет-бутил-4-метилфенол), затем нанодисперсный оксид алюминия и продолжают интенсивное перемешивание в течение 0,5 ч при температуре 100°С и сливают готовое связующее в сухие емкости.

Состав, соотношение компонентов связующего и его свойства приведены в таблицах 1 и 2.

Пример 7

В реактор загружают 2,2'-диаллилбисфенол А, диаллиловый эфир фталевой кислоты и 2-аллилфенол, которые нагревают при перемешивании до температуры 110-115°С и вводят эпоксидную смолу N,N'N'-триглицидиламинофенол. Затем при интенсивном перемешивании в течение 5 минут добавляют N,N'-(4,4-метилендифенил)дималеимида, причем температура расплава падает до 90-95°С. После растворения последней порции N,N'-(4,4-метилендифенил)дималеимида, в реакционную смесь добавляют нанодисперсный оксид алюминия и продолжают интенсивное перемешивание в течение 0,5 ч при температуре 100°С и сливают готовое связующее в сухие емкости.

Состав, соотношение компонентов связующего и его свойства приведены в таблицах №1 и №2.

Пример 8

В реактор загружают 2,2'-диаллилбисфенол А, 2-аллилфенол, которые нагревают при перемешивании до температуры 110-115°С и вводят эпоксидную смолу N,N'N'-триглицидиламинофенол. Затем при интенсивном перемешивании в течение 5 минут добавляют N,N'-(4,4-метилендифенил)дималеимида, причем температура расплава падает до 90-50°С. После растворения последней порции N,N'-(4,4-метилендифенил)дималеимида, в реакционную смесь добавляют сначала ингибитор (бензол-1,4-диол), затем оксид кремния и продолжают интенсивное перемешивание в течение 0,5 ч при температуре 100°С и сливают готовое связующее в сухие емкости.

Состав, соотношение компонентов связующего и его свойства приведены в таблицах №1 и №2.

Из таблицы №2 видно, что заявленные связующие в сравнении с прототипом имеют значительно более высокие значения температуры стеклования, таким образом, может быть обеспечена возможность получения теплостойкой оснастки с рабочей температурой до 250°С. В изобретении приведены составы (примеры 3, 4) отличающиеся более низкими значениями водопоглощения по сравнению с приведенными в прототипе. Кроме того, хотя оснастка не несет конструкционной нагрузки, но при этом разработанная полимерная матрица способна выдержать умеренные нагрузки, а реологические характеристики и жизнеспособность связующего позволяют провести пропитку пакета с углеродным или стеклянным волокнистым наполнителем даже для изготовления крупногабаритного изделия из ПКМ.

Источник поступления информации: Роспатент

Показаны записи 141-150 из 354.
13.01.2017
№217.015.8740

Способ получения антифреттингового покрытия

Изобретение относится к технологиям нанесения ионно-плазменных и катафорезных покрытий, в частности к способу обработки поверхности металлического изделия, и может быть использовано для защиты от фреттинга осей поворотных лопаток направляющего аппарата из титанового сплава и болтовых...
Тип: Изобретение
Номер охранного документа: 0002603414
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.8771

Интерметаллидный сплав на основе системы никель-алюминий-кобальт

Изобретение относится к области металлургии, а именно к жаропрочным сплавам, предназначенным для деталей, работающих при температурах до 1000C в газотурбинных двигателях. Сплав на основе системы никель-алюминий-кобальт содержит, мас.%: никель 50,0-62,0, кобальт 18,0-28,0, алюминий 7,5-7,8, хром...
Тип: Изобретение
Номер охранного документа: 0002603415
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.882d

Присадочный материал на основе никеля

Изобретение относится к сплавам на основе никеля в качестве присадочного материала, предназначенного для изготовления деталей и узлов наиболее высокотемпературных зон горячего тракта перспективных двигателей, длительно работающих при температурах до 1200°С. Присадочный материал на основе никеля...
Тип: Изобретение
Номер охранного документа: 0002602570
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.8a84

Магнитотвердый материал и изделие, выполненное из него

Изобретение относится к области порошковой металлургии, а именно к магнитотвердому материалу, содержащему железо, кобальт, бор, диспрозий, медь. При этом материал дополнительно содержит цирконий. Химический состав магнитного материала соответствует формуле, ат. доли: (PrDy)(FeCo)(ZrCu)B, где...
Тип: Изобретение
Номер охранного документа: 0002604092
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.8a9c

Присадочный материал на основе алюминия, легированный редкоземельными металлами

Изобретение может быть использовано при изготовлении присадочных материалов для сварки алюминиевых сплавов, в частности сварных конструкций из высокопрочных алюминиевых сплавов системы Al-Cu-Li. Присадочный материал содержит компоненты в следующем соотношении, мас. %: медь 5,0-12,0, цирконий...
Тип: Изобретение
Номер охранного документа: 0002604084
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.8bd7

Композиция для соединения керамических композиционных материалов на основе карбида кремния

Изобретение относится к области соединения керамических материалов с образованием керамического соединительного слоя и может быть использовано при производстве сложнопрофильных керамических конструкций для энергетического машиностроения, двигателестроения, аэрокосмической техники. Композиция...
Тип: Изобретение
Номер охранного документа: 0002604530
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.9116

Элинварный сплав с высоким модулем упругости и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к элинварным сплавам, и может быть использовано при изготовлении деталей упругочувствительных элементов точного приборостроения, силовых пружин и конструкционных деталей специального назначения. Дисперсионно-твердеющий сплав с малым...
Тип: Изобретение
Номер охранного документа: 0002605732
Дата охранного документа: 27.12.2016
24.08.2017
№217.015.955b

Резиновая смесь

Изобретение относится к резиновой промышленности, в частности к разработке эластомерных материалов уплотнительного назначения, и может быть использовано для изготовления резиновых деталей уплотнительных узлов наружного и внутреннего контуров машин и механизмов, работающих в среде воздуха во...
Тип: Изобретение
Номер охранного документа: 0002608399
Дата охранного документа: 18.01.2017
24.08.2017
№217.015.95ed

Полиэфирное связующее и изделие на его основе

Изобретение относится к области создания полимерных связующих на основе полиэфирного олигомера с наполнителем в виде коротких волокон для полимерных композиционных материалов (ПКМ), получаемых из листового полуфабриката (SMC-препрега) методом прямого прессования, которые могут быть использованы...
Тип: Изобретение
Номер охранного документа: 0002608892
Дата охранного документа: 26.01.2017
25.08.2017
№217.015.9ab5

Высокопрочный сплав на основе алюминия и изделие, выполненное из него

Изобретение относится к области цветной металлургии, в частности к высокопрочным сплавам на основе алюминия. Сплав на основе алюминия содержит, мас.%: медь 0,5-3,5; магний 1,5-4,5; цинк 7,0-10,0; марганец 0,005-0,9; цирконий 0,005-0,5; кобальт 0,005-0,5; церий 0,005-0,5; бериллий 0,0001-0,01;...
Тип: Изобретение
Номер охранного документа: 0002610190
Дата охранного документа: 08.02.2017
Показаны записи 141-150 из 323.
13.01.2017
№217.015.8544

Способ определения предела выносливости металлических материалов

Изобретение относится к области исследования прочностных свойств твердых материалов и может быть использовано для определения усталостной прочности конструкционных материалов, работающих в условиях циклического нагружения. Сущность: осуществляют циклическое нагружение образца в условиях...
Тип: Изобретение
Номер охранного документа: 0002603243
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.8734

Способ термомеханической обработки полуфабрикатов из двухфазных (α+β) титановых сплавов

Изобретение относится к области металлургии, в частности к термомеханической обработке полуфабрикатов из двухфазных (α+β)-титановых сплавов, и может быть использовано в машиностроении и авиационной технике. Способ термомеханической обработки полуфабрикатов из двухфазных (α+β)-титановых сплавов...
Тип: Изобретение
Номер охранного документа: 0002603416
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.8740

Способ получения антифреттингового покрытия

Изобретение относится к технологиям нанесения ионно-плазменных и катафорезных покрытий, в частности к способу обработки поверхности металлического изделия, и может быть использовано для защиты от фреттинга осей поворотных лопаток направляющего аппарата из титанового сплава и болтовых...
Тип: Изобретение
Номер охранного документа: 0002603414
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.8771

Интерметаллидный сплав на основе системы никель-алюминий-кобальт

Изобретение относится к области металлургии, а именно к жаропрочным сплавам, предназначенным для деталей, работающих при температурах до 1000C в газотурбинных двигателях. Сплав на основе системы никель-алюминий-кобальт содержит, мас.%: никель 50,0-62,0, кобальт 18,0-28,0, алюминий 7,5-7,8, хром...
Тип: Изобретение
Номер охранного документа: 0002603415
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.882d

Присадочный материал на основе никеля

Изобретение относится к сплавам на основе никеля в качестве присадочного материала, предназначенного для изготовления деталей и узлов наиболее высокотемпературных зон горячего тракта перспективных двигателей, длительно работающих при температурах до 1200°С. Присадочный материал на основе никеля...
Тип: Изобретение
Номер охранного документа: 0002602570
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.8a84

Магнитотвердый материал и изделие, выполненное из него

Изобретение относится к области порошковой металлургии, а именно к магнитотвердому материалу, содержащему железо, кобальт, бор, диспрозий, медь. При этом материал дополнительно содержит цирконий. Химический состав магнитного материала соответствует формуле, ат. доли: (PrDy)(FeCo)(ZrCu)B, где...
Тип: Изобретение
Номер охранного документа: 0002604092
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.8a9c

Присадочный материал на основе алюминия, легированный редкоземельными металлами

Изобретение может быть использовано при изготовлении присадочных материалов для сварки алюминиевых сплавов, в частности сварных конструкций из высокопрочных алюминиевых сплавов системы Al-Cu-Li. Присадочный материал содержит компоненты в следующем соотношении, мас. %: медь 5,0-12,0, цирконий...
Тип: Изобретение
Номер охранного документа: 0002604084
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.8bd7

Композиция для соединения керамических композиционных материалов на основе карбида кремния

Изобретение относится к области соединения керамических материалов с образованием керамического соединительного слоя и может быть использовано при производстве сложнопрофильных керамических конструкций для энергетического машиностроения, двигателестроения, аэрокосмической техники. Композиция...
Тип: Изобретение
Номер охранного документа: 0002604530
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.9116

Элинварный сплав с высоким модулем упругости и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к элинварным сплавам, и может быть использовано при изготовлении деталей упругочувствительных элементов точного приборостроения, силовых пружин и конструкционных деталей специального назначения. Дисперсионно-твердеющий сплав с малым...
Тип: Изобретение
Номер охранного документа: 0002605732
Дата охранного документа: 27.12.2016
24.08.2017
№217.015.955b

Резиновая смесь

Изобретение относится к резиновой промышленности, в частности к разработке эластомерных материалов уплотнительного назначения, и может быть использовано для изготовления резиновых деталей уплотнительных узлов наружного и внутреннего контуров машин и механизмов, работающих в среде воздуха во...
Тип: Изобретение
Номер охранного документа: 0002608399
Дата охранного документа: 18.01.2017
+ добавить свой РИД