×
25.04.2019
219.017.3b97

СПОСОБ ИЗГОТОВЛЕНИЯ ТЕРМОСТАБИЛЬНЫХ РЕДКОЗЕМЕЛЬНЫХ МАГНИТОВ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к порошковой металлургии, в частности к получению термостабильных редкоземельных магнитов. Магниты могут использоваться в системах автоматики, промышленном оборудовании, автомобилях. Осуществляют выплавку базового сплава на основе интерметаллического соединения NdFeB и сплава-добавки. В качестве сплава-добавки используют сплав следующего химического состава: P3M(CoCu), где РЗМ - один или несколько элементов из группы: Tb, Dy, Но, z=1-4; y=0.2-0.8. Оба сплава подвергают гидридному диспергированию. Гидридное диспергирование сплава-добавки осуществляют в интервале температур 500-700°С. Далее порошки обоих сплавов смешивают и подвергают тонкому помолу с последующим прессованием в магнитном поле. Прессовки спекают и термически обрабатывают, причем при нагреве перед спеканием в вакууме осуществляют выдержку при температуре 900-1000°С в течение 1-2 ч. Полученные магниты обладают высокими магнитными свойствами. 4 табл., 1 пр.
Реферат Свернуть Развернуть

Изобретение относится к области электротехники, в частности к изготовлению редкоземельных постоянных магнитов.

Известен способ изготовления редкоземельных магнитов, включающий операции выплавки сплава с последующим его измельчением, прессования полученного порошка в магнитном поле, спекания и термическую обработку, включающую в себя выдержку при температуре 900°С (2 ч), с последующим медленным охлаждением со скоростью (1-2)°С/мин до температуры 500°С, выдержку при этой температуре в течение 1 часа с последующей закалкой (Глебов В.А., Лукин А.А. Нанокристаллические редкоземельные магнитотвердые материалы. М., ФГУП ВНИИНМ. 2007. С. 179).

Известен способ изготовления редкоземельных магнитов, включающий операции выплавки сплава с последующим его измельчением путем гидридного диспергирования, прессования полученного порошка в магнитном поле, спекания и термическую обработку (Патент РФ 1457277 B22F 1/00, 3/02, 3/12, H01F 1/08. 04.06.86.).

Известен способ изготовления термостабильных редкоземельных магнитов, включающий операции выплавки сплава с последующим его измельчением, прессования полученного порошка в магнитном поле, спекания и термическую обработку, включающую в себя выдержку при температуре 900°С (2 ч) с последующей закалкой (Патент РФ №2368969 Н01F 1/057).

Наиболее близким по технической сущности является способ изготовления термостабильных редкоземельных магнитов, включающий операции выплавки сплава, получения порошка, с последующим его прессованием в магнитном поле, спекания прессовок и термическую обработку, при этом перед операцией прессования порошка в магнитном поле, дополнительно проводят операции предварительного компактирования, предспекания при температуре на 30-100°С ниже температуры спекания, с последующим помолом заготовки после предспекания совместно с гидридом РЗМ (РЗМ редкоземельный элемент или их смесь) в количестве (0.5-2) масс.%. (Патент РФ №2493628 H01F 1/057). Недостатком способа являются относительно невысокие свойства при заданном обратимом температурном коэффициенте магнитной индукции.

Техническим результатом изобретения является увеличение магнитных свойств (индукции Br, коэрцитивной силы по намагниченности jHc и параметра прямоугольности петли гистерезиса Hk - поле, которое на кривой размагничивания соответствует 0.9 Br) при сохранении обратимого температурного коэффициенте магнитной индукции (ТКИ) (α (Br)), в интервале температур -60 -+100°С.

Технический результат достигается за счет того, что в известном способе изготовления термостабильных редкоземельных магнитов, включающем операции выплавки базового сплава и сплава-добавки, получения порошков обоих сплавов с использованием гидридного диспергирования, с последующим их смешением и прессованием в магнитном поле, спекания прессовок и термическую обработку, гидридное диспергирование сплава-добавки осуществляют при температуре 500-700°С, при нагреве в вакууме пресс-заготовок перед спеканием осуществляют выдержку при температуре 900-1000°С в течение 1-2 ч, при этом в качестве сплава-добавки используют сплав следующего химического состава (ат. %): P3Mz(Co1-yCuy), где РЗМ - один или несколько элементов из группы: Tb, Dy, Но, z=1-4; y=0.2-0.8.

Установлено с помощью растровой (РЭМ) и просвечивающей (ПРЭМ) электронной микроскопии, локального (разрешение 1 мкм) рентгеноспектрального анализа и локального (разрешение 1 нм) томографического зонда (LEAP), что магниты, полученные в соответствии с предложенным способом, имеют наногетерогенное (дисперность составляла 5-50 нм) распределение редкоземельных элементов в основной магнитной фазе типа PЗM2Fe14B. Немагнитные граничные фазы толщиной несколько нанометров, обогащенные РЗМ, содержащие также кобальт и медь, хорошо разделяют зерна основной магнитной фазе типа PЗM2Fe14B. Такая структура магнитов на основе сплавов типа РЗМ-Fe-B обусловливает высокие магнитные свойства ((ВН)max, Br, jHc, Hk) при сохранении обратимого температурного коэффициента магнитной индукции {α (Br)} на уровне -0.04%/°С.

Примеры реализации способа

Базовые сплавы и сплавы-добавки получают из исходных компонентов (РЗМ: Tb, Dy, Но, Nd, Pr; Fe, Со, Cu, Al, В) или их лигатур путем плавления в вакуумной индукционной печи в среде инертного газа (особо чистого аргона) с последующей закалкой в водоохлаждаемую изложницу. Контроль химического состава осуществляют с помощью эмиссионно-спектрального метода. Гидридное диспергирование (ГД) базовых сплавов и сплавов-добавок осуществляют в протоке сухого водорода в течение нескольких часов при температуре 200-400°С для базовых сплавов и 480-720°С с последующей пассивацией в среде газообразного азота. После охлаждения до комнатной температуры полученные порошки базового сплава и сплава-добавки подвергают тонкому помолу в вибрационной мельнице в среде изопропилового спирта в течение 50 мин до среднего размера частиц 3-4 мкм. После прессования и предварительного спекания базового сплава в интервале температур 1000-1040°С спеченные заготовки базового сплава подвергают ГД, смешивают с порошками сплава-добавки после ГД (на 95.0-98.5 массовых долей базового сплава приходилось 1.5-5.0 масс. % сплава-добавки) и подвергают совместному тонкому помолу в вибрационной мельнице в среде изопропилового спирта в течение 50 минут кс до среднего размера частиц 3-4 мкм. После повторного прессования в магнитном поле и окончательного спекания при Т = 1100°С (2 ч) с последующей обработкой по режиму: 900°С (2 ч) охлаждение со скоростью (0.01-0.03)°С/с + 500°С (2 ч)+закалка (в протоке газообразного азота). После механической шлифовки алмазным инструментом и намагничивания до насыщения образцы измеряют на гистериографе в замкнутой магнитной цепи в полях до 30 кЭ при комнатной температуре. После магнитных измерений для проведения структурных исследований образцы термически размагничивают в вакууме при 500°С, для восстановления исходного состояния.

В таблице 1 приведены свойства магнитов с выдержкой перед спеканием при температуре 950°С (1 ч) при различных режимах ГД сплава-добавки (Tb3Co0.6Cu0.4, 3 масс. %). Как следует из таблицы 1, оптимальным является интервал температур 500-700°С. При более низких температурах не происходит полное разложение сплава-добавки, что приводит затруднению процесса тонкого помола и снижению магнитных свойств. При температурах выше 700°С происходит подплавление сплава добавки, что также негативно сказывается на уровне магнитных свойств магнитов.

В таблице 2 приведены свойства магнитов при ГД при Т = 600°С при содержании сплава-добавки Tb3Co0.6Cu0.4 3 масс. % при различных параметрах выдержки перед спеканием. Как видно из таблицы 2, оптимальными являются интервал температур 900-1000°С в течение 1-2 ч. При температурах и времени выдержки ниже, соответственно, 900°С и 1 ч не успевают пройти процессы выделения водорода из сплава-добавки и диффузии редкоземельных элементов в основную магнитотвердую фазу типа PЗM2Fe14B. При температурах и времени выдержки выше, соответственно, 1000°С и 2 ч, отмеченные выше процессы проходят слишком интенсивно, что может приводить к неоднородности магнитов и разрушению прессовок в процессе последующего спекания.

В таблице 3 приведены свойства магнитов с различным химическим составом и количеством (масс. %) сплава-добавки при ее ГД при Т = 600°С и при выдержке прессовок перед спеканием по режимам: 950°С, 1.5 ч: {Tb3(Со1-yCuy), y=0.0, 0.1, 0.2*, 0.5*, 0.8*, 1.0; Tbz(Co0.6Cu0.4), z=0.5, 1.0*, 2.0*, 3.0*, 4.0*, 4.5}. Как видно из таблицы 3, экспериментальные данные подтверждают правильность заявленного выбора количества и химического состава сплава-добавки.

В таблице 4 приведены свойства магнитов с одинаковым результирующим химическим составом {(Nd0.2Pr0.5Tb0.3}15(Fe0.75Co0.25)77Al0.7Cu0.3B7, ат. %} при использовании (или отсутствии) различных по химическому составу сплавов-добавок при их ГД при Т = 600°С и при выдержке прессовок перед спеканием по режимам: 950°С, 1.5 ч (Tb3(Со0.6Cu0.4) - предложено в данной заявке, TbH2 - предложено в прототипе, а также при отсутствии сплава-добавки). При этом результирующий химический состав магнитов был одинаковым. Как видно из таблицы 4, магниты с использованием предложенного сплава-добавки обладают более высокими магнитными свойствами.

Предложенный способ изготовления термостабильных редкоземельных магнитов позволяет реализовать более высокие магнитные свойства, такие как (ВН)max, Br, jHc, Hk при сохранении обратимого температурного коэффициента магнитной индукции α (Br), обусловливающего повышенную температурную стабильность.

Применение предложенного способа позволяет повысить точность и стабильность работы навигационного оборудования и систем авиационной автоматики.

Примечание. В таблицах 1-4 примеры, помеченные звездочкой (*), соответствуют параметрам, изложенным в формуле изобретения.

Способ изготовления термостабильных редкоземельных магнитов, включающий операции выплавки базового сплава и сплава-добавки, получения порошков обоих сплавов с использованием гидридного диспергирования с последующим их смешением и прессованием в магнитном поле, спекания прессовок и термическую обработку, отличающийся тем, что гидридное диспергирование сплава-добавки осуществляют при температуре 500-700°С, при нагреве в вакууме пресс-заготовок перед спеканием осуществляют выдержку при температуре 900-1000°С в течение 1-2 ч, при этом в качестве сплава-добавки используют сплав следующего химического состава: PЗM(CoCu), где РЗМ - один или несколько элементов из группы: Tb, Dy, Но, z=1-4; y=0.2-0.8.
Источник поступления информации: Роспатент

Показаны записи 71-80 из 108.
20.05.2019
№219.017.5d26

Способ обескремнивания нефелинового концентрата и устройство для его осуществления

Изобретение относится к области металлургии, в частности к переработке нефелинового концентрата с получением из него синтетического боксита, содержащего до 80% AlO и до 1,5% SiO. Способ включает приготовление шихты из концентрата и углерода и карботермическую восстановительную плавку шихты в...
Тип: Изобретение
Номер охранного документа: 0002688083
Дата охранного документа: 17.05.2019
11.07.2019
№219.017.b28b

Способ изготовления тонкой проволоки из биосовместимого сплава tinbtazr

Изобретение относится к способам изготовления тонкой проволоки из биосовместимого сплава TiNbTaZr для кава-фильтров и стентов. Способ включает выплавку заготовки и ее деформационно-термическую обработку. Возможность получения изделий повышенной прочности, пластичности и улучшенных...
Тип: Изобретение
Номер охранного документа: 0002694099
Дата охранного документа: 09.07.2019
11.07.2019
№219.017.b29f

Устройство для измерения толщины и диэлектрической проницаемости тонких пленок

Изобретение относится к области оптического приборостроения и касается устройства для исследования толщины и диэлектрических свойств тонких пленок. Устройство включает в себя два лазера с различной длиной волны, делительный кубик, расширитель светового потока, линзу, два поляризатора,...
Тип: Изобретение
Номер охранного документа: 0002694167
Дата охранного документа: 09.07.2019
14.08.2019
№219.017.bf38

Борированный порошок для плазменного напыления

Изобретение относится к материалу для нанесения покрытия, в частности борированному порошку для плазменного напыления. Может использоваться для формирования износостойких покрытий. Частицы борированного порошка для плазменного напыления, состоят из ядра и борсодержащей оболочки, которая...
Тип: Изобретение
Номер охранного документа: 0002697147
Дата охранного документа: 12.08.2019
16.08.2019
№219.017.c0a8

Способ регистрации следовых количеств веществ в газовой среде

Изобретение относится к оптике и аналитической технике и может быть применено для определения наличия следовых количеств летучих веществ. Способ регистрации следовых количеств веществ в газовой среде, вызывающих поверхностную оптическую сенсибилизацию галоидного серебра под действием света в...
Тип: Изобретение
Номер охранного документа: 0002697477
Дата охранного документа: 14.08.2019
16.08.2019
№219.017.c0ae

Способ получения биоцемента для заполнения костных дефектов на основе дикальцийфосфата дигидрата и сульфата кальция двуводного

Изобретение относится к медицине и касается получения биоцемента для заполнения костных дефектов. Для этого цементный раствор получают в результате смешения порошка трикальцийфосфата и сульфата кальция полуводного с водным раствором дигидроортофосфата магния 4-водного - раствор 50-66% соли...
Тип: Изобретение
Номер охранного документа: 0002697396
Дата охранного документа: 14.08.2019
23.08.2019
№219.017.c2d7

Способ изготовления керамики на основе композита нитрид кремния - нитрид титана

Изобретение относится к способу получения керамического композита из нитрида кремния, упрочненного нитридом титана, обладающего совокупностью физико-механических свойств, таких как высокая прочность и твердость, низкий коэффициент термического расширения, износостойкость и электрическая...
Тип: Изобретение
Номер охранного документа: 0002697987
Дата охранного документа: 21.08.2019
01.11.2019
№219.017.dc2d

Способ плазменного напыления с насадкой к плазмотрону и устройство для его осуществления

Изобретение относится к области металлургии, к напылению плазменных покрытий и может быть использовано для формирования износостойких, коррозионностойких и функциональных покрытий с минимальным содержанием оксидов, формирующихся в процессе напыления. Способ и устройство напыления покрытий при...
Тип: Изобретение
Номер охранного документа: 0002704680
Дата охранного документа: 30.10.2019
01.11.2019
№219.017.dc41

Высокопрочная дисперсионно-твердеющая азотосодержащая коррозионно-стойкая аустенитная сталь

Изобретение относится к области металлургии, а именно к высокопрочным дисперсионно-твердеющим азотосодержащим коррозионно-стойким аустенитным сталям, используемым для изготовления высоконагруженных конструкций в машиностроении, судостроении, авиации и железнодорожном транспорте. Сталь содержит...
Тип: Изобретение
Номер охранного документа: 0002704703
Дата охранного документа: 30.10.2019
04.11.2019
№219.017.de5f

Способ получения пористых материалов из альгината натрия и поливинилпирролидона, содержащих фосфаты кальция

Изобретение может быть использовано в реконструктивно-пластической хирургии для пластической реконструкции поврежденных костных тканей. Для получения пористых материалов из альгината натрия и поливинилпирролидона, содержащих фосфаты кальция, для заполнения костных дефектов проводят синтез in...
Тип: Изобретение
Номер охранного документа: 0002705084
Дата охранного документа: 01.11.2019
Показаны записи 11-15 из 15.
29.04.2019
№219.017.42af

Способ получения металлов

Изобретение относится к области электрохимии, в частности к электролитическому получению металлов из их сульфидов. Электролиз ведут с использованием раствора электролита и положительного электрода, содержащего сульфид получаемого металла, порошок вещества, являющегося акцептором атомов серы, и...
Тип: Изобретение
Номер охранного документа: 0002307202
Дата охранного документа: 27.09.2007
11.07.2019
№219.017.b29f

Устройство для измерения толщины и диэлектрической проницаемости тонких пленок

Изобретение относится к области оптического приборостроения и касается устройства для исследования толщины и диэлектрических свойств тонких пленок. Устройство включает в себя два лазера с различной длиной волны, делительный кубик, расширитель светового потока, линзу, два поляризатора,...
Тип: Изобретение
Номер охранного документа: 0002694167
Дата охранного документа: 09.07.2019
16.08.2019
№219.017.c0a8

Способ регистрации следовых количеств веществ в газовой среде

Изобретение относится к оптике и аналитической технике и может быть применено для определения наличия следовых количеств летучих веществ. Способ регистрации следовых количеств веществ в газовой среде, вызывающих поверхностную оптическую сенсибилизацию галоидного серебра под действием света в...
Тип: Изобретение
Номер охранного документа: 0002697477
Дата охранного документа: 14.08.2019
20.04.2023
№223.018.4aa4

Способ получения анизотропной порошковой заготовки постоянного магнита на основе сплавов типа sm-co

Изобретение относится к порошковой металлургии, в частности к способам получения анизотропных спеченных постоянных магнитов из сплавов Sm-Co. Может использоваться в машиностроении, приборостроении, электротехнической и электронной промышленности. Сплав типа Sm-Co размалывают до среднего размера...
Тип: Изобретение
Номер охранного документа: 0002785217
Дата охранного документа: 05.12.2022
01.06.2023
№223.018.750a

Способ герметизации мембран из сплавов палладия с рзм в конструкции фильтрующих элементов для глубокой очистки водорода методом контактной сварки

Изобретение может быть использовано для получения неразъемных вакуумно-плотных соединений при герметизации мембран из сплавов палладия с РЗМ в конструкции фильтрующих элементов для глубокой очистки водорода. После очистки соединяемых поверхностей проводят сборку пакета, содержащего детали из...
Тип: Изобретение
Номер охранного документа: 0002749404
Дата охранного документа: 09.06.2021
+ добавить свой РИД