×
19.04.2019
219.017.341f

ОГНЕСТОЙКИЙ ПОЛИМЕРНЫЙ КОМПОЗИТ ДЛЯ ПАНЕЛЕЙ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002465290
Дата охранного документа
27.10.2012
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к огнестойким полимерным композитам для панелей, используемых в качестве материала для сердечника композитных строительных панелей и, в частности, панелей, применяемых в системах вентилируемых фасадов. Полимерный композит имеет слоистую структуру, образованную прослойками полимера нанометровой толщины между слоями модифицированного антипиренами бентонита. При этом состав бентонита содержит не менее 70-72% монтмориллонита (ММТ) с содержанием последнего в композите не менее 5 об.%. Заявляемый композит имеет относительно низкую стоимость и высокую огнестойкость. 1 з.п. ф-лы, 2 ил., 1 табл., 7 пр.
Реферат Свернуть Развернуть

Изобретение относится к огнестойким полимерным композитам для панелей, используемых в качестве материала для сердечника композитных строительных панелей и, в частности, панелей, применяемых в системах вентилируемых фасадов.

Известна огнестойкая полиолефиновая композиция (RU 2114134 С1, C08L 23/02, С08К 3/04, С08К 3/22, 27.06.1998), имеющая низкие дымообразование и токсичность, содержащая полиолефин, в качестве которого она содержит полиолефин, который является по крайней мере одним представителем, выбранным из группы, состоящей из полиэтилена, полипропилена, сополимера этилена с этилакрилатом и сополимера этилена с винилацетатом, и в качестве антипиренового компонента сложный гидроксид металла общей формулы Mgl-xMx(OH)2, где М - по крайней мере один двухвалентный металл, выбранный из группы, состоящей из марганца, железа, кобальта, никеля, меди и цинка, и тонкодисперсный углеродный порошок, причем на 100 мас.ч. полиолефиновой смолы приходится 80-130 мас.ч. сложного гидроксида металла и углеродного порошка.

Материал, изготовленный на основе данной композиции, предназначенный для использования в качестве материала для оболочки электрических проводов и кабелей или в качестве материала для различных электрических элементов, нецелесообразно использовать в качестве огнестойкого сердечника для строительных панелей вследствие его достаточно высокой стоимости.

Наиболее близким по технической сущности (техническому назначению) к заявляемому решению является огнестойкий полимерный композит, используемый в панелях, описанных в заявке (RU 2008149670 А, Е04С 2/00, 27.06.2010), представляющий собой гомогенную композицию из полиэтилена, наполненного полыми микросферами золы-уноса, полученными от сжигания углей, внутренние полости микросфер заполнены антипиреном.

Данный композит обладает достаточно высокой огнестойкостью, но при этом производство таких панелей связано со значительными затратами, в частности на выделение из золы-уноса фракции полых микросфер, что существенно сказывается и на стоимости панели.

Задачей настоящего изобретения является снижение стоимости производства огнестойкого полимерного композита для панелей, и, как следствие, снижение стоимости производства строительных панелей, в которых заявляемый огнестойкий полимерный композит может использоваться в качестве материала для изготовления сердечника, с сохранением при этом высокой огнестойкости.

Настоящая задача решается тем, что огнестойкий полимерный композит для панелей на основе полиолефина согласно заявляемому изобретению представляет собой нанокомпозит, имеющий слоистую структуру, образованную прослойками полимера нанометровой толщины, сформированными между слоями модифицированного антипиренами бентонита, в состав которого входит не менее 70-72% монтмориллонита (ММТ), с содержанием последнего в композите 5-15 об.%, при этом бентонит для получения нанокомпозита используют в виде глинопорошка, а содержание антипиренов в бентоните составляет 3-10 мас.%

Огнестойкий полимерный композит для панелей содержит полиолефин, который может быть представлен полиэтиленом или полипропиленом.

Технический результат, достигаемый при реализации заявленного изобретения и заключающийся в снижении стоимости огнестойкого полимерного композита для панелей, и соответственно, снижении цены металлических композитных панелей, применяемых при монтаже навесных вентилируемых фасадов, достигается за счет того, что входящие в состав композита слоистые силикаты, представляющие собой природные материалы с толщиной слоев около 1 нм, длина и ширина которых варьируется от 30 нм до нескольких микрон, имеют широкое распространение и большие объемы залежей, вследствие чего исходный материал, используемый в составе композита, является достаточно легкодоступным и сравнительно недорогим.

Монтмориллонит - основной глинистый минерал бентонитовой глины представляет собой слоистый водный алюмосиликат. В природе чаще встречаются бентонитовые глины с содержанием монтмориллонита 30-60%, такие глины не обладают достаточной слоистостью, эластичностью и термостойкостью. При содержании в глине монтмориллонита выше 70% повышается дисперсность глин, их высокая связующая способность и пластичность, увеличивается огнеупорность бентонитов.

При этом огнестойкость полимера и его низкая горючесть обусловлены тем, что при горении в результате окислительной карбонизации формируются углерод-силикатные слои в структуре полимера, которые изолируют полимер от источника тепла с образованием барьера, препятствующего распространению летучих продуктов разложения полимера в зону горения.

При получении огнестойкого полимерного композита для панелей использовались бентонитовые глины производства ОАО «Хакасский бентонит» с содержанием в них монтмориллонита (ММТ) 70-72%. Глины имеют следующий химический состав, мас.%:

SiO2 - 60.5

TiO2 - 0.11

Al2O3 - 16.25

Fe2O3 - 1.70

FeO - 0.75

MgO - 2.38

MnO - 0.03

CaO - 1.75

Na2O - 0.77

K2O - 1.01

Для получения огнестойкого полимерного композита для панелей был выбран метод интеркалирования в расплаве, смешивания расплавленного полиолефина с минералом из подкласса слоистых силикатов.

Опытные образцы огнестойкого полимерного композита для панелей изготавливали следующим образом. Смешивание проводили в обогреваемом экструдере объемом 250 см3. Экструдер разогревали до температуры 200°С, после чего засыпали в него гранулы полиолефина, в частности полиэтилена, и перемешивали. После полного расплавления полиэтилена в него добавляли глинопорошок монтмориллонита (ММТ), в количестве, не менее 5 об.%. Смесь интенсивно перемешивали при температуре расплава 210-225°С. Затем открывали выходное отверстие экструдера, выдавливали полученную смесь, из которой на ручном прессе формовали пластины (толщина 3 мм, ширина 24 мм, длина до 100 мм). Результаты электронной микроскопии показали равномерное распределение глины в полученном композите.

При изготовлении использовалась как исходная бентонитовая глина, так и глина, модифицированная антипиренами (полифосфат аммония, пептаэритрит). Содержание антипирена составляло от 3 до 10%.

Были изготовлены опытные образцы огнестойкого полимерного композита с содержанием в нем монтмориллонита (ММТ) от 3 до 15 об.%.

Результаты морфологического и элементного исследований образцов полимерного композита методом сканирующей электронной микроскопии, произведенной с помощью сканирующего электронного микроскопа JSM-6390 (JEOL, Япония) с системой рентгеновского микроанализа INCA показали, что композит имеет пластинчатую структуру (фиг.1, 2), при этом толщина слоев укладывается в характерные для наноструктур размеры - не более 0,1 мкм.

Полученные образцы подвергали испытаниям на горючесть

Примеры проведения испытаний сгруппированы в таблице.

Предварительная оценка горючести, определяемая по времени воспламенения и скорости горения, показала следующее.

Воспламенение образцов с содержанием монтмориллонита (ММТ) от 5 до 15% происходило со значительной задержкой по сравнению с контрольным образцом (результаты приведены в таблице). Образование горящих капель не наблюдалось.

В образце с добавлением антипирена (полифосфат аммония) наблюдалось еще большее снижение времени воспламеняемости по сравнению с образцами, имеющими в составе нанокомпозита только монтмориллонит (ММТ) (сравнение образцов №3 и №7).

Таким образом, заявляемый огнестойкий полимерный композит, используемый в качестве сердечника для панелей, обладает устойчивостью к возгоранию, что в сочетании с внешними металлическими слоями, присутствующими в конструкции композитных панелей, обеспечивает высокую огнестойкость этих панелей в целом. Имея при этом сравнительно невысокую стоимость, огнестойкий полимерный композит является перспективным материалом для применения в строительстве.

Горючесть огнестойкого полимерного композита для панелей
Пример № п/п Содержание монтмориллонита (ММТ) в композите (об.%) Время воспламенения, с
1 Контрольный образец (полиэтилен) 11
2 3 12
3 5 15
4 7 16
5 10 18
6 15 18
7 5+5 об.% полифосфата аммония 17

Источник поступления информации: Роспатент

Показаны записи 1-1 из 1.
19.04.2019
№219.017.343b

Металлическая композитная панель

Изобретение относится к конструкциям многослойных панелей, а именно к металлическим композитным панелям, которые могут применяться в современном промышленном и гражданском строительстве. Технический результат: снижение стоимости производства панели с сохранением эксплуатационных качеств, в...
Тип: Изобретение
Номер охранного документа: 0002464393
Дата охранного документа: 20.10.2012
Показаны записи 1-10 из 49.
20.08.2013
№216.012.60b0

Способ получения целлюлозы

Изобретение относится к целлюлозно-бумажной промышленности и может быть использовано для получения целлюлозы из древесного сырья. Способ получения целлюлозы заключается в варке древесной щепы при температуре 90-98°C, интенсивном перемешивании и атмосферном давлении 740-760 мм рт.ст. в смеси,...
Тип: Изобретение
Номер охранного документа: 0002490384
Дата охранного документа: 20.08.2013
27.06.2014
№216.012.d796

Способ получения топливной присадки 1,1-диэтоксиэтана

Настоящее изобретение относится к способу получения оксигенатной топливной присадки 1,1-диэтоксиэтана к дизельным топливам и бензинам, улучшающей их качество. Способ заключается в конверсии этанола при повышенной температуре и давлении в присутствии катализатора. При этом конверсию этанола...
Тип: Изобретение
Номер охранного документа: 0002520968
Дата охранного документа: 27.06.2014
27.06.2014
№216.012.d799

Способ получения производных 3,28-дисульфата бетулина

Изобретение относится к способу получения производных 3,28-дисульфата бетулина, обладающего свойством ингибитора комплемента. Сульфатирование бетулина проводят в N,N-диметилформамиде смесью сульфаминовой кислоты и мочевины при температуре 60-70°C в течение 2-3 часов, выделение продукта проводят...
Тип: Изобретение
Номер охранного документа: 0002520971
Дата охранного документа: 27.06.2014
10.07.2014
№216.012.da3f

Способ получения сульфатированных производных арабиногалактана

Изобретение относится к способам получения сульфатированных биополимеров на основе арабиногалактана. Способ предусматривает взаимодействие арабиноногалактана с сульфатирующим комплексом при непрерывном перемешивании и нагревании. В качестве сульфатирующего комплекса используют комплекс...
Тип: Изобретение
Номер охранного документа: 0002521649
Дата охранного документа: 10.07.2014
27.09.2014
№216.012.f8e3

Способ получения битумно-каучукового вяжущего

Изобретение относится к способу получения модифицированных битумных вяжущих, предназначенных для использования в дорожном, аэродромном, гидротехническом и других видах строительства. Вяжущее получают путем добавления к нефтяному битуму при нагревании 3,0-5,0 мас.% каучука, взятого в виде его...
Тип: Изобретение
Номер охранного документа: 0002529552
Дата охранного документа: 27.09.2014
10.10.2014
№216.012.fcf4

Способ получения производных 3-сульфата бетулиновой кислоты

Изобретение относится к химико-фармацевтической промышленности и касается способа получения производных 3-сульфата бетулиновой кислоты. Способ получения производных 3-сульфата бетулиновой кислоты формулы: путем взаимодействия бетулиновой кислоты с сульфатирующим агентом при непрерывном...
Тип: Изобретение
Номер охранного документа: 0002530602
Дата охранного документа: 10.10.2014
10.04.2015
№216.013.3926

Способ получения производных 3-сульфата аллобетулина

Изобретение относится к способу получения производных 3-сульфата аллобетулина. Сульфатирование аллобетулина проводят в N,N-диметилформамиде смесью сульфаминовой кислоты и мочевины при температуре 70-75°C в течение 2-3 часов, а выделение продукта проводят охлаждением реакционной массы,...
Тип: Изобретение
Номер охранного документа: 0002546118
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3c75

Способ получения сульфатированных производных арабиногалактана

Изобретение относится к способам получения сульфатированного арабиногалактана, используемого в химико-фармацевтической промышленности. Способ включает взаимодействие арабиноногалактана с сульфатирующим комплексом сульфаминовая кислота-мочевина в диметилсульфоксиде при непрерывном перемешивании...
Тип: Изобретение
Номер охранного документа: 0002546965
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3f49

Способ получения целлюлозы

Изобретение относится к целлюлозно-бумажной промышленности и может быть использовано для получения целлюлозы из древесного сырья. Способ получения целлюлозы заключается в варке древесной щепы при температуре 98-100°С, интенсивном перемешивании и атмосферном давлении в смеси, содержащей 3,0-5,6...
Тип: Изобретение
Номер охранного документа: 0002547689
Дата охранного документа: 10.04.2015
10.08.2015
№216.013.6abf

Способ сульфатирования микрокристаллической целлюлозы

Изобретение относится к химической переработке древесины и касается сульфатирования микрокристаллической целлюлозы. Водорастворимые соли сульфатов микрокристаллической целлюлозы широко используются как антикоагулянты крови, сорбенты токсичных металлов, иммуномодуляторы и антивирусные препараты....
Тип: Изобретение
Номер охранного документа: 0002558885
Дата охранного документа: 10.08.2015
+ добавить свой РИД