×
19.04.2019
219.017.3416

Результат интеллектуальной деятельности: СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛЫХ СТЕКЛОСФЕР, СЫРЬЕВАЯ ШИХТА ДЛЯ ИЗГОТОВЛЕНИЯ ПОЛЫХ СТЕКЛОСФЕР

Вид РИД

Изобретение

Аннотация: Изобретение относится к промышленности строительных материалов, в частности к производству теплоизоляционных засыпок и заполнителей для бетонов, теплых штукатурок, керамики и др. Способ заключается в непрерывной подаче гранулированного стеклянного кристаллизованного порошка, молотого совместно с карбонатным газообразователем и оксидом железа, в факел газовой горелки формователя, охлаждении отформованных частиц в газовоздушном потоке, их отделении от газовоздушного потока в сепараторах, разделении отформованных частиц на фракции. В качестве кристаллизованного стекла используются отходы производства ситаллов либо пеностекла. В качестве связки гранулированного сырцового материала используется водный раствор жидкого стекла. Технический результат изобретения - получение прочных щелочестойких и водостойких полых стеклянных сфер с низкой насыпной плотностью. 2 н.п. ф-лы, 1 ил., 2 табл.

Изобретение относится к промышленности строительных материалов, в частности к производству теплоизоляционных засыпок и заполнителей для бетонов, теплых штукатурок, керамики и др.

Известен способ изготовления полых стеклосфер, включающий варку стекла, получение из него микропорошка стекла с размерами частиц стекла менее 40 мкм, формование полых стеклянных микросфер при термической обработке полученного стеклопорошка. В качестве шихты для изготовления микропорошков стекла предлагается использовать смесь из натрий-силикатных стекол в количестве 5-85 мас.% с оксидом натрия - 20-90 мас.% [а.с. СССР №1451105, кл. C03B 19/10, 1987].

Недостатками этого способа и сырьевой шихты являются: низкая водостойкость и прочность получаемых полых микросфер из-за высокого содержания щелочных оксидов в силикатном стекле, процесс термического формования микросфер чрезвычайно чувствителен к температурным колебаниям параметров сжигания топлива, получаемые микросферы обладают повышенной средней плотностью.

Известен также способ изготовления полых кремнеземных микрошариков из порошка силикатного или кварцевого стекла, путем вдувания порошков стекла с размером частиц менее 5 мкм в индукционную плазму [патент РФ №2401811, кл. C03B 19/10, 2005].

Недостатками этого способа и сырьевой шихты являются: аморфная структура получаемого продукта, низкая прочность получаемых полых микросфер. Контакт аморфного кремнезема с цементом и бетоном, имеющих агрессивную щелочную среду, приводит к быстрому растворению аморфного кремнезема, нарушению герметичности полых микросфер и существенному снижению их теплоизолирующих свойств.

Наиболее близкими по технической сущности и достигаемому результату является способ получения полых стеклосфер, включающий получение микропорошка из стекла с размерами частиц стекла менее 40 мкм, формование полых стеклосфер при термической обработке полученного микропорошка, отделения в сепараторе качественных микросфер от дефектных частиц и сфер с высокой плотностью, сепарацию конечного продукта по размерам. В качестве шихты для изготовления микропорошков стекла предлагается использовать натрий-силикатный стеклогранулят, т.е. аморфный продукт быстрого охлаждения расплавленного стекла в воде [патент РФ №2059574, кл. C03B 19/10, 1992].

Недостатками прототипа являются: невысокая прочность получаемых стеклосфер (до 1,2 МПа при сдавливании в цилиндре), низкая их щелоче- и водостойкость, нестабильность параметров поризации микросфер при их термическом формовании.

Предлагаемое изобретение решает задачу получения прочных щелоче- и водостойких полых стеклянных сфер с низкой насыпной плотностью, расширения сырьевой базы для производства теплоизоляционных засыпок и заполнителей для бетонов, теплых штукатурок, керамики и др.

Технический результат достигается за счет того, что в способе изготовления полых стеклосфер, включающем получение микропорошков силикатного стекла с размерами частиц стекла менее 40 мкм, термическое формование полых стеклосфер, разделение их по размеру, согласно предлагаемому решению в качестве силикатного стекла используют кристаллизованное стекло, совместно молотое с карбонатным газообразователем и оксидом железа, полученные микропорошки перед термическим формованием гранулируют.

Результат достигается с помощью сырьевой шихты для изготовления полых стеклосфер, состоящей из микропорошка силикатного стекла, согласно предлагаемому решению в качестве силикатного компонента используется кристаллизованное силикатное стекло, молотое совместно с карбонатным газообразователем и оксидом железа и гранулированное при использовании 8-12%-ного водного раствора жидкого стекла при следующем соотношении компонентов, мас.%: карбонатный газообразователь 0,5-7,0; оксид железа 0,5-7,0; 8-12%-ный водный раствор жидкого стекла 1,0-2,8; кристаллизованное стекло - остальное.

Сравнение предлагаемого способа получения полых стеклосфер с прототипом позволило установить, что предлагаемое решение отличается использованием кристаллизованных силикатных стекол, совместным помолом их с карбонатным газообразователем и оксидом железа и последующей грануляцией в присутствии водного раствора жидкого стекла. Введение предлагаемого газообразователя и оксида железа в заявляемых количествах и предварительная грануляция стекольной шихты перед термическим формованием полых стеклянных сфер позволяет получить продукт с заранее заданными геометрическими характеристиками и толщиной стенки, а использование кристаллизованного стекла - упрочняет их и повышает стойкость по отношению к воде и цементному раствору в 1,8-2 раза. Таким образом, предлагаемое решение обладает критерием «новизна».

При изучении других технических решений, использование предложенного авторами кристаллизованного стекла, молотого совместно с карбонатным газообразователем и оксидом железа и предварительно гранулированным перед термическим формованием полых стеклянных сфер и аналогичных материалов, не выявлено, таким образом заявляемое решение не следует явным образом из уровня техники, что позволяет сделать вывод о соответствии заявляемого решения критерию «изобретательский уровень».

На чертеже схематично изображена принципиальная схема установки для реализации предложенного способа получения полых стеклосфер.

В состав установки входят бункера 1-3 с дозирующими устройствами для хранения и дозировки дробленого кристаллического стекла, карбонатного газообразователя и оксида железа, шаровая мельница 4, тарельчатый гранулятор 5, емкость с водным раствором жидкого стекла 6, позволяющая с помощью сжатого воздуха, подаваемого в распылитель 7, дозировано подавать связующее в распыленном состоянии. Полученные гранулы направляются в бункер 8, которые через дозатор 9 попадают в формователь 10 с газовоздушными горелками 11 и напорным вентилятором высокого давления 12. После формования в формователе 10 полученные стеклосферы поступают в циклон 13, затем в жидкостно-эжекционный аппарат 14, разделительную камеру 15 с поплавковым устройством 16 для поддержания постоянного уровня флотационной жидкости. Неуловленные, наиболее мелкие стеклосферы поступают в вихревую сушилку 17 с мешалкой, питателем влажных микросфер 18, форсункой 19 для ввода и распределения воды. Далее следует второй циклон 20, сборник сухих стеклосфер 21, скруббер 22, вытяжной вентилятор высокого давления 23 и циркуляционный насос 24 с фильтрующим заборным устройством 25. Позиции 8-25 оборудования предлагаемой технологической схемы аналогичны позициям оборудования 1-18 по прототипу [патент РФ №2059574, кл. С03В 19/10, 1992].

Установка работает следующим образом.

С бункеров 1, 2 и 3 через дозирующие устройства подаются в шаровую мельницу 4 дробленое кристаллическое стекло, карбонатный газообразователь и оксид железа. Молотый материал из мельницы с размерами частиц менее 40 мкм подается на тарелку гранулятора 5, на которую из емкости с водным раствором жидкого стекла 6 с помощью распылителя 7 и сжатого воздуха дозировано подается связующее. Количество связующего компонента при разных размерах гранул различно и определяется визуально: столько, чтобы сформированные гранулы нужного размера скатывались с наклонной поверхности тарельчатого гранулятора. Размер гранул регулируется в широком диапазоне величиной распыляемых частиц связующего и углом наклона тарелки. Получающиеся гранулы обычно имеют размер 0,02-0,1 мм.

Полученные гранулы имеют низкую влажность и сразу направляются в бункер 8, откуда непрерывно подаются питателем-дозатором 9 в потоке воздуха (нагнетаемого вентилятором 12), который направляется на горелки 11 формирователя 10, аналогично прототипу [патент РФ №2059574, кл. C03B 19/10, 1992]. При сжигании топлива в факеле каждой горелки 11 при 1000-1300°C происходит формование из гранул стеклянных сфер. Для обеспечения аэродинамического выноса и конвективного охлаждения отформованных частиц в камеру формователя 10 снизу поступает атмосферный воздух, что обеспечивается за счет разрежения, создаваемого вытяжным вентилятором 23, установленным в конце газового тракта установки.

Отформованные частицы выносятся из формователя 10 газовоздушным потоком с температурой, не превышающей 400°C, в первый циклон 13, где происходит центробежное отделение частиц, поступающих затем в жидкостно-эжекционный аппарат 14, в котором частицы смачиваются и увлекаются флотационной жидкостью или аппретирующим раствором из разделительной камеры 15. Подача флотационной жидкости осуществляется насосом 24. Полученная суспензия и часть газовоздушного потока поступают в приемную секцию разделительной камеры 15, откуда газ отводится в газоход перед сушилкой 17, а суспензия через успокоительную решетку поступает в разделительную секцию камеры 15, представляющую собой длинный канал прямоугольного сечения. По мере перемещения суспензии к выходу легкая фракция полых стеклосфер всплывает и собирается на поверхности флотационной жидкости, а тяжелая фракция (дефектные негерметичные частицы) оседает на дне камеры 15. При флотации по длине разделительной секции происходит дополнительная сепарация полых стеклосфер по плотности и размерам: на начальном участке собираются более легкие и крупные частицы, на конечном более тяжелые и мелкие. Выгрузка всплывшей влажной массы полых стеклосфер производится вручную или гидротранспортом из ячеек, образованных перегородками, установленными в верхней части разделительной секции камеры 15. Осадок в свою очередь периодически сливается из нижней части камеры 15 в специальную емкость.

Для отделения узкой фракции стеклосфер с плотностью, близкой к плотности флотационной жидкости, используется фильтрующее заборное устройство 25, устанавливаемое на гибком шланге, соединенном с всасывающим патрубком насоса 24. Фильтрующее устройство 25 периодически освобождается от осевших на фильтр частиц после перекрытия всасывающей линии и извлечении фильтра из камеры 15. Фильтр отмывается в емкости для отстоя. Для обеспечения непрерывной работы насоса 24 можно использовать два параллельно работающих заборных устройства 25.

Процесс флотационно-осадительного разделения и классификации может быть совмещен с нанесением аппретирующего покрытия. Для этого камера 15 подпитывается раствором аппрета, приготовленным на основе силанов.

Постоянный уровень флотационной жидкости в камере 15 поддерживается с помощью устройства поплавкового типа 16.

Влажная масса полых стеклосфер загружается в бункер питателя 18, куда для придания ей текучести с помощью форсунки 19 разбрызгивается флотационная жидкость или раствор аппрета из камеры 15, нагнетаемый насосом 24, в количестве, приводящем к снижению температуры сушильного агента до 110-130°C. При подаче влажной массы стеклогранул в бункер питателя 18 гидротранспортом возможно использование в качестве транспортирующей жидкости не только флотационной жидкости, но и раствора аппрета. Концентрированная суспензия из питателя 18 стекает в нижнюю часть сушилки 17, где перемешивается и по мере подсушивания измельчается быстроходной мешалкой.

Сушильная камера вихревого типа 17 представляет собой вертикальный цилиндрический корпус с тангенциальным вводом сушильного агента. Подсушенные и измельченные в нижней части сушилки 17 агломераты и отдельные стеклогранулы захватываются закрученным потоком сушильного агента и образуют вихревой слой у стенок корпуса в средней его части. По мере высушивания и разрушения агрегатов одиночные частицы выносятся из сушилки 17 и выделяются из газовоздушного потока во втором циклоне 20. Уловленные в сепараторе 20 стеклогранулы собираются в сборник 21. Газовоздушный поток после центробежного разделения в сепараторе 20 подвергается санитарной очистке в центробежном скруббере 22. Мокрое обеспыливание производится в выхлопном патрубке сепаратора (циклона) 20, в нижнюю часть которого через щелевой распределитель самотеком поступает скрубберная жидкость из кольцевого сборника, установленного на крышке сепаратора 20. Вступая в контакт с закрученным газовым потоком жидкость диспергируется, образуя развитую поверхность контакта. Газ, прошедший очистку, отсасывается вытяжным вентилятором 23, а скрубберная жидкость стекает в кольцевой сборник. Свежая жидкость подводится в кольцевой сборник с помощью насоса 24 из разделительной камеры 15, куда также сливается отработанная суспензия через перелив, обеспечивающий постоянный уровень скрубберной жидкости в кольцевом сборнике. Сливаемая в камеру 15 скрубберная жидкость поступает сначала на орошение жидкостно-эжекционного аппарата 14, аналогично прототипу [патент РФ №2059574, кл. C03B 19/10, 1992].

При реализации заявляемого способа изготовления полых стеклянных сфер в качестве сырья использованы следующие компоненты:

1. В качестве кристаллизованного стекла использовали:

- отходы опиловки блоков пеностекла по ТУ 5914-003-02066339-98 "Материалы и изделия строительные теплоизоляционные", произведенного в БГТУ им. В.Г.Шухова (г.Белгород);

- отходы (бой и некондиция) ситаллов кордиеритового состава по ГОСТ Р 52161.2.6-2006, производство ООО «Ситалл», г.Санкт Петербург.

Проведенные исследования показали, что данные материалы на 84…96 мас.% состоят из кристаллизованных стекол: в отходах производства пеностекла в основном это кристаллы девитрита, в ситаллах - кордиерит и кристобалит.

Отходы кристаллизованных стекол дробят в молотковой дробилке и хранят в накопительном бункере 1.

2. В качестве карбонатного газообразователя использовали карбонаты кальция:

- мел технический дисперсный МТД-2 по ТУ - 21-020350-06-92, ОАО «Стройматериалы», г.Белгород;

- известняк Яшкинского месторождения.

Химический состав сырьевых компонентов приведен в табл.1.

Таблица 1
Химический состав стеклокристаллических компонентов
№ п/п Компонент Содержание оксидов, мас.%
SiO2 Al2O3 TiO2 Fe2O3 CaO MgO R2O SO3 П.п.п.
1. Пеностекло 73,2 10,7 0,8 1,2 6,5 0,7 6,7 0,2 нет
2. Ситалл 58,1 18,1 11,4 0,9 0,2 10,9 0,3 0,1 нет
3. Мел Белгородский 1,3 0,7 0,1 0,1 54,7 0,3 - - 42,8
4. Известняк Яшкинский 1,7 0,8 0,1 0,4 52,3 U 1,2 0,2 42,2

3. В качестве оксида железа использован оксид железа по ТУ 6-09-1418 марки ОСЧ 2-4.

4. При гранулировании порошка кристаллизованного стекла, молотого совместно с газовой сажей, на тарельчатом грануляторе, на поверхность материала распыляли водный раствор силикатного клея (жидкого стекла) по ТУ 2385-001-54824507-2000.

Пример. Взвесили предварительно дробленный ситалл в количестве 9,1 кг (91,0%, см. табл.2, смесь 1), к этому материалу добавили 0,35 кг (3,5%, см. табл.2, смесь 1) известняка Яшкинского месторождения и 0,35 кг оксида железа и мололи в барабанной мельнице до размера частиц менее 40 мкм. Продукт помола подавали на тарельчатый гранулятор и, при вращении тарелки, распыляли 10%-ный водный раствор жидкого стекла. В данном случае потребовалось 200 г 10%-ного водного раствора жидкого стекла. Полученные гранулы имели размер 0,02-0,1 мм.

Термическое формование производили при 1180°C. Размер полых стеклосфер составлял 0,08-1,2 мм. Выход качественных полых стеклосфер составил 99,3 об.%. Выбросов стеклосфер в атмосферу не зафиксировано, т.к. получаемые полые стеклосферы имеют более крупный фракционный состав, чем по прототипу, и улавливаются системой многоступенчатой очистки гораздо эффективнее.

Определялись насыпная плотность, водостойкость, щелочестойкость и прочность полученных стеклосфер. Насыпная плотность определялась по ГОСТ 9758. Водостойкость определялась по ГОСТ 9758, пункт 27, как отношение массы высушенных стеклосфер, собранных с поверхности воды, т.е. не потерявших герметичность, после кипячения их в воде, по отношению к массе сухих исходных стеклосфер до помещения их в воду. Щелочестойкость определялась аналогичным способом при использовании 15 мас.% водного раствора NaOH. Прочность гранул определялась путем сдавливания в цилиндре по ГОСТ 9758.

Полые стеклосферы из сырьевых смесей 2-10 получали аналогичным образом. Полые микросферы из стеклопорошка 11 получали согласно способу, описанному в прототипе (патент РФ №2059574, кл. C03B 19/10, 1992, пример 1).

Результаты испытаний приведены в табл.2.

Анализ данных результатов испытаний свойств полученных стеклосфер, изготовленных по заявляемому способу, показывает следующее:

1. Смеси составов 1-3 и 6-8 отвечают требованиям к заполнителям для бетона ГОСТ 9758, пункт 22.

2. Использование кристаллизованных стекол в качестве сырьевого компонента, карбонатного газообразователя и оксида железа в заявляемых количествах позволяет получать качественные водостойкие и щелочестойкие заполнители для бетонов (составы 1-3 и 6-8).

3. Уменьшать количество газообразователя менее 0,5 мас.%, оксида железа менее 0,5 мас.%, концентрацию твердого вещества в водном растворе жидкого стекла менее 6 мас.% и содержание его менее 1 мас.% в гранулированном материале нецелесообразно, т.к. гранулированный сырьевой материал имеет низкую сырцовую прочность, получаемые полые стеклосферы имеют повышенную насыпную плотность, поэтому составы 2 и 7 приняты как граничные.

Дальнейшее уменьшение названных соотношений и параметров приводит к существенному снижению комплексных физико-механических показателей полых стеклосфер, поэтому смеси 4 и 9 выходят за рамки заявляемых составов.

4. Увеличивать количество газообразователя более 7,0 мас.%, содержание оксида железа более 7,0 мас.%, концентрацию твердого вещества в водном растворе жидкого стекла более 12 мас.% и содержание его более 2,8 мас.% в гранулированном материале нецелесообразно, т.к. получаемые полые стеклосферы имеют тонкую оболочку, высокая концентрация твердой фазы в водном растворе жидкого стекла не позволяет распылять его достаточно мелко, повышенное содержание жидкого стекла в гранулированном материале приводит к снижению водостойкости и щелочестойкости конечного продукта, поэтому составы 3 и 8 приняты как граничные.

Дальнейшее увеличение названных соотношений и параметров приводит к существенному снижению физико-механических показателей полых стеклосфер, поэтому составы смесей 5 и 10 выходят за рамки заявляемых составов.

Заявляемый способ изготовления полых стеклосфер в сравнении с прототипом имеет следующие преимущества:

1) прочностные свойства в отдельных случаях сохраняются, а при оптимальных условиях увеличиваются в 2,2…3,2 раза; водостойкость при этом имеет высокие показатели;

2) насыпная плотность при сохранении требуемых физико-механических характеристик либо сохраняется, либо уменьшается в 2,2…3,1 раза по сравнению с прототипом, что позволяет получать бетоны с пониженной плотностью;

3) формование полых стеклосфер на основе прочного кристаллизованного стекла, карбонатного газообразователя и оксида железа осуществлять гораздо проще из-за гарантированных показателей, чем при использовании порошкообразного стекла по прототипу.

Технология изготовления ситаллов и пеностекла предусматривает процесс медленного охлаждения и отжига конечных продуктов. Это способствует кристаллизации и росту упрочняющих кристаллов девитрита (в пеностекле), кордиерита и кристобалита (в ситаллах). По сравнению с аморфными стеклами, кристаллизованные стекла и продукты на их основе отличаются повышенной прочностью, водостойкостью, кислото- и щелочестойкостью, т.е. более стабильными физико-химическими характеристиками.

При термической обработке гранулированных сырцовых гранул, состоящих из кристаллизованных стекол, карбонатного газообразователя, оксида железа и гидросиликатов натрия в формователе 10 (см. схему), при температурах 810°C и выше кристаллизованные стекла гранулы размягчаются, а карбонатный газообразователь декарбонизируется с выделением углекислого газа. За счет этого формируется полая стеклосфера. Регулируя количество карбонатного газообразователя в смеси, можно изменять толщину стенки получаемых стеклосфер, их прочностные характеристики, насыпную плотность и др. При декарбонизации карбонатного газообразователя образуется также свободный оксид кальция, который при контакте с водой гидратируется и увеличивает свой объем. Этот процесс может нарушить герметичность получаемых полых стеклосфер, что снижает их теплоизолирующие свойства. Присутствие оксида железа при высоких температурах связывает образующийся оксид кальция в прочные стеклокристаллические соединения ферритов кальция, которые практически инертны по отношению к воде и цементу и не нарушают герметичность полых стеклосфер при использовании в качестве заполнителей для бетонов.

Использование заявляемого способа изготовления полых стеклосфер из кристаллизованных стекол в промышленности строительных материалов позволит не только получать качественный теплоизоляционный продукт, но и расширить материальную базу, а также решить проблему утилизации обрезков и боя блоков, образующихся при производстве и механической обработки пеностекла и ситаллов.

Источник поступления информации: Роспатент

Показаны записи 11-20 из 20.
18.05.2019
№219.017.5a1d

Способ получения алюмосиликатных огнеупорных изделий

Изобретение относится к технологии керамики и может быть использовано при производстве огнеупорных шамотных и высокоглиноземистых изделий различного назначения. Техническим результатом изобретения является увеличение прочности при сжатии изделий. Способ получения алюмосиликатных огнеупорных...
Тип: Изобретение
Номер охранного документа: 0002408557
Дата охранного документа: 10.01.2011
24.05.2019
№219.017.6059

Способ получения железоокисных пигментов

Изобретение может быть использовано в лакокрасочной промышленности. Для получения железоокисных пигментов отходы, образующиеся при скважинной гидродобыче железных руд, в виде шламов, содержащих мартит, железную слюдку, гетит, магнетит, шамозит, смешивают с суперпластификатором в соотношении...
Тип: Изобретение
Номер охранного документа: 0002402583
Дата охранного документа: 27.10.2010
29.05.2019
№219.017.659d

Способ изготовления керамических изделий

Изобретение относится к технологии тонкой керамики и может быть использовано при производстве керамических изделий различного назначения. Техническим результатом изобретения является повышение прочности, снижение водопоглощения и плотности изделий. Способ приготовления керамических шликеров...
Тип: Изобретение
Номер охранного документа: 0002391309
Дата охранного документа: 10.06.2010
29.05.2019
№219.017.6696

Дезинтегратор

Изобретение относится к области промышленности строительных материалов, в частности к устройствам для механического и пневмомеханического диспергирования материалов средней и малой прочности с невысокой абразивностью, твердо-жидких суспензий, а также для измельчения зерновых культур и...
Тип: Изобретение
Номер охранного документа: 0002377070
Дата охранного документа: 27.12.2009
29.05.2019
№219.017.68b9

Ремонтно-строительный пылесос-комбайн

Изобретение относится к пылеуборочной технике, может быть использовано в различных отраслях народного хозяйства, применяющих системы вакуумной пылеуборки, и касается пылеуборочной установки. Пылеуборочная установка содержит манипулятор с полым насадком, установленный на мобильной платформе, и...
Тип: Изобретение
Номер охранного документа: 0002403854
Дата охранного документа: 20.11.2010
09.06.2019
№219.017.798f

Классифицирующая футеровка цементной мельницы

Изобретение относится к футеровкам шаровых мельниц. Классифицирующая футеровка цементной мельницы состоит из расположенных по всей длине мельницы кольцевых секций конических бронеплит. На рабочих поверхностях бронеплит выполнены кольцевые желоба, имеющие поперечные сечения в виде сегментов...
Тип: Изобретение
Номер охранного документа: 0002397813
Дата охранного документа: 27.08.2010
19.06.2019
№219.017.8a43

Устройство автоматического натяжения ремня

Изобретение относится к устройствам для автоматического натяжения ремня и может быть использовано в различных областях машиностроения и народного хозяйства. Устройство автоматического натяжения ремня содержит раму (2), качающееся L-образное основание (8), установленное в подшипниковом узле...
Тип: Изобретение
Номер охранного документа: 0002403468
Дата охранного документа: 10.11.2010
06.07.2019
№219.017.a8d7

Способ приготовления смеси для изготовления легких силикатных строительных изделий и строительное изделие

Изобретение относится к промышленности строительных материалов, может быть использовано при изготовлении силикатных стеновых изделий - плиток, кирпича, блоков, стеновых панелей. Способ приготовления смеси для легких силикатных стеновых материалов включает пропитку до насыщения дробленого до...
Тип: Изобретение
Номер охранного документа: 0002408555
Дата охранного документа: 10.01.2011
06.07.2019
№219.017.a8e5

Способ приготовления смеси для силикатного кирпича и силикатный кирпич

Изобретение относится к промышленности строительных материалов, а именно к производству силикатного кирпича. Технический результат - расширение арсенала технических средств для производства упрочненного силикатного кирпича с пониженной тепло- и звукопроводностью. Способ приготовления смеси для...
Тип: Изобретение
Номер охранного документа: 0002409531
Дата охранного документа: 20.01.2011
06.07.2019
№219.017.a8e7

Способ приготовления смеси для ячеистых силикатных строительных изделий и строительное изделие

Изобретение относится к промышленности строительных материалов и может быть использовано для изготовления звуко- и теплоизоляционных блоков, плит и панелей для внутренних работ в гражданских и промышленных зданиях. Способ приготовления смеси для ячеистых силикатных строительных изделий включает...
Тип: Изобретение
Номер охранного документа: 0002409534
Дата охранного документа: 20.01.2011
Показаны записи 51-59 из 59.
06.07.2019
№219.017.a8e7

Способ приготовления смеси для ячеистых силикатных строительных изделий и строительное изделие

Изобретение относится к промышленности строительных материалов и может быть использовано для изготовления звуко- и теплоизоляционных блоков, плит и панелей для внутренних работ в гражданских и промышленных зданиях. Способ приготовления смеси для ячеистых силикатных строительных изделий включает...
Тип: Изобретение
Номер охранного документа: 0002409534
Дата охранного документа: 20.01.2011
04.10.2019
№219.017.d26f

Способ получения гидрозоля монодисперсного нанокремнезема для изготовления бетона

Изобретение может быть использовано в химической промышленности. Получение гидрозоля монодисперсного нанокремнезема осуществляется с использованием золь-гель синтеза. В реакционной смеси используют аммиак в качестве катализатора для гидролиза тетраэтоксисилана, этанол в качестве растворителя, а...
Тип: Изобретение
Номер охранного документа: 0002701911
Дата охранного документа: 02.10.2019
18.10.2019
№219.017.d755

Способ получения гидрофобизирующей водной эмульсии для покрытий строительных материалов

Изобретение относится к промышленности строительных материалов, а именно к области получения водных эмульсий для обработки для придания строительным материалам гидрофобизирующих (водоотталкивающих) свойств. Способ получения гидрофобизирующей водной эмульсии для покрытий строительных материалов,...
Тип: Изобретение
Номер охранного документа: 0002703252
Дата охранного документа: 15.10.2019
25.04.2020
№220.018.195a

Бетонная смесь

Изобретение относится к строительству, в частности к составам сырьевых смесей для приготовления пенобетона со звукопоглощающими свойствами, и может быть использовано для возведения звукопоглощающих стен зданий, обеспечивающих защиту внутренних помещений от шумового воздействия, в том числе, от...
Тип: Изобретение
Номер охранного документа: 0002719895
Дата охранного документа: 23.04.2020
15.05.2020
№220.018.1d15

Специальный бетон

Изобретение относится к строительству, в частности к составам водонепроницаемых и износостойких бетонов, и может быть использовано для бетонирования гидротехнических сооружений. Специальный бетон содержит портландцемент ЦЕМ I 32,5Н, минеральную добавку, химический модификатор, морской песок...
Тип: Изобретение
Номер охранного документа: 0002720839
Дата охранного документа: 13.05.2020
03.07.2020
№220.018.2dbd

Способ получения диоксида кремния

Изобретение относится к технологии химической переработки минерального сырья и может быть использовано в химической промышленности, в частности в производстве минеральных модификаторов для цементных вяжущих. Диоксид кремния получается в результате того, что рисовая шелуха подвергается...
Тип: Изобретение
Номер охранного документа: 0002725255
Дата охранного документа: 30.06.2020
22.05.2023
№223.018.6b4e

Грунтобетон для дорожного строительства

Изобретение относится к дорожно-строительным материалам, а именно к грунтобетонам, и может быть использовано в качестве подстилающего слоя дорожных одежд или для устройства слоев оснований дорожных одежд. Технический результат заключается в улучшении физико-механических показателей: с высокими...
Тип: Изобретение
Номер охранного документа: 0002795808
Дата охранного документа: 11.05.2023
22.05.2023
№223.018.6b5f

Сырьевая смесь для геополимерного пенобетона и способ ее получения

Группа изобретений относится к промышленности строительных материалов, а именно к сырьевой смеси для геополимерного пенобетона и способу ее получения. Сырьевая смесь для геополимерного пенобетона содержит, мас.%: золу-уноса низкокальциевую с удельной поверхностью 1850 см/г 51-53,5, метакаолин с...
Тип: Изобретение
Номер охранного документа: 0002795804
Дата охранного документа: 11.05.2023
22.05.2023
№223.018.6ba3

Сырьевая смесь для геополимерного пенобетона и способ ее получения

Группа изобретений относится к промышленности строительных материалов, а именно к сырьевой смеси для геополимерного пенобетона и способу ее получения. Сырьевая смесь для геополимерного пенобетона включает, мас.%: золу-уноса низкокальциевую с удельной поверхностью 1850 см/г 50,5-52,9, каолин с...
Тип: Изобретение
Номер охранного документа: 0002795802
Дата охранного документа: 11.05.2023
+ добавить свой РИД