×
19.04.2019
219.017.3361

Результат интеллектуальной деятельности: ЭЛЕКТРОЛИТ НИКЕЛИРОВАНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области гальванотехники и может найти применение в авиационной, автомобильной и других отраслях промышленности. Электролит содержит, г/л: никельсульфаминовокислый 325-440, никель-хлористый 4-10, кобальт сульфаминовокислый 12-30, борная кислота 25-40, натрий лаурилсульфат 0,01-0,1, наночастицы оксида алюминия и/или оксида циркония 2-55, микрочастицы оксида алюминия α и γ фазы 10-40, микрочастицы дисульфида молибдена 1-4, вода до 1 л. Технический результат: повышение микротвердости, износостойкости и антифрикционных свойств покрытий. 2 з.п. ф-лы, 2 табл., 5 пр.

Изобретение относится к области гальванотехники, а именно к электрохимическому нанесению никеля и его сплавов на стальные детали, например, узлы трения-скольжения с получением композиционно кластерных гальванических покрытий (ККГП), и может найти применение в авиационной, автомобильной и других отраслях промышленности.

Известен электролит никелирования, имеющий следующий химический состав, г/л:

сульфат никеля 630 мл/л
хлорид никеля 5
борная кислота 30
стабилизатор 0,8
лаурилсульфат 0,1
микрочастицы BN (патент США №4479855).

который может содержать микрочастицы порошков нитрида бора, карбида кремния, оксида титана, оксида алюминия дисперсностью 0,4-5 мкм.

Недостатком электролита никелирования является то, что полученные покрытия обладают низкими антифрикционными свойствами.

Известен электролит никелирования для получения композиционных электрохимических покрытий, содержащий, г/л:

сульфат никеля 220
хлорид никеля 45
ацетат натрия или калия 30
фуллерен C60 0,025-0,050 (патент РФ №2280109)

Недостатком известного электролита является низкая износостойкость получаемого покрытия.

Известен также электролит для осаждения композиционного покрытия никель - фторопласт, который содержит, г/л:

хлорид никеля 150-350
борная кислота 25-40
хлорамин Б 1,5-4,5
фторопластовая эмульсия 7-35 (патент РФ №2297476)

Недостатком известного электролита является неудовлетворительная износостойкость получаемых композиционных покрытий, т.е. они могут работать только при низких нагрузках.

Известен электролит никелирования для осаждения композиционных покрытий следующего состава, г/л:

сульфат никеля 200
хлорид никеля 40
бисульфат графита 2-10
ацетат никеля или ацетат калия 30 (патент РФ №2352695)

Недостатком известного электролита для получения покрытия является низкая износостойкость и отсутствие промышленного выпуска бисульфата графита.

Наиболее близким аналогом, взятым за прототип, является электролит никелирования, содержащий, г/л:

никель сульфаминовокислый 300-440
никель хлористый 4-15
кобальт сульфаминовокислый
или железо сульфаминовокислое 12-27
борная кислота 25-40
наночастицы оксида металла групп
IIIA, IVB, VB, VIB и/или
карбида металла
групп IVB, VB, VIB 2-100
ПАВ 0,01-0,1
вода до 1 л (патент РФ №2293803)

Наночастицы имеют дисперсность 50-200 нм и удельную поверхность 20-390 м2/г.

Недостатком прототипа является то, что покрытия, сформированные в этом электролите, не обладают достаточными антифрикционными свойствами и не обеспечивают высокой износостойкости.

Технической задачей предлагаемого изобретения является разработка электролита никелирования, обеспечивающего получение композиционно-кластерных гальванических покрытий (ККГП) на основе никеля, имеющих повышенные значения микротвердости, износостойкости и улучшенные антифрикционные свойства.

Для решения поставленной задачи предложен электролит никелирования, содержащий никель сульфаминовокислый, никель хлористый, кобальт сульфаминовокислый, борную кислоту, поверхностно-активное вещество, наночастицы оксида металла и воду, который в качестве наночастиц оксида металла содержит оксид алюминия и/или оксид циркония, а в качестве поверхностно-активного вещества -натрий лаурилсульфат и дополнительно содержит микрочастицы оксида алюминия ά и γ фазы и дисульфида молибдена при следующем соотношении компонентов, г/л:

никель сульфаминовокислый 325-440
никель хлористый 4-10
кобальт сульфаминовокислый 12-30
борная кислота 25-40
натрий лаурилсульфат 0,01-0,1
наночастицы оксида алюминия
и/или оксида циркония 2-55

микрочастицы:

оксид алюминия ά и γ фазы 10-40
дисульфид молибдена 1-4
вода до 1 л

Микрочастицы оксида алюминия и дисульфида молибдена имеют дисперсность 0,5÷20 мкм.

В качестве блескообразующей добавки электролит дополнительно содержит сахарин.

Установлено, что введение в электролит микрочастиц Al2O3 ά и γ фазы, а также MoS2 способствует формированию композиционной структуры с улучшенными физико-механическими свойствами (износостойкость, микротвердость, антифрикционные свойства). При использовании микрочастиц Al2O3 β-фазы композиционное покрытие не формируется, в связи с неустойчивым фазовым состоянием данной модификации в сульфаминовокислом электролите.

Одновременное введение в электролит наночастиц оксида алюминия и/или оксида циркония и микрочастиц в виде композиции из оксида алюминия ά и γ фазы и дисульфида молибдена, обеспечивает получение поликомпозиционного самосмазывающегося покрытия, сочетающего низкий коэффициент трения - скольжения и высокую износостойкость. Частицы дисульфида молибдена вводят в композиционное покрытие для того, чтобы снизить эффект непосредственного трибологического контакта. Вследствие ориентации частиц дисульфида молибдена кристаллической плоскостью базиса параллельно направлению трения и, следовательно, действию сдвиговых деформаций, обеспечивается локализация этих деформаций в смазочном слое, что обеспечивает снижение энергетических потерь в процессе трения, поскольку сопротивление сдвигу в этих слоях существенно ниже, чем в материале подложки.

Установлено, что лаурилсульфат натрия, как поверхностно-активное вещество, поддерживает седиментационную устойчивость нано- и микрочастиц и увеличивает рассеивающую способность электролита. Электролит содержит сахарин в качестве блескообразователя.

Примеры осуществления

Пример 1

Электролит никелирования готовили путем смешивания приготовленного раствора сульфаминовокислого никеля с остальными компонентами. Оксид алюминия άи γ фазы и дисульфид молибдена вводили в электролит в виде суспензии и осаждали композиционное покрытие с применением активного барботажа электролита воздухом при вертикальном расположении анода и катода.

В качестве наночастиц оксида металла использовали оксид алюминия и/или оксид циркония.

Осаждение никелевого покрытия проводили при следующих соотношениях компонентов, г/л: никель сульфаминовокислый - 325, никель хлористый - 4, кобальт сульфаминовокислый - 12, борная кислота - 25, натрий лаурилсульфат - 0,01, сахарин - 0,5, наночастицы ZrO2 - 2, микрочастицы Al2O3 ά и γ фазы - 10, микрочастицы MoS2 - 4.

Режим осаждения: температура 42°C, рН=4,0, плотность тока 5 А/дм2.

Примеры 2, 3, 4 аналогичны примеру 1.

В таблице 1 представлены составы электролитов, где примеры 1-4 - предлагаемый состав, пример 5 - прототип.

В таблице 2 представлены физико-механические свойства (микротвердость, износостойкость) композиционно-кластерных никелевых покрытий, получаемых из предлагаемого электролита и прототипа.

Таблица 1
Составы электролитов никелирования
Состав электролита, г/л 1 2 3 4 5 (прототип)
Никель сульфаминовокислый 325 360 400 440 400
Никель хлористый 4 6 8 10 10
Кобальт сульфаминовокислый 12 18 24 30 20
Борная кислота 25 30 35 40 35
Натрия лаурилсульфат 0,01 0,04 0,08 0,1 0,08
Сахарин 0,5 1,5 0,8
Наночастицы, Al2O3 - 15 30 20 30
Наночастицы, ZrO2 2 - - 35 -
Микрочастицы, Al2O3 ά и γ фазы / дисперсность, мкм 10/0,5 20/5 30/10 40/20 -
Микрочастицы, MoS2 / дисперсность, мкм 2/5 3/10 1/20 4/0,5 -

Таблица 2
Физико-механические свойства композиционно-кластерных никелевых покрытий, получаемых из предлагаемых электролитов и прототипа
№ п/п Микротвердость, МПа Износостойкость в условиях сухого торцового трения
Момент трения Коэфф. трения Износ, мг
1 5700 незначительное повышение в начальный период (процесс приработки) 0,46 0,7
2 6200 стабильный 0,43 0,6
3 6500 стабильный 0,42 0,6
4 5900 незначительное повышение в начальный период (процесс приработки) 0,48 0,7
5 5500 равномерное повышение в процессе трения с образованием кольцевых бороздок по всей поверхности покрытия 0,57 1,3

Полученные покрытия по внешнему виду соответствуют требованиям ГОСТ 9.301-86.

Контроль содержания микрочастиц в композиционном покрытии проводили микроскопическим способом с применением металографического метода.

Контроль прочности сцепления проводили методом нагрева по ГОСТ 3802-88. Контроль микротвердости проводили с помощью микротвердомера ПМТ-3М при нагрузке 50 г.

Контроль износостойкости и антифрикционных характеристик покрытий проводили на образцах типа Н03-264 на машине торцевого трения И-47 по СТП 1.595-14-285-9.

Как видно из таблицы 2, покрытие, получаемое из предлагаемого электролита, по сравнению с прототипом обладает повышенной на 15-20% микротвердостью, пониженным на 15-25% коэффициентом трения по стали, увеличенной более чем в 2 раза износостойкостью.

Применение предлагаемого электролита увеличит ресурс работы узлов машин и механизмов.

Источник поступления информации: Роспатент

Показаны записи 121-130 из 251.
10.09.2015
№216.013.777c

Установка для сварки трением с перемешиванием

Установка может быть использована при сварке трением прессованных или катаных тонкостенных полуфабрикатов неограниченной длины из алюминиевых сплавов. Сварочный инструмент закреплен на корпусе, имеющем привод его поступательного перемещения вдоль линии сварки по горизонтальной поверхности...
Тип: Изобретение
Номер охранного документа: 0002562177
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.7888

Стенд для измерения стато - динамических характеристик физических объектов

Изобретение относится к области измерительной техники и может быть использовано для измерения массы, координат центра масс и моментов инерции объектов машиностроения. Устройство состоит из динамометрической платформы для измерения массы изделия, пятикомпонентного динамометрического элемента,...
Тип: Изобретение
Номер охранного документа: 0002562445
Дата охранного документа: 10.09.2015
20.09.2015
№216.013.7d02

Устройство для контроля подводного плавсредства с самого плавсредства

Использование: изобретение относится к области гидроакустики и может быть использовано для оперативного контроля параметров подводного шума плавсредства с помощью гидроакустического рабочего средства измерений (РСИ) с самого плавсредства. Сущность: с самого плавсредства в режиме стабилизации...
Тип: Изобретение
Номер охранного документа: 0002563599
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7d71

Способ контроля обледенения жалюзи воздухоприемной решетки

Изобретение предназначено для определения начала обледенения жалюзи воздухоприемной решетки при исследовании тепловых процессов, осуществляемых в целях защиты от обледенения. Обледенение решетки жалюзи определяют по образованию инея на влажном марлевом бинте, который предварительно укладывают...
Тип: Изобретение
Номер охранного документа: 0002563710
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7d75

Крупногабаритная воздухоприемная решетка с обогреваемыми жалюзи

Изобретение относится к области защиты судовых устройств от обледенения. Решетка с обогреваемыми жалюзи выполнена из модулей-ршеток, заполненных теплопроводным компаундом и объединенных общей рамой. Греющие кабели проложены в разных модулях, объедены в общую электрическую сеть и запитаны от...
Тип: Изобретение
Номер охранного документа: 0002563714
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7d76

Способ защиты воздухозаборных решеток с жалюзи от обледенения и устройство для его осуществления

Изобретение относится к устройствам для защиты вентиляционных решеток с жалюзи от обледенения. Устройство содержит полые жалюзи для прокладки внутри них греющего кабеля и заполнения теплопроводящим веществом частей полости жалюзи. Торцы элементов ребер жесткости выполнены вогнутыми...
Тип: Изобретение
Номер охранного документа: 0002563715
Дата охранного документа: 20.09.2015
27.09.2015
№216.013.7f07

Способ двухступенчатого преобразования энергии ионизирующего излучения в электрическую энергию

Изобретение относится к способу преобразования энергии ионизирующего излучения в ультрафиолетовое излучение. В заявленном способе предусмотрено использование диссоциирующего газа и преобразование ультрафиолетового излучения в электрическую энергию с помощью полупроводникового алмаза. Источник...
Тип: Изобретение
Номер охранного документа: 0002564116
Дата охранного документа: 27.09.2015
10.10.2015
№216.013.818f

Способ легирования стали

Изобретение относится к области металлургии и может быть использовано при получении быстрорежущей стали из отходов изношенного режущего инструмента. В способе осуществляют расплавление отходов в индукционной тигельной печи с последующим проведением химанализа полученного расплава и...
Тип: Изобретение
Номер охранного документа: 0002564764
Дата охранного документа: 10.10.2015
20.10.2015
№216.013.86f2

Способ получения пенополиуретанового нанокомпозита

Изобретение относится к производству полимерных композитов на основе пенополиуретанов, которые могут быть использованы для теплоизоляции конструкций в судостроении, авиастроении и автомобильной промышленности. Способ получения пенополиуретанового нанокомпозита включает предварительную...
Тип: Изобретение
Номер охранного документа: 0002566149
Дата охранного документа: 20.10.2015
27.10.2015
№216.013.87f8

Пьезоэлектрический акселерометр

Изобретение относится к области измерительной техники и может быть использовано для измерения параметров ускорения в виброметрии, сейсмологии и акустики. Пьезоэлектрический акселерометр содержит предусилитель и концентрично расположенные кольцевые инерционную массу, корпус и первый...
Тип: Изобретение
Номер охранного документа: 0002566411
Дата охранного документа: 27.10.2015
Показаны записи 1-3 из 3.
20.11.2015
№216.013.92cd

Способ осаждения износостойкого покрытия на алюминиевые сплавы с высоким содержанием кремния

Изобретение относится к области осаждения износостойких комбинированных покрытий для защиты поверхностей алюминиевых сплавов от воздействия агрессивных сред и износа, в частности для защиты алюминиевых литейных сплавов с высоким содержанием кремния, и может быть использовано в авиационной...
Тип: Изобретение
Номер охранного документа: 0002569199
Дата охранного документа: 20.11.2015
19.04.2019
№219.017.2ebd

Способ нанесения цинковых покрытий

Изобретение относится к области электрохимического нанесения покрытий, в частности к локальному осаждению цинковых покрытий на токопроводящую поверхность деталей, например, для ремонта поврежденных цинковых покрытий. Способ включает электролитическое натирание поверхности анодом, к которому...
Тип: Изобретение
Номер охранного документа: 0002389828
Дата охранного документа: 20.05.2010
19.04.2019
№219.017.3362

Способ нанесения износостойкого покрытия на титановые сплавы

Изобретение относится к нанесению износостойких покрытий и может найти применение в авиастроении и машиностроении. Проводят диффузионную электрохимическую обработку титанового сплава в электролите следующего химического состава, г/л: ортофосфорная кислота - 1100-1200, сегнетова соль или...
Тип: Изобретение
Номер охранного документа: 0002449053
Дата охранного документа: 27.04.2012
+ добавить свой РИД