×
19.04.2019
219.017.32ba

Результат интеллектуальной деятельности: СПОСОБ ОПЕРАТИВНОГО ИЗМЕРЕНИЯ ДЕБИТА ЖИДКОСТИ НЕФТЯНОЙ ИЛИ ГАЗОКОНДЕНСАТНОЙ СКВАЖИНЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Вид РИД

Изобретение

Аннотация: Группа изобретений предназначена для оперативного измерения дебита жидкости нефтяных или газоконденсатных скважин при их исследовании. Устройство состоит из горизонтальной емкости, оснащенной в верхней части гидроциклонной головкой для разделения газообразных углеводородов, которая внутри разделена перегородкой, открытой в верхней части и разделяющей емкость на приемный и выкидной отсеки. В перегородке смонтирована вставка с профилированной сливной щелью, устанавливающей уровень в приемном отсеке на величине, адекватной суточному дебиту скважины по жидкости. Причем профиль щели обеспечивает линейную зависимость уровня от дебита с точностью в рабочем диапазоне дебитов ±5%. Для этого профиль щели с боковых сторон ограничен кривыми где а - любое положительное число, значение которого принимается при выборе диапазона замеряемых дебитов жидкости, а снизу ограничен осью абсцисс, ограниченной значениями ±x, соответствующими значению у=0,25 см. Между местом слива жидкости на стенку емкости и разделительной перегородкой с профилированной щелью установлена успокоительная перфорированная перегородка. Техническим результатом является повышение точности измерения дебита, увеличение количества замеряемых скважин за календарные сутки. 2 н.п. ф-лы, 1 табл., 2 ил.

Изобретение относится к нефтегазодобывающей промышленности, в частности к способам и устройствам для измерения дебита жидкости нефтяной или газоконденсатной скважины, и может применяться для определения суточной производительности скважины как в процессе опробования разведочной скважины, так и для оперативного учета дебита эксплуатирующейся скважины в стационарной системе нефтегазосбора.

Известны способы измерения дебита жидкости скважин, основанные на измерении объема или веса накопленной в сепарационной емкости жидкости за измеренное время и пересчете полученной информации о количестве жидкости и времени ее накопления в суточный дебит скважины. В частности, известны установки для измерения дебита нефтяных скважин типа «Спутник-А», «Спутник-А-40», где продукция замеряемой скважины направляется в гидроциклонный сепаратор, в котором свободный газ отделяется и уходит в газовый коллектор, а измерение дебита жидкости осуществляется путем кратковременных пропусков через турбинный счетчик накапливающейся в сепараторе жидкости и регистрации объемов на индивидуальном счетчике в блоке местной автоматики (БМА), накопление жидкости в нижнем сосуде сепаратора до заданного верхнего уровня и выпуск ее до нижнего уровня осуществляется при помощи поплавного регулятора и заслонки на газовой линии (1) (Справочная книга по добыче нефти, под редакцией д.т.н. Ш.К.Гиматудинова. М., «Недра», 1974, с.487-489).

Всплывание поплавка регулятора до верхнего уровня вызывает через систему рычагов закрытие заслонки на газовой линии и, следовательно, повышение давления в сепараторе, в результате чего происходит продавка жидкости из сепаратора через турбинный счетчик, установленный выше верхнего заданного уровня жидкости в сепараторе. При достижении поплавком нижнего заданного уровня открывается заслонка на газовой линии, выравнивается давление между сепаратором и коллектором и продавливание жидкости через счетчик прекращается. Время накопления жидкости в сепараторе и количество пропусков жидкости через счетчик за время замера зависят от дебита скважины.

К недостаткам известного способа относятся:

1. Невысокая точность измерения расхода жидкости при больших дебитах скважин расходометром турбинного типа вследствие плохой сепарации газа от нефти в гидроциклонном сепараторе и попадания в счетчик вместе с жидкостью пузырьков газа.

2. Дополнительная погрешность измерения, связанная с заданием времени измерения дебита скважины вследствие нецелого числа циклов слив-налив, укладывающихся в заданное время, и перехода части жидкости замера предыдущей скважины в замер последующей.

3. Необходимость выдержки времени, заданного для замера каждой скважины, что ограничивает количество замеряемых скважин за календарные сутки.

Известны также установки для измерения дебита скважин типа «Спутник-В», расход жидкости в которых определяется с помощью взвешивания ее в тарированной емкости (2) (Справочная книга по добыче нефти. Под редакцией д.т.н. Ш.К.Гиматудинова М., «Недра», 1974, с.489-490).

Нефтегазовая смесь от скважины, подключенной на замер, поступает в сепаратор, где измеряется при помощи оттарированной емкости, гамма-датчиков, подающих сигнал об уровнях жидкости на БМА, и плоской оттарированной пружины. Дебит жидкости определяется путем измерения веса жидкости, накапливаемой в объеме между гамма-датчиками верхнего и нижнего уровней, и регистрации времени накопления этой жидкости.

После того, как оттарированная емкость наполнилась жидкостью и масса ее измерена, БМА включает электрогидравлический привод и заслонка на газовой линии прикрывается, в результате чего в сепараторе увеличивается давление и жидкость, скопившаяся в тарированной емкости, через сифон выдавливается в коллектор.

К недостаткам известного способа относятся:

1. Ограниченная возможность применения его для измерения дебитов парафинистой нефти, т.к. отложения парафина в тарированной емкости влияют на результаты измерения вследствие изменения веса измеряемой жидкости ввиду изменения веса порожней емкости.

2. Необходимость измерения времени замера каждой скважины ограничивает количество замеряемых скважин за календарные сутки.

Авторами предлагается способ оперативного измерения суточного дебита нефтяной или газоконденсатной скважины по жидкости и устройство для его осуществления, лишенные указанных недостатков.

Задачей настоящего изобретения является повышение точности измерения расхода жидкости, увеличение количества замеряемых скважин за календарные сутки.

На фиг.1 представлено устройство для оперативного измерения дебита нефтяной или газоконденсатной скважины.

На фиг.2 представлен профиль щели.

Сущность настоящего изобретения заключается в том, что в известном способе оперативного измерения дебита жидкости нефтяной или газоконденсатной скважины, заключающемся в подаче скважинной жидкости в сепарационный отсек емкости, накоплении в нем и сливе через профилированную щель в сливной отсек таким образом, что в момент равенства количества поступающей в сепарационный отсек жидкости количеству сливаемой из него в сливной отсек в сепарационном отсеке устанавливается стационарный уровень, адекватный суточному дебиту скважины, который может быть замерен любым известным способом, согласно изобретению профиль сливной щели подобран таким образом, что обеспечивает линейную зависимость величины уровня от величины суточного дебита скважины в заданном диапазоне измеряемых дебитов с достаточной для оперативного учета точностью (например, ±5%), причем профиль щели ограничен с боковых сторон кривыми , где а - любое положительное число, значение которого принимается при выборе диапазона измеряемых дебитов жидкости, а снизу - осью абсцисс между значениями ±xк, соответствующими значению y=0,25 см, то есть , шкала дебитов на каждый сантиметр уровня по воде рассчитывается по формуле:

где qв - суточный дебит по воде, м3/сут,

µ - коэффициент расхода, который для указанного профиля щели по значению равен соответствующему коэффициенту длинной вертикальной щели, то есть µ=0,62, и может уточняться на тарировочном стенде,

f - площадь заполненного жидкостью сечения щели, см2:

y - измеренное значение уровня, см;

x - значение абсциссы, соответствующей значению y, см, определяемое по формуле:

yц.т - ордината центра тяжести заполненного жидкостью сечения щели, определяемая по формуле:

а величину дебита любой жидкости, например нефти или эмульсии, с известным количеством воды в ней определяют по дебиту для воды по формуле:

где qн - суточный дебит нефти, м3/сут;

qв - суточный дебит воды, м3/сут;

γв - удельный вес воды, г/см3;

γв - удельный вес нефти, г/см3.

Сущность настоящего изобретения заключается в том, что в известном устройстве для оперативного измерения дебита жидкости нефтяной или газоконденсатной скважины, состоящем из емкости, оснащенной гидроциклонной головкой, через которую вводится поток скважинной жидкости, сливной полки, направляющей поток жидкости на стенку емкости, выходных патрубков для вывода жидкости и газа, согласно изобретению емкость разделена перегородкой на сепарационный и сливной отсеки, открытой сверху для прохода газа, в которую вмонтирована вставка с профилированной сливной щелью, через которую сливается жидкость из сепарационного отсека в сливной отсек и которая устанавливает в сепарационном отсеке уровень, адекватный величине суточного дебита, а между местом слива жидкости на стенку емкости и разделительной перегородкой с профилированной щелью установлена успокоительная перфорированная перегородка.

Способ оперативного измерения дебита жидкости нефтяной или газоконденсатной скважины заключается в подаче скважинной жидкости в сепарационный отсек емкости, где она дегазируется и дегазированная сливается через профилированную щель в сливной отсек емкости, откуда откачивается в коллектор. Профиль сливной щели и ее размер подобраны таким образом, чтобы уровень жидкости в сепарационном отсеке перед сливной щелью, устанавливающийся при равенстве количества поступающей в сепарационный отсек жидкости и количества сливающейся через эту щель жидкости в сливной отсек, был адекватен суточному дебиту скважины, а шкала уровня обеспечивала линейность шкалы дебитов в заданном диапазоне измеряемых дебитов с достаточной для оперативного учета точностью измерения (например, ±5%).

Такими свойствами обладает профиль щели, представленный на фиг.2, ограниченный с боковых сторон кривыми , где а - любое положительное число, значение которого принимается при выборе диапазона измеряемых дебитов жидкости, а снизу ограниченной осью абсцисс между значениями ±xк, соответствующими значениями y=0,25 см, то есть .

Шкала дебитов на каждый сантиметр уровня по воде рассчитывается по формуле:

где qв - суточный дебит для воды, м3/сут;

µ - коэффициент расхода, который для указанного профиля щели по значению равен соответствующему коэффициенту длинной вертикальной щели, то есть µ=0,62, и может уточняться на тарировочном стенде;

f - площадь заполненного жидкостью сечения щели, см2:

где y - замеренное значение уровня, см;

х - значение абсциссы профиля щели, соответствующее значению y, см,

yц.т - ордината центра тяжести заполненного жидкостью сечения щели, определяемая по формуле:

Дебит скважины по конкретной жидкости (нефти, эмульсии) с известной плотностью рассчитывается по дебиту для воды по формуле:

где qн - дебит скважины по нефти, м3/сут;

qв - дебит скважины по воде, м3/сут;

γв - удельный вес воды, г/см3;

γв - удельный вес нефти, г/см3.

Приведем пример расчета шкалы дебитов по воде для условий:

Результаты расчетов представлены в таблице

Как следует из таблицы, выбранный профиль щели обеспечивает линейность шкалы дебитов с достаточной для оперативного учета точностью (±5%) в диапазоне дебитов от 25 до 735 м3/сутки.

Предположенный способ оперативного измерения дебита жидкости скважины реализуется устройством (фиг.1), состоящим из емкости 3, оснащенной гидроциклонной головкой 2 для отделения свободного газа, сливной полкой 1, направляющей поток жидкости на стенку корпуса 3, перегородкой 6, разделяющей емкость на два отсека (сепарационный и сливной) и открытой сверху, в которую монтируется вставка 5 с профилированной сливной щелью (фиг.2).

В сепарационном отсеке между местом слива жидкости на стенку емкости и перегородкой 6 установлена успокоительная перфорированная перегородка 7, предотвращающая колебания уровня перед сливной щелью. Нефть отводится в коллектор снизу сливного отсека емкости, а газ - сверху.

Измерение уровня, адекватного суточному дебиту жидкости, можно производить любым известным способом (от уровнемерного стекла до электронного емкостного или индукционного уровнемера).

В мобильном варианте (для измерения дебита разведочных скважин) устройство может монтироваться на автомобильном прицепе либо на санях.

Источник поступления информации: Роспатент

Показаны записи 61-70 из 109.
11.10.2018
№218.016.906b

Способ регенерации адсорбента осушки природных газов

Изобретение относится к области очистки газов адсорбентами, регенерация которых осуществляется горячим газом, проходящим через адсорбент, а именно к осушке и очистке природных газов. Способ регенерации адсорбента осушки природных газов реализуют использованием на стадии первичной регенерации...
Тип: Изобретение
Номер охранного документа: 0002669269
Дата охранного документа: 09.10.2018
09.11.2018
№218.016.9b99

Конструкция талрепа гидравлического

Изобретение относится к устройствам натяжения тросовых конструкций. Талреп, включающий гидроцилиндр с поршнем одностороннего действия, согласно изобретению на штоке дополнительно имеет накидную гайку, фиксирующую между собой шток и корпус гидроцилиндра после натяжения тросовой конструкции....
Тип: Изобретение
Номер охранного документа: 0002671917
Дата охранного документа: 07.11.2018
14.11.2018
№218.016.9cc1

Устройство автоматизированного геотехнического мониторинга для подземных трубопроводов

Изобретение относится к средствам диагностики технического состояния трубопроводов и может быть использовано для непрерывного мониторинга технического состояния подземных трубопроводов, проложенных в суровых климатических и геологических условиях. Технический результат достигается за счет того,...
Тип: Изобретение
Номер охранного документа: 0002672243
Дата охранного документа: 12.11.2018
14.11.2018
№218.016.9d63

Способ определения протяженности и очередности замены участков линейной части магистральных трубопроводов

Изобретение относится к магистральному трубопроводному транспорту углеводородов, в частности к обеспечению надежности транспортировки и безопасности эксплуатации магистральных трубопроводов за счет эффективного планирования работ по капитальному ремонту, в частности, определения протяженности и...
Тип: Изобретение
Номер охранного документа: 0002672242
Дата охранного документа: 12.11.2018
14.12.2018
№218.016.a719

Тепловой коллектор с термостабилизационными оптическими элементами концентрации солнечной энергии

Изобретение относится к области солнечной энергетики, а именно к устройствам, использующим солнечное тепло с оптическими элементами для концентрации энергии. Тепловой коллектор может быть использован в системах отопления, горячего водоснабжения, приточно-вытяжной вентиляции, для преобразования...
Тип: Изобретение
Номер охранного документа: 0002674855
Дата охранного документа: 13.12.2018
19.12.2018
№218.016.a851

Конструкция защитного сооружения для укрепления оползневых склонов

Изобретение относится к строительству, а именно к конструкциям, предназначенным для защиты объектов гражданского и промышленного строительства от разрушения при оползневых явлениях в неустойчивых грунтах и в районах с повышенной сейсмоопасностью. Конструкция защитного сооружения для укрепления...
Тип: Изобретение
Номер охранного документа: 0002675128
Дата охранного документа: 17.12.2018
10.01.2019
№219.016.adec

Устройство для очистки транспортируемого газа

Изобретение относится к газовой промышленности и другим областям энергомашиностроения и предназначено для очистки газа от механических примесей и сконденсированной жидкости на промыслах, установках комплексной подготовки газа, газораспределительных станциях, компрессорных станциях, а также...
Тип: Изобретение
Номер охранного документа: 0002676640
Дата охранного документа: 09.01.2019
10.01.2019
№219.016.ae0f

Способ комплексной очистки дымовых газов

Изобретение относится к области охраны окружающей среды и может быть использовано для очистки дымовых газов промышленных объектов, в которых присутствует выброс в атмосферу продуктов горения, в частности для улавливания из дымовых газов загрязняющих веществ, таких как NOx, SO, СО, CO, и твердых...
Тип: Изобретение
Номер охранного документа: 0002676642
Дата охранного документа: 09.01.2019
10.01.2019
№219.016.ae49

Устройство для адсорбции

Изобретение относится к области очистки газов адсорбентами, регенерация которых осуществляется горячим газом, проходящим через адсорбент, и может быть использовано, например, в газовой, нефтяной, нефтеперабатывающей и нефтехимической промышленности. Задачей настоящего изобретения является...
Тип: Изобретение
Номер охранного документа: 0002676635
Дата охранного документа: 09.01.2019
01.03.2019
№219.016.cbca

Многофункциональная гидрофильная эмульсионная система для ремонта скважин (варианты)

Изобретение относится к нефтегазодобывающей промышленности, в частности к составам, используемым при капитальном ремонте скважин. Технический результат - создание экологически чистого и негорючего гидрофильного состава, снижение его стоимости. Многофункциональная гидрофильная эмульсионная...
Тип: Изобретение
Номер охранного документа: 0002313557
Дата охранного документа: 27.12.2007
+ добавить свой РИД