×
19.04.2019
219.017.3218

Результат интеллектуальной деятельности: СПОСОБ ТЕРМОМЕХАНИЧЕСКОЙ ОБРАБОТКИ ИЗДЕЛИЙ ИЗ ТИТАНОВЫХ СПЛАВОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области цветной металлургии, в частности к термомеханической обработке изделий (полуфабрикатов, деталей, узлов и др.) из титановых сплавов Способ термомеханической обработки изделий из титановых сплавов включает термомеханическую обработку, которую проводят в двенадцать стадий, при этом на первой стадии осуществляют нагрев до температуры (Т+200÷Т+270)°C, деформацию в четыре этапа при охлаждении до температуры (Т+70÷Т-100)°C с изменением направления деформации на 90° при чередовании осадки и вытяжки со степенью деформации 30÷60% на каждом этапе; на второй стадии - нагрев до температуры (Т+120÷Т+170)°C, деформацию в четыре этапа при охлаждении до температуры (Т-50÷Т-110)°C с изменением направления деформации на 90° при чередовании осадки и вытяжки со степенью деформации 30÷60% на каждом этапе; на третьей стадии - нагрев до температуры (Т+20÷Т+70)°C, деформацию в четыре этапа при охлаждении до температуры (Т-70÷Т-140)°C с изменением направления деформации на 90° при чередовании осадки и вытяжки со степенью деформации 30÷60% на каждом этапе; на четвертой стадии - нагрев до температуры (Т-20÷Т-40)°C, деформацию со степенью 15-60% при охлаждении до температуры (Т-100÷Т-140)°C; на пятой стадии - нагрев до температуры (Т+70÷Т+90)°C, деформацию со степенью 30-60% при охлаждении до температуры (Т-40÷Т-90)°C; на шестой стадии - нагрев до температуры (Т-20÷Т-40)°C, деформацию со степенью 20-40% в процессе охлаждения до температуры (Т-60÷Т-100)°C; на седьмой стадии - нагрев до температуры (Т+20÷Т+50)°C, деформацию со степенью 30-60% в процессе охлаждения до температуры (Т-40÷Т-70)°C; на восьмой стадии - нагрев до температуры (Т-20÷Т-40)°C, деформацию со степенью 20-60% в процессе охлаждения до температуры (Т-60÷Т-100)°C; на девятой стадии - нагрев до температуры (Т+30÷Т+70)°C, деформацию при прокатке со степенью 40-70% в процессе охлаждения до температуры (Т-70÷Т-170)°C; на десятой стадии - нагрев до температуры (Т-20÷Т-40)°C, деформацию при прокатке со степенью 30-50% в процессе охлаждения до температуры (Т-100÷Т-200)°C; на одиннадцатой стадии проводят нагрев до температуры (Т-70÷Т-170)°C с выдержкой 15-60 мин, охлаждение на воздухе или в воде; на двенадцатой стадии проводят нагрев до температуры (Т-270÷Т-470)°C с выдержкой 5-15 часов, где Т - температура полиморфного превращения; при этом с четвертой по восьмую стадию направление деформации на 90° изменяют от двух до четырех раз. Предлагаемый способ термомеханической обработки изделий обеспечивает использование титановых сплавов при низких температурах и при больших 20-30% напряжениях при двухосном растяжении и позволяет повысить надежность их в работе. 2 табл.

Изобретение относится к области цветной металлургии, в частности к термомеханической обработке изделий (полуфабрикатов, деталей, узлов и др.) из титановых сплавов. Оно может быть использовано в цветной металлургии и авиационной технике для создания изделий в виде полуфабрикатов, лонжеронов, шпангоутов, балок, работающих в условиях двухосного растяжения и минусовых температур (до -70°C).

Известен способ термомеханической обработки изделий из титановых сплавов, включающий:

- нагрев до температуры (1050-1200)°C (Тпп+120÷Тпп+270)°C, деформацию в процессе охлаждения до 850°C (Тпп-80)°C;

- нагрев до температуры (880-1050)°C (Тпп-50÷Тпп+120)°C, охлаждение в процессе деформации до температуры 750°C (Тпп-180)°C, где Тпп=920°C (Александров В.К., Аношкин Н.Ф., Белозеров А.П. «Полуфабрикаты из титановых сплавов. М., ОНТИ ВИЛС, 1996 г., с.371).

Известен также способ термомеханической обработки, применяемый при изготовлении изделий из титановых сплавов, включающий нагрев в β-области выше температуры полиморфного превращения, деформацию в процессе охлаждения до температуры на 30-70°C ниже температуры полиморфного превращения, охлаждение, повторный нагрев в двухфазной области, повторную деформацию в этой области в процессе охлаждения, повторное охлаждение, окончательный нагрев в двухфазной области, выдержку и охлаждение, отличающийся тем, что с целью повышения механических свойств деформацию проводят в β- и (α+β)-областях с одинаковой степенью 40-60%, повторный нагрев осуществляют до температуры на 20-40°C ниже температуры полиморфного превращения, повторную деформацию проводят со степенью 25-35% при охлаждении до температуры на 100-130°C ниже температуры полиморфного превращения, повторное охлаждение после деформации осуществляют до температуры на 180-280°C ниже температуры полиморфного превращения, после чего дополнительно повторяют последний цикл нагрева и деформации в процессе охлаждения в тех же условиях, а охлаждение после деформации в этом цикле проводят до комнатной температуры, окончательный нагрев осуществляют до температуры на 100-300°C ниже температуры полиморфного превращения (а.с. СССР №1740487).

Недостатком способа является низкий уровень циклической прочности титановых сплавов при высоких концентраторах напряжения.

Наиболее близким аналогом, взятым за прототип, является способ термомеханической обработки из титановых сплавов, включающий многократные нагревы до температуры выше и ниже температуры полиморфного превращения и деформации в процессе охлаждения до температуры ниже полиморфного превращения, выдержку и охлаждение, в котором термомеханическую обработку проводят в одиннадцать стадий, при этом:

на первой стадии осуществляют нагрев до температуры (Тпп+290÷Тпп+370)°C, деформацию в четыре этапа при охлаждении до температуры (Тпп+100÷Тпп-70)°C с изменением направления на 90° при чередовании осадки и вытяжки со степенью деформации 20÷50% на каждом этапе деформации;

на второй стадии - нагрев до температуры (Tпп+180÷Tпп+270)°C, деформацию в четыре этапа при охлаждении до температуры (Тпп+50÷Тпп-90)°C с изменением направления на 90° при чередовании осадки и вытяжки со степенью деформации 20÷50% на каждом этапе деформации;

на третьей стадии - нагрев до температуры (Тпп+80÷Тпп+170)°C, деформацию в четыре этапа при охлаждении до температуры (Тпп-30÷Тпп-200)°C с изменением направления на 90° при чередовании осадки и вытяжки со степенью деформации 20÷50% на каждом этапе деформации;

на четвертой стадии - нагрев до температуры (Тпп-20÷Тпп-40)°C, деформацию со степенью (15-60)%;

на пятой стадии - нагрев до температуры (Тпп+30÷Тпп+60)°C, деформацию со степенью (30-60)%;

на шестой стадии - нагрев до температуры (Тпп-20÷Тпп-40)°C, деформацию со степенью (20-40)% в процессе охлаждения до температуры (Tпп-110÷Тпп-130)°C;

на седьмой стадии - нагрев до температуры (Тпп+20÷Тпп+50)°C, деформацию со степенью (30-60)% в процессе охлаждения до температуры (Тпп-110÷Тпп-130)°C;

на восьмой стадии - нагрев до температуры (Тпп-20÷Тпп-40)°C, деформацию со степенью (20-60)% в процессе охлаждения до температуры (Тпп-110÷Тпп-130)°C;

на девятой стадии - нагрев до температуры (Тпп+80÷Тпп+150)°C, деформацию при прокатке со степенью (40-70)%;

на десятой стадии производят нагрев до температуры (Тпп-20÷Тпп-50)°C, деформацию при прокатке со степенью (30-60)%;

на одиннадцатой стадии проводят нагрев до температуры (Тпп-320÷Тпп-520)°C, выдержка 2-10 ч, где Тпп - температура полиморфного превращения; при этом деформацию на стадиях с четвертой по восьмую осуществляют в один этап с изменением направления деформирования на 90° от двух до четырех раз.

С третьей по девятую стадию направление деформирования на 90° изменяют от трех до семи раз (патент РФ №2369662).

Сплав, обработанный этим способом, имеет пониженные значения прочности при двухосном растяжении и механические свойства при температуре -70°C.

Технической задачей изобретения является повышение механических свойств при рабочих температурах до -70°C, а также повышение прочности при двухосном растяжении.

Поставленная техническая задача достигается тем, что предложен способ термомеханической обработки изделий из титановых сплавов, включающий многократные нагревы до температуры выше или ниже температуры полиморфного превращения и деформации в процессе охлаждения до температуры ниже полиморфного превращения, выдержку и охлаждение, в котором термомеханическую обработку проводят в двенадцать стадий при этом:

на первой стадии осуществляют нагрев до температуры (Тпп+200÷Тпп+270)°C, деформацию в четыре этапа при охлаждении до температуры (Тпп+70÷Тпп-100)°C с изменением направления деформации на 90° при чередовании осадки и вытяжки со степенью деформации 30÷60% на каждом этапе;

на второй стадии - нагрев до температуры (Тпп+120÷Тпп+170)°C, деформацию в четыре этапа при охлаждении до температуры (Тпп-50÷Тпп-110)°C с изменением направления деформации на 90° при чередовании осадки и вытяжки со степенью деформации 30÷60% на каждом этапе;

на третьей стадии - нагрев до температуры (Тпп+20÷Тпп+70)°C, деформацию в четыре этапа при охлаждении до температуры (Тпп-70÷Tпп-140)°C с изменением направления деформации на 90° при чередовании осадки и вытяжки со степенью деформации 30÷60% на каждом этапе;

на четвертой стадии - нагрев до температуры (Тпп-20÷Тпп-40)°C, деформацию со степенью 15-60% при охлаждении до температуры (Тпп-100÷Tпп-140)°C;

на пятой стадии - нагрев до температуры (Tпп+70÷Тпп+90)°C, деформацию со степенью 30-60% при охлаждении до температуры (Тпп-40÷Тпп-90)°C;

на шестой стадии - нагрев до температуры (Тпп-20÷Тпп-40)°C, деформацию со степенью 20-40% в процессе охлаждения до температуры (Тпп-60÷Тпп-100)°C;

на седьмой стадии - нагрев до температуры (Тпп+20÷Тпп+50)°C, деформацию со степенью 30-60% в процессе охлаждения до температуры (Tпп-40÷Tпп-70)°C;

на восьмой стадии - нагрев до температуры (Тпп-20÷Тпп-40)°C, деформацию со степенью 20-60% в процессе охлаждения до температуры (Tпп-60÷Tпп-100)°C;

на девятой стадии - нагрев до температуры (Tпп+30÷Tпп+70)°C, деформацию при прокатке со степенью 40-70% в процессе охлаждения до температуры (Тпп-70÷Тпп-170)°C;

на десятой стадии - нагрев до температуры (Тпп-20÷Тпп-40)°C, деформацию при прокатке со степенью 30-50% в процессе охлаждения до температуры (Тпп-100÷Тпп-200)°C;

на одиннадцатой стадии проводят нагрев до температуры (Тпп-70÷Тпп-170)°C с выдержкой 15-60 мин, охлаждение на воздухе или в воде;

на двенадцатой стадии проводят нагрев до температуры (Тпп-270÷Тпп-470)°C с выдержкой 5-15 часов, где Тпп - температура полиморфного превращения;

при этом деформацию на стадиях с четвертой по восьмую осуществляют в один этап с изменением направления деформации на 90° от двух до четырех раз.

На первой стадии проводится деформация при пониженной на 100°C температуре β-области, чем у прототипа, что обеспечивает получение β-структуры с меньшим размером β-зерна.

На второй и третьей стадиях также проводятся всесторонние деформации при более низкой температуре β-области, что обеспечивает дальнейшее измельчение β-зерна и получение в результате механического перемешивания и диффузионных процессов однородной по химическому составу, макро- и микроструктуре заготовки.

Деформации в процессе охлаждения до более низкой температуры (α+β)-области на четвертой, пятой, шестой, девятой, десятой стадиях значительно уменьшают величину α-фазы и способствуют повышению уровня механических свойств.

В процессе деформации в α+β-области более интенсивная деформация проходит в зонах с меньшей величиной зерна, а при нагреве в β-области более интенсивно в этих зонах идет процесс рекристаллизации и рост зерен. В других зонах с более крупным зерном деформация идет менее интенсивно и с меньшей скоростью идет процесс рекристаллизации. Таким образом достигается однородность структурно-фазового состояния.

Следует отметить, что на пятой стадии нагрев проводится при температуре (Тпп+70÷Тпп+90)°C, что обеспечивает проведение более полной рекристаллизации, а процесс деформации заканчивается при (Тпп-40÷Тпп-90)°C. На шестой стадии деформация заканчивается при (Тпп-60÷Тпп-100)°C, на седьмой при (Тпп-40÷Тпп-70)°C и восьмой при (Тпп-60÷Тпп-100)°C.

В отличие от прототипа, на пятой и шестой стадиях деформация заканчивается в процессе охлаждения до регламентированных температур (α+β)-области, что приводит к более интенсивному измельчению внутризеренной α-структуры и уменьшению частиц α-фазы, что в свою очередь повышает эффективность упрочнения межфазовыми границами и повышает уровень прочности.

На девятой и десятой стадиях деформация в процессе охлаждения до (Tпп-70÷Tпп-170)°C и (Tпп-100÷Тпп-200)°C обеспечивает дальнейшее измельчение внутризеренной структуры и повышение ее однородности.

Таким образом происходит выравнивание структуры при пяти частичных фазовых перекристаллизациях, в процессе которых деформация проходит при значительном охлаждении до регламентированной температуры и трех полных фазовых перекристаллизациях. При этом достигается создание однородной сверхмелкозернистой структуры.

Частичная фазовая перекристаллизация значительно повышает однородность структурно-фазового состояния и уровень механических свойств. Изделия с такой структурой имеют малую глубину окисления по границам зерен, а следовательно, требуют меньшей глубины механической обработки поверхности перед деформацией на девятой и десятой стадиях.

Проведенные десять стадий термомеханической обработки обеспечивают при последующей одиннадцатой стадии термической обработке, с регламентированным временем выдержки 15-60 мин и дальнейшим охлаждением на воздухе или в воде фиксацию большого количества метастабильных β- и α''-фаз, а также α- и β-фаз переменного химического состава.

При последней двенадцатой стадии обработки (старении) происходит распад метастабильных фаз с образованием высокой дисперсности α-фазы.

Двенадцать стадий обработки обеспечивают эффективное упрочнение изделий из титановых сплавов за счет следующих двух механизмов: твердорастворного упрочнения и дисперсионного упрочнения (упрочнение межфазными границами).

Использование предлагаемого способа, включающего три стадии деформации в β-области при пониженных температурах, регламентированные охлаждения в процессе деформации с первой по десятую стадию, термическую обработку без деформации на одиннадцатой и двенадцатой стадиях, обеспечивает получение более однородного структурно-фазового состояния при большей дисперсности фрагментов структуры, что в свою очередь обеспечивает получение высоких значений прочности при двухосном растяжении (σВД) и механических свойств при температуре -70°C: предела прочности (σВ-70), относительного удлинения δ-70, относительного сужения (ψ-70), ударной вязкости (KCU).

Примеры осуществления

Были изготовлены образцы изделий из титановых сплавов, ВТ-23М и ВТ-43, обработанные предлагаемым способом термомеханической обработки и способом-прототипом, которые были подвергнуты механическим испытаниям. Результаты испытаний приведены в табл.1, 2, примеры 1-3 по предлагаемому способу, 4 - по прототипу.

Пример 1

На первой стадии осуществляли нагрев до температуры (Тпп+200)°C, деформацию в четыре этапа при охлаждении до температуры (Тпп+70)°C с изменением направления деформации на 90° при чередовании осадки и вытяжки со степенью деформации 30% на каждом этапе;

на второй стадии - нагрев до температуры (Тпп+120)°C, деформацию в четыре этапа при охлаждении до температуры (Тпп-50)°C с изменением направления деформации на 90° при чередовании осадки и вытяжки со степенью деформации 30% на каждом этапе;

на третьей стадии - нагрев до температуры (Тпп+20)°C, деформацию в четыре этапа при охлаждении до температуры (Тпп-70)°C с изменением направления деформации на 90° при чередовании осадки и вытяжки со степенью деформации 30% на каждом этапе;

на четвертой стадии - нагрев до температуры (Тпп-20)°C, деформацию со степенью 15% при охлаждении до температуры (Тпп-100)°C;

на пятой стадии - нагрев до температуры (Тпп+70)°C, деформацию с изменением направления деформирования на 90° со степенью 30% при охлаждении до температуры (Тпп-40)°C;

на шестой стадии - нагрев до температуры (Тпп-20)°C, деформацию с изменением направления деформирования на 90° со степенью 20% в процессе охлаждения до температуры (Тпп-60)°C;

на седьмой стадии - нагрев до температуры (Тпп+20)°C, деформацию со степенью 30% в процессе охлаждения до температуры (Тпп-40)°C;

на восьмой стадии - нагрев до температуры (Тпп-20)°C, деформацию со степенью 20% в процессе охлаждения до температуры (Тпп-60)°C;

на девятой стадии - нагрев до температуры (Тпп+30)°C, деформацию со степенью 40% в процессе охлаждения до температуры (Тпп-70)°C;

на десятой стадии - нагрев до температуры (Тпп-20)°C, деформацию со степенью 30% в процессе охлаждения до температуры (Тпп-100)°C;

на одиннадцатой стадии проводят нагрев до температуры (Тпп-70)°C с выдержкой 15 мин, охлаждение на воздухе;

на двенадцатой стадии проводят нагрев до температуры (Тпп-270)°C с выдержкой 5 часов, где Тпп - температура полиморфного превращения;

при этом с четвертой по восьмую стадию направление деформации на 90° изменяют два раза.

Пример 2

На первой стадии осуществляют нагрев до температуры (Тпп+270)°C, деформацию в четыре этапа при охлаждении до температуры (Тпп-100)°C с изменением направления деформации на 90° при чередовании осадки и вытяжки со степенью деформации 60% на каждом этапе;

на второй стадии - нагрев до температуры (Тпп+170)°C, деформацию в четыре этапа при охлаждении до температуры (Тпп-110)°C с изменением направления деформации на 90° при чередовании осадки и вытяжки со степенью деформации 60% на каждом этапе;

на третьей стадии - нагрев до температуры (Тпп+70)°C, деформацию в четыре этапа при охлаждении до температуры (Тпп-140)°C с изменением направления деформации на 90° при чередовании осадки и вытяжки со степенью деформации 60% на каждом этапе;

на четвертой стадии - нагрев до температуры (Тпп-40)°C, деформацию со степенью 60% при охлаждении до температуры (Тпп-140)°C;

на пятой стадии - нагрев до температуры (Тпп+90)°C, деформацию с изменением направления деформирования на 90° со степенью 60% при охлаждении до температуры (Тпп-90)°C;

на шестой стадии - нагрев до температуры (Тпп-40)°C, деформацию с изменением направления деформирования на 90° со степенью 40% в процессе охлаждения до температуры (Тпп-100)°C;

на седьмой стадии - нагрев до температуры (Тпп+50)°C, деформацию с изменением направления деформирования на 90° со степенью 60% в процессе охлаждения до температуры (Тпп-70)°C;

на восьмой стадии - нагрев до температуры (Тпп-40)°C, деформацию со степенью 60% в процессе охлаждения до температуры (Тпп-100)°C;

на девятой стадии - нагрев до температуры (Тпп+70)°C, деформацию со степенью 70% в процессе охлаждения до температуры (Тпп-170)°C;

на десятой стадии - нагрев до температуры (Тпп-40)°C, деформацию со степенью 50% в процессе охлаждения до температуры (Тпп-200)°C;

на одиннадцатой стадии проводят нагрев до температуры (Тпп-170)°C с выдержкой 60 мин, охлаждение в воде;

на двенадцатой стадии проводят нагрев до температуры (Тпп-470)°C с выдержкой 15 часов, где Тпп - температура полиморфного превращения;

при этом с четвертой по восьмую стадию направление деформации на 90° изменяют четыре раза.

Пример 3

На первой стадии осуществляют нагрев до температуры (Тпп+230)°C, деформацию в четыре этапа при охлаждении до температуры (Тпп-20)°C с изменением направления деформации на 90° при чередовании осадки и вытяжки со степенью деформации 45% на каждом этапе;

на второй стадии - нагрев до температуры (Тпп+150)°C, деформацию в четыре этапа при охлаждении до температуры (Тпп-80)°C с изменением направления деформации на 90° при чередовании осадки и вытяжки со степенью деформации 45% на каждом этапе;

на третьей стадии - нагрев до температуры (Тпп+50)°C деформацию в четыре этапа при охлаждении до температуры (Тпп-100)°C с изменением направления деформации на 90° при чередовании осадки и вытяжки со степенью деформации 45% на каждом этапе;

на четвертой стадии - нагрев до температуры (Тпп-30)°C, деформацию с изменением направления деформирования на 90° со степенью 30% при охлаждении до температуры (Тпп-120)°C;

на пятой стадии - нагрев до температуры (Тпп+80)°C, деформацию с изменением направления деформирования на 90° со степенью 45% при охлаждении до температуры (Тпп-70)°C;

на шестой стадии - нагрев до температуры (Тпп-30)°C, деформацию с изменением направления деформирования на 90° со степенью 30% в процессе охлаждения до температуры (Тпп-80)°C;

на седьмой стадии - нагрев до температуры (Тпп+30)°C, деформацию с изменением направления деформирования на 90° со степенью 40% в процессе охлаждения до температуры (Тпп-60)°C;

на восьмой стадии - нагрев до температуры (Тпп-30)°C, деформацию со степенью 40% в процессе охлаждения до температуры (Тпп-80)°C;

на девятой стадии - нагрев до температуры (Тпп+50)°C, деформацию со степенью 50% в процессе охлаждения до температуры (Тпп-110)°C;

на десятой стадии - нагрев до температуры (Тпп-30)°C, деформацию со степенью 40% в процессе охлаждения до температуры (Тпп-150)°C;

на одиннадцатой стадии проводят нагрев до температуры (Тпп-120)°C с выдержкой 45 мин, охлаждение на воздухе;

на двенадцатой стадии проводят нагрев до температуры (Тпп-370)°C с выдержкой 10 часов, где Тпп - температура полиморфного превращения;

при этом с четвертой по восьмую стадию направление деформации на 90° изменяют четыре раза.

Предлагаемый способ термомеханической обработки изделий из титановых сплавов позволяет повысить их механические свойства на 20-30%, снизить массу конструкций, работающих в условиях двухосного растяжения, и повысить их эксплуатационную надежность в условиях холода (-70°C).

Применение предлагаемого способа термомеханической обработки позволит применять сплав при низких температурах, повысить надежность работы изделий из титановых сплавов и снизить их массу на 20-30%.

Таблица 1
ВТ23М (Тпп=920°C)
σВД σВ-70 δ-70 ψ-70 KCU-70
1 1600 1490 7,8 19,5 2,6
2 1630 1500 7,4 18 2,2
3 1570 1470 8,2 22 2,7
4 1260 1100 5,3 13 1,5

Таблица 2
ВТ43 (Тпп=910°C)
σВД σВ-70 δ-70 ψ-70 KCU-70
1 1670 1550 8 22 2,7
2 1710 1560 7,5 19 2,5
3 1680 1590 8,4 25 3,1
4 1290 1140 5,6 15 1,8
σВД - прочность при двухосном растяжении.
σВ-70 - предел прочности при -70°C.
δ-70 - удлинение при -70°C.
ψ-70 - относительное сужение при -70°C.
KCU-70 - ударная вязкость на образцах с при -70°C.

Способ термомеханической обработки изделий из титановых сплавов, включающий многократные нагревы до температуры выше или ниже температуры Т полиморфного превращения и деформацию в процессе охлаждения до температуры ниже полиморфного превращения, выдержку и охлаждение, а термомеханическую обработку проводят в двенадцать стадий: на первой стадии осуществляют нагрев до температуры (Т+200÷Т+270)°C, деформацию в четыре этапа при охлаждении до температуры (Т+70÷Т-100)°C с изменением направления деформации на 90° при чередовании осадки и вытяжки со степенью деформации 30÷60% на каждом этапе, на второй стадии - нагрев до температуры (Т+120÷Т+170)°C, деформацию в четыре этапа при охлаждении до температуры (Т-50÷Т-110)°C с изменением направления деформации на 90°С при чередовании осадки и вытяжки со степенью деформации 30÷60% на каждом этапе, на третьей стадии - нагрев до температуры (Т+20÷Т+70)°C, деформацию в четыре этапа при охлаждении до температуры (Т-70÷Т-140)°C с изменением направления деформации на 90°С при чередовании осадки и вытяжки со степенью деформации 30÷60% на каждом этапе, на четвертой стадии - нагрев до температуры (Т-20÷Т-40)°C, деформацию со степенью 15-60% при охлаждении до температуры (Т-100÷Т-140)°C, на пятой стадии - нагрев до температуры (Т+70÷Т+90)°C, деформацию со степенью 30-60% при охлаждении до температуры (Т-40÷Т-90)°C, на шестой стадии - нагрев до температуры (Т-20÷Т-40)°C, деформацию со степенью 20-40% в процессе охлаждения до температуры (Т-60÷Т-100)°C, на седьмой стадии - нагрев до температуры (Т+20÷Т+50)°C, деформацию со степенью 30-60% в процессе охлаждения до температуры (Т-40÷Т-70)°C, на восьмой стадии - нагрев до температуры (Т-20÷Т-40)°C, деформацию со степенью 20-60% в процессе охлаждения до температуры (Т-60÷Т-100)°C, на девятой стадии - нагрев до температуры (Т+30÷Т+70)°С, деформацию при прокатке со степенью 40-70% в процессе охлаждения до температуры (Т-70÷Т-170)°C, на десятой стадии - нагрев до температуры (Т-20÷Т-40)°C, деформацию при прокатке со степенью 30-50% в процессе охлаждения до температуры (Т-100÷Т-200)°C; на одиннадцатой стадии проводят нагрев до температуры (Т-70÷Т-170)°C с выдержкой 15-60 мин, охлаждение на воздухе или в воде, на двенадцатой стадии проводят нагрев до температуры (Т-270÷Т-470)°C с выдержкой 5-15 ч, где Т - температура полиморфного превращения; при этом деформацию на стадиях с четвертой по восьмую осуществляют в один этап с изменением направления деформации на 90° от двух до четырех раз.
Источник поступления информации: Роспатент

Показаны записи 31-40 из 251.
27.06.2013
№216.012.50c9

Способ изготовления листов из алюминиевых сплавов

Изобретение относится к области металлургии сплавов на основе алюминия, в частности сплавов систем Al-Mg-Si и Al-Zn-Mg, используемых в качестве конструкционных и обшивочных листов в авиакосмической технике, судостроении и транспортном машиностроении, в том числе и в сварных конструкциях. Способ...
Тип: Изобретение
Номер охранного документа: 0002486274
Дата охранного документа: 27.06.2013
27.06.2013
№216.012.51f9

Способ построения системы сообщений многоуровневой несимметричной транспортной системы

Изобретение относится к системам автоматизации, основанным на использовании вычислительных машин. Техническим результатом является территориальная независимость АРМ при неограниченном расширении системы через свои повторяющие структуры с построением иерархической транспортной системы за счет...
Тип: Изобретение
Номер охранного документа: 0002486578
Дата охранного документа: 27.06.2013
10.07.2013
№216.012.5390

Способ получения композиционного катода

Изобретение относится к пайке и может быть использовано, в частности, для изготовления композиционного катода из тугоплавких материалов, используемого для вакуумного нанесения тонкопленочных покрытий различного функционального назначения в отраслях машиностроения, микроэлектроники,...
Тип: Изобретение
Номер охранного документа: 0002486995
Дата охранного документа: 10.07.2013
10.07.2013
№216.012.544b

Способ электрошлакового переплава

Изобретение относится к электрометаллургии и может быть использовано при выплавке слитков электрошлаковым переплавом расходуемых электродов. В способе используют по меньшей мере две затравки, которые выполняют в виде цилиндра или параллелепипеда, изолируют от корпуса кристаллизатора и размещают...
Тип: Изобретение
Номер охранного документа: 0002487182
Дата охранного документа: 10.07.2013
10.07.2013
№216.012.5538

Система комплексной обработки информации радионавигационных и автономных средств навигации для определения действительных значений параметров самолетовождения

Изобретение относится к системам навигации летательных аппаратов (ЛА), а именно к обработке информации в навигационно-пилотажных комплексах. На борту ЛА расположены: инерциальная навигационная система (ИНС), радионавигационный корректор - спутниковая навигационная система (СНС) и автономный...
Тип: Изобретение
Номер охранного документа: 0002487419
Дата охранного документа: 10.07.2013
20.07.2013
№216.012.574f

Двухслойный стальной прокат

Изобретение относится к области металлургии и может быть использовано при изготовлении сварных конструкций из двухслойного проката, длительно эксплуатирующихся при отрицательных температурах в условиях интенсивного механического, коррозионно-эрозионного воздействия мощных ледовых полей и...
Тип: Изобретение
Номер охранного документа: 0002487959
Дата охранного документа: 20.07.2013
27.07.2013
№216.012.59a0

Сырьевая смесь для изготовления огнестойкого конструкционного материала

Изобретение относится к строительным материалам и может быть использовано в строительстве, судостроении, атомной промышленности для защиты от пожара служебных и жилых помещений в составе огнестойких конструкций, а также в качестве среднего слоя панелей, облицованных декоративно-отделочными...
Тип: Изобретение
Номер охранного документа: 0002488565
Дата охранного документа: 27.07.2013
10.08.2013
№216.012.5c89

Движительно-рулевая колонка

Изобретение относится к судостроению и может быть использовано при создании судовых движительно-рулевых комплексов. Движительно-рулевая колонка содержит баллер, гондолу, гребной винт и механизм поворота колонки. Баллер в верхней части соединен с корпусом через опорный шар, а в нижней части -...
Тип: Изобретение
Номер охранного документа: 0002489310
Дата охранного документа: 10.08.2013
20.08.2013
№216.012.5f87

Способ изготовления крепежных элементов из высокопрочных титановых сплавов

Изобретение относится к области металлургии и может быть использовано при изготовлении стержневых деталей с головками из титановых сплавов. Заготовки подвергают термообработке, после чего производят горячую высадку головок крепежных элементов. После механообработки заготовок с головками...
Тип: Изобретение
Номер охранного документа: 0002490087
Дата охранного документа: 20.08.2013
20.08.2013
№216.012.60a4

Способ получения градиентного каталитического покрытия

Изобретение относится к области нанесения покрытий, в частности к каталитическим оксидным покрытиям, а также к электрохимическим производствам, и может быть использовано при изготовлении электродных материалов. Способ получения градиентного каталитического покрытия на подложке из титана или его...
Тип: Изобретение
Номер охранного документа: 0002490372
Дата охранного документа: 20.08.2013
Показаны записи 31-40 из 326.
20.04.2015
№216.013.453a

Способ фиксации керамического волокна в зажимах разрывной машины и приспособление для его осуществления

Изобретение относится к способам испытаний волокон на прочность при растяжении, в частности к способам захвата волокна в зажимах разрывной машины, и к приспособлениям для осуществления таких способов, и может быть использовано в химической, авиационной промышленности. Сущность: фиксируют...
Тип: Изобретение
Номер охранного документа: 0002549220
Дата охранного документа: 20.04.2015
20.06.2015
№216.013.5744

Способ получения волокнистого теплоизоляционного материала

Изобретение относится к нетканым теплоизоляционным и пожаробезопасным материалам на основе неорганических волокон и касается способа получения волокнистого теплоизоляционного материала. Способ включает приготовление водного шликера, содержащего огнеупорные волокна, получение сырой заготовки...
Тип: Изобретение
Номер охранного документа: 0002553870
Дата охранного документа: 20.06.2015
27.06.2015
№216.013.58c8

Сплав на основе магния и изделие, выполненное из него

Изобретение относится к области машиностроения и авиастроения, в частности к высокопрочному и жаропрочному магниевому сплаву. Сплав на основе магния содержит, мас.%: цинк 0,1-3,0; цирконий 0,05-0,9; кальций 0,005-0,1; кадмий 0,001-0,004; кремний 0,005-0,05; бериллий 0,0005-0,01; иттрий 3,5-9,5;...
Тип: Изобретение
Номер охранного документа: 0002554269
Дата охранного документа: 27.06.2015
10.07.2015
№216.013.5cdb

Способ электролитно-плазменной обработки поверхности деталей из малоуглеродистых сталей с повышенным содержанием хрома

Изобретение относится к технологии полирования изделий из малоуглеродистых сталей с повышенным содержанием хрома и может быть использовано в авиационном и энергетическом машиностроении, в частности для финишной обработки лопаток компрессора. Способ включает погружение обрабатываемой детали в...
Тип: Изобретение
Номер охранного документа: 0002555312
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5ff8

Способ изготовления конструкционного термопластичного углепластика

Изобретение относится к технологии изготовления углепластиков. В способе изготовления конструкционного термопластичного углепластика формируют препрег посредством сушки наполнителя, нанесения на него полифениленсульфидного связующего и пропитки его указанным связующим, формируют слои препрега и...
Тип: Изобретение
Номер охранного документа: 0002556109
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.603b

Способ получения лигатуры никель-редкоземельный металл

Изобретение относится к области металлургии, а именно к получению лигатуры никель-редкоземельный металл. В способе расплавляют никель, выдерживают полученный расплав и смешивают его с редкоземельным металлом, производят индукционное перемешивание расплава, его разливку и охлаждение, при этом...
Тип: Изобретение
Номер охранного документа: 0002556176
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.603d

Способ защиты поверхности отливок турбинных лопаток при термической обработке

Изобретение относится к термической обработке турбинных лопаток, преимущественно выполненных из жаростойких сплавов на основе никеля. Способ включает нанесение защитного покрытия на поверхность отливок лопаток и их последующее горячее изостатическое прессование (ГИП). Перед нанесением защитного...
Тип: Изобретение
Номер охранного документа: 0002556178
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.6083

Материал керамического слоя теплозащитного покрытия

Изобретение относится к области машиностроения и может быть использовано в авиационном и энергетическом турбостроении для нанесения теплозащитного покрытия на трактовую поверхность рабочих и сопловых лопаток турбины газотурбинного двигателя. Керамическое теплозащитное покрытие для изделий из...
Тип: Изобретение
Номер охранного документа: 0002556248
Дата охранного документа: 10.07.2015
20.07.2015
№216.013.62d6

Высокопрочный сплав на основе алюминия и изделие, выполненное из него

Изобретение относится к высоколегированным сверхпрочным сплавам на основе алюминия системы Al-Zn-Mg-Cu, предназначенным для применения в качестве конструкционного материала в авиационной и ракетной технике, в транспортных наземных средствах и в изделиях приборного машиностроения. Высокопрочный...
Тип: Изобретение
Номер охранного документа: 0002556849
Дата охранного документа: 20.07.2015
20.07.2015
№216.013.63e2

Композиционный материал на основе ниобия, упрочненный силицидами ниобия, и изделие, выполненное из него

Изобретение относится к области металлургии, в частности к эвтектическим композиционным материалам на основе ниобия, упрочненным силицидами ниобия, предназначенным для изготовления теплонагруженных изделий, и может быть использовано в авиационной и энергетической промышленности. Композиционный...
Тип: Изобретение
Номер охранного документа: 0002557117
Дата охранного документа: 20.07.2015
+ добавить свой РИД