×
19.04.2019
219.017.3125

СПОСОБ ФАЗОВОГО ФОРМИРОВАНИЯ НУЛЕЙ В ДИАГРАММЕ НАПРАВЛЕННОСТИ ФАЗИРОВАННОЙ АНТЕННОЙ РЕШЕТКИ (ВАРИАНТЫ)

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области антенной техники, а точнее к способам управления формой диаграммы направленности (ДН) фазированной антенной решетки (ФАР) путем изменения лишь фаз возбуждений элементов ФАР. Техническим результатом является получение одновременно расширенных и глубоких нулей ДН ФАР со случайными искажениями амплитудно-фазового распределения (АФР). В основе способа лежит итерационная поэлементная процедура минимизации функционала Q, представляющего собой взвешенную сумму квадратов модулей значений комплексной ДН в L угловых направлениях (θ, φ), задающих координаты формируемых нулей, причем необходимые исходные значения комплексной ДН ФАР в направлениях помех измеряют и используют в качестве исходных данных. Для расширения формируемых нулей ДН ФАР, на исходное АФР налагается дополнительное условие, обеспечивающее получение требуемого уровня средней ДН по мощности в заданных угловых окрестностях направлений на помехи. 2 н.п. ф-лы, 1 ил.
Реферат Свернуть Развернуть

Область техники

Изобретение относится к области антенной техники, а точнее к способам управления формой диаграммы направленности (ДН) фазированной антенной решетки (ФАР) путем изменения лишь фаз возбуждений элементов ФАР.

Уровень техники

В связи с растущими требованиями к помехозащищенности современных радиотехнических систем представляет интерес такое управление ДН ФАР, входящей в радиотехническую систему, чтобы в направлениях действия помех обеспечивался минимально возможный уровень ДН, т.е. формирование "нулей" ДН. При этом желательно формировать нули изменением лишь фаз элементов, так как возможность управления фазами обеспечивается в любой ФАР и это не требует дополнительного аппаратного обеспечения.

Формирование идеальных нулей в ДН ФАР с использованием только фаз возбуждений элементов представляет собой сложную математическую задачу, которая в общем случае решается лишь приближенно с использованием численных методов [Зелкин Е.Г., Соколов В.Г. Методы синтеза антенн. - М.: Сов. радио, 1980. - 296 с.]. В рамках этого направления известны способы формирования "неидеальных" нулей (точнее, глубоких провалов) в ДН ФАР, основанные на управлении исключительно фазами возбуждения элементов ФАР с точно известным амплитудно-фазовым распределением (АФР).

Однако при реализации ДН ФАР на практике, как правило, появляются случайные погрешности (искажения) АФР. Влияние этих погрешностей выражается, в частности, в появлении случайного фона в ДН ФАР, который приводит к заплыванию нулей в ДН ФАР, усредненной по ансамблю реализации искажений АФР [Самойленко В.И., Шишов Ю.А. Управление фазированными антенными решетками. - М.: Радио и связь, 1983. - 240 с.].

В то же время известен способ формирования нулей [Балагуровский В.А., Вавилов В.А., Кондратьев А.С., Маничев А.О., Полищук Н.П. Метод формирования глубоких нулей в диаграмме направленности фазированной антенной решетки, устойчивый к случайным искажениям амплитудно-фазового распределения // Антенны, 2008, №6, с.23-30], позволяющий сочетать свойства универсальности и надежности работы с учетом специфики структуры минимизируемого функционала, и в существенной степени преодолевающий ограничения, связанные с наличием случайных искажений АФР. Этот способ является ближайшим аналогом заявляемого способа формирования нулей. Он позволяет сформировать глубокие изолированные нули. Однако этот способ не позволяет контролировать ширину сформированных нулей, т.е., в общем случае, при подавлении точечных помех с помощью этого метода угловая ширина провала ДН может оказаться неприемлемо малой, тогда как на практике может понадобиться формирование широких нулей, например для эффективного подавления помех, имеющих расширенный частотный спектр [H.Steyskal, R.A.Shore and R.L.Haupt. "Methods for null control and their effect on the radiation pattern," IEEE Trans. Antennas Propagat., vol. AP-34, pp.404-409, Mar. 1986], или при пространственном перемещении помех.

Известны способы формирования широких нулей, основанные на использовании детерминированных значений АФР. В частности, известен способ [H.Steyskal, R.A.Shore and R.L.Haupt. "Methods for null control and their effect on the radiation pattern," IEEE Trans. Antennas Propagat., vol. AP-34, pp.404-409, Mar, 1986], включающий формирование нескольких близко расположенных изолированных нулей в окрестностях угловых направлений на источники помех. Известен также способ [Кондратьев А.С. Метод фазового синтеза антенных решеток с учетом дополнительных требований к форме диаграммы направленности // Радиотехника и электроника, 1990, т.35, №12, с.2530-2540], включающий формирование в каждом из направлений помех как нуля ДН, так и нуля производных ДН по угловым направлениям. Однако способы формирования нулей ДН, основанные на использовании детерминированных значений АФР, не позволяют сформировать нули, средняя глубина которых при реализации в ФАР со случайными искажениями АФР превышает уровень случайного фона, оговоренного выше.

Заявляемый способ фазового формирования нулей в ДН ФАР предназначен для формирования не только глубоких, но и широких провалов ДН в ФАР со случайными искажениями АФР.

Сущность изобретения

Ближайшим аналогом заявляемого способа является способ, описанный в [Балагуровский В.А., Вавилов В.А., Кондратьев А.С., Маничев А.О., Полищук Н.П. Метод формирования глубоких нулей в диаграмме направленности фазированной антенной решетки, устойчивый к случайным искажениям амплитудно-фазового распределения // Антенны, 2008, №6, с.23-30]. В этом способе формирование нулей осуществляется минимизируется путем поиска и реализации таких значений фазовых сдвигов на фазовращателях элементов ФАР, при которых обеспечивается минимум функционала Q, представляющего собой взвешенную сумму квадратов модулей значений комплексной ДН в L угловых направлениях (θl, φl), задающих координаты формируемых нулей

где Wl - положительные весовые множители;

- значения комплексной ДН ФАР в направлениях формируемых нулей.

Функционал (1) минимизируется с помощью монотонно сходящейся покоординатной итерационной процедуры, на каждом шаге которой выбирается один (m-й) элемент ФАР и находится значение фазового сдвига фазовращателя этого элемента ФАР, обеспечивающее минимум функционала (1) по фазе ψm возбуждения (тока или напряжения) выбранного (m-го) элемента ФАР по формуле

Формула (2) представляет собой формулу (1), переписанную таким образом, что элементы функционала Qm и Bm не зависят от выбранной фазы. Анализ формулы (2) показывает, что минимум функционала Q по выбранной фазе ψm достигается, когда

В силу периодичности фазы оба решения оказываются эквивалентными.

Чтобы добиться большей глубины нуля в ФАР со случайными искажениями АФР, в ближайшем аналоге измеряются комплексные значения ДН ФАР в направлениях формируемых нулей и измеренные значения используются в качестве исходных данных для покоординатной процедуры минимизации функционала (1).

Однако при таком способе не контролируется ширина формируемых нулей. Определим факторы, влияющие на уровень ДН в некоторой угловой окрестности направления на помеху. Для этого получим оценку средней ДН по мощности, сформированной после применения ближайшего аналога в направлении, расположенном в некоторой окрестности направления на помеху.

Реализация покоординатной процедуры ближайшего аналога на k-м шаге приводит лишь к изменению комплексной амплитуды k-го элемента до величины (получаемой из комплексной амплитуды того же элемента перед шагом путем перефазировки этого элемента) и значение ДН ФАР в направлении помехи меняется с на . Таким образом можно записать

где значение ДН всей ФАР, за исключением k-го элемента.

Из (4) и (5) несложно получить

Последовательно применяя формулу (6), в результате завершения покоординатной процедуры получаем

где - величина исходного комплексного значения ДН по напряжению в направлении на помеху ϕП;

- значение ДН в направлении помехи после завершения всей покоординатной процедуры;

КЭ - число элементов, изменивших фазы для формирования нуля.

Суммы в правой части (7) можно рассматривать как значение компенсационной диаграммы направленности , составленной из элементов, изменивших фазы

Если число формируемых нулей существенно меньше числа элементов ФАР (что обычно выполняется на практике), то в результате формирования нуля элементы, изменившие фазы, сфазированы главным образом в направлении помехи. Учитывая, что эти элементы расположены в пределах апертуры ФАР, в качестве оценки формы компенсационной ДН в окрестности формируемого нуля может быть использован модуль ДН по напряжению fHП, ϕ) самой ФАР, сфазированной на помеху и нормированной к своему максимуму

где ϕ - пространственное направление в окрестности направления на помеху.

Используя (7)-(9), получаем

откуда для значения ДН в окрестности помехи после завершения процедуры формирования нулей имеем

Используем полученное соотношение для получения оценки средней ДН по мощности в направлении ϕ. По определению дисперсии комплексной случайной величины [Вентцель Е.С. Теория вероятностей. - М.: Наука, 1964, стр.403] средняя ДН по мощности в результате применения ближайшего аналога может быть выражена следующим образом:

где Df' - дисперсия комплексного значения ДН по напряжению в направлении ϕ.

Определим вначале среднее значение комплексной ДН по напряжению в направлении вблизи направления на помеху. Так как среднее значение суммы случайных величин равно сумме их средних значений и постоянный множитель может быть вынесен за знак операции усреднения [Вентцель Е.С. Теория вероятностей. - М.: Наука, 1964, стр.221], то используя (11), можем записать

Среднее комплексное значение ДН в направлении помехи, достигаемое в результате применения ближайшего аналога, определяется дискретом фазы лишь одного элемента ФАР и может быть принято равным нулю. Поэтому получаем

Определим теперь дисперсию Df' комплексного значения ДН в направлении ϕ после применения процедуры ближайшего аналога.

Известно, что, во-первых, дисперсия суммы случайных комплексных величин равна сумме элементов корреляционной матрицы случайного вектора, компонентами которого являются эти случайные величины, а, во-вторых, элементы этой корреляционной матрицы, симметрично расположенные относительно главной диагонали, являются комплексно сопряженными величинами [Пугачев B.C. Теория случайных функций. - М.: Физматлит, 1960, стр.89-90]. Применяя эти свойства к правой части выражения (11) и учитывая, что сумма двух комплексно сопряженных величин равна их удвоенной действительной части, для дисперсии ДН по напряжению можем записать

где символы D и K обозначают соответственно дисперсию и корреляционный момент величин в квадратных скобках.

Известно [Пугачев B.C. Теория случайных функций. - М.: Физматлит, 1960, стр.90], что дисперсия случайной величины, умноженной на постоянную величину, равна произведению дисперсии самой случайной величины на квадрат модуля этой постоянной величины. Там же показано, что постоянный множитель случайной величины может быть вынесен за знак корреляционного момента. Следовательно, получаем

Рассмотрим последнее слагаемое в (16). Используя (7), можем записать

где - комплексное значение ДН по напряжению для ФАР без КЭ элементов.

Если искажения АФР после изменения фазы k-го элемента не зависят от искажений АФР до изменения фазы, и искажения АФР в разных элементах также независимы, то несложно показать, что

Аналогично, можно убедиться, что

Известно [Вентцель Е.С. Теория вероятностей. - М.: Наука, 1964, стр.405], что корреляционная функция при ϕ=ϕП обращается в дисперсию.

Кроме того, можно показать, что в случае стационарных искажений АФР (т.е. когда дисперсии амплитудных и фазовых искажений для разных элементов ФАР одинаковы) форма корреляционной функции ФАР представляет собой ДН некоторой виртуальной синфазной ФАР, имеющей такую же структуру, как исходная ФАР, но с амплитудами, равными квадратам амплитуд исходной ФАР. Таким образом, если пренебречь ДН элемента ФАР в составе ФАР (что вполне оправданно для большинства реальных ФАР, принимая во внимание то обстоятельство, что рассматривается сравнительно узкий угловой сектор в области направления на помеху) при равномерном амплитудном распределении выполняется равенство

где - ДН по напряжению для ФАР без КЭ элементов.

В случае ФАР со спадающим амплитудным распределением операция возведения в квадрат амплитуд возбуждения элементов соответствующей виртуальной ФАР приводит к тому, что амплитудное распределение виртуальной ФАР еще более спадающее по сравнению с реальной ФАР. Однако так как мы рассматриваем область максимума синфазной ДН , то условие (20) с достаточной степенью точности можно считать выполняющимся и для ФАР со спадающим амплитудным распределением.

Одним из условий эффективной работы ближайшего аналога является минимальное число элементов, изменивших фазы КЭ (обычно на практике в многоэлементной ФАР можно добиться условий, при которых это число не превышает нескольких процентов от общего числа элементов ФАР). В таком случае форма ДН без КЭ элементов в области ее максимума практически не отличается от формы ДН самой ФАР и можно записать

Используя (18)-(21), имеем:

Таким образом, подставляя (14), (16) и (22) в (12) получаем окончательное выражение для оценки уровня средней ДН по мощности в окрестности направления на помеху

Чтобы сформировать расширенный нуль, можно потребовать, чтобы уровень средней ДН по мощности в окрестности направления на помеху соответствовал (не превышал) заданным значениям. Из (23) видно, что помимо структуры ФАР, ее АФР, параметров искажений АФР и погрешностей измерения комплексного значения ДН в направлении помехи, на среднее значение ДН по мощности в направлении ϕ влияют значения исходной средней ДН по напряжению в направлении помехи ϕП и в направлении ϕ. Так как средние значения исходной ДН можно корректировать методами фазового (или, при наличии такой возможности, амплитудно-фазового) синтеза, то предлагается следующий способ формирования расширенных нулей:

1) используя известные детерминированные значения АФР, формируют такую ДН ФАР, что средние значения ДН в заданной угловой окрестности каждого из расширяемых нулей таковы, что

а) либо средние значения ДН по мощности, рассчитанные по формуле (23), не превышают требуемых уровней в каждом направлении заданной угловой окрестности,

б) либо взвешенная сумма средних значений ДН по мощности, рассчитанных по формуле (23) для каждого направления заданной угловой окрестности, не превышает заданной величины;

2) измеряются комплексные значения ДН по напряжению в направлениях источников помех;

3) используя измеренные значения комплексной ДН ФАР в качестве исходных данных, начинают итерационную покоординатную процедуру минимизации функционала (1) путем последовательного выбора элементов ФАР, определения фазовых сдвигов их фазовращателей в соответствии с формулами (2) и (3) и реализации найденных фазовых сдвигов (либо непосредственно после определения фазового сдвига каждого элемента, либо после завершения итерационной покоординатной процедуры);

4) итерационную покоординатную процедуру повторяют либо до достижения заданных глубин нулей, либо до стабилизации значений фаз (очередной шаг не приводит к изменению значений фаз элементов ФАР).

Перечень чертежей

Чертеж - средние ДН при формировании нулей заявленным способом и ближайшим аналогом.

Сведения, подтверждающие возможность осуществления изобретения

Для проверки работоспособности заявляемого способа был осуществлен натурный эксперимент с ФАР, состоящей из 384 элементов, расположенных неэквидистантно вдоль шестизаходной спирали. Амплитудное распределение в ФАР считается равномерным.

Для выполнения отличительного пункта заявляемого способа - синтеза средней ДН, удовлетворяющей условию непревышения средней ДН по мощности, рассчитанной по формуле (23), требуемого уровня в заданной угловой окрестности - использовалась процедура минимизации функционала (1), заключающаяся в применении формул (2) и (3) последовательно к разным элементам ФАР, причем исходные комплексные значения ДН ФАР в окрестности формируемого нуля определялись на основании детерминированных значений амплитуды и фазы элементов ФАР.

Чтобы получить среднюю ДН нули формировались в 10 разных направлениях в области первых боковых лепестков ДН ФАР и измеренные ДН по мощности усреднялись в окрестности формируемых нулей. Для сравнения, в отдельном эксперименте нули ДН формировались также и с помощью ближайшего аналога заявляемого способа. Кроме того, было осуществлено математическое моделирование работы заявляемого способа, при котором рассчитывалась средняя ДН по 1000 реализациям случайных искажений АФР.

Результаты эксперимента и математического моделирования приведены на чертеже. Из представленных данных видно, что заявляемый способ обеспечивает существенное расширение нулей средней ДН по мощности без снижения глубины нуля в направлении помехи, что подтверждает возможность осуществления изобретения.

Источник поступления информации: Роспатент

Показаны записи 1-4 из 4.
29.03.2019
№219.016.f116

Способ определения диаграммы направленности фазированной антенной решетки

Изобретение относится к области антенной техники, а точнее к способам измерения диаграммы направленности (ДН) фазированной антенной решетки (ФАР) в ближней зоне без изменения ее положения относительно измерительной антенны. Предлагается способ определения диаграммы направленности (ДН)...
Тип: Изобретение
Номер охранного документа: 0002343495
Дата охранного документа: 10.01.2009
19.04.2019
№219.017.30ef

Способ диагностики состояния элементов фазированной антенной решетки

Изобретение относится к области антенной техники, а точнее к способам определения работоспособности элементов фазированных антенных решеток (ФАР) на основании измерения СВЧ сигнала. Техническим результатом является упрощение способа диагностики состояния элементов ФАР по измерениям сигнала СВЧ...
Тип: Изобретение
Номер охранного документа: 0002413345
Дата охранного документа: 27.02.2011
19.04.2019
№219.017.3278

Способ пространственной селекции приходящих сигналов в измерительной антенне моноимпульсного радиолокатора

Изобретение относится к области антенной техники, а именно к способам пространственной селекции приходящих радиосигналов. Предлагаемый способ пространственной селекции приходящих сигналов основан на измерении фаз сигналов на выходах четырех антенн, образующих антенную систему моноимпульсной...
Тип: Изобретение
Номер охранного документа: 0002402789
Дата охранного документа: 27.10.2010
18.05.2019
№219.017.5ad6

Аналого-цифровой преобразователь с самоконтролем

Изобретение относится к вычислительной технике. Технический результат заключается в повышении быстродействия и достоверности контроля. Аналого-цифровой преобразователь с самоконтролем содержит два компаратора, регистр последовательного приближения, сдвигающий регистр, двуматричный...
Тип: Изобретение
Номер охранного документа: 0002431233
Дата охранного документа: 10.10.2011
Показаны записи 1-10 из 30.
20.05.2013
№216.012.404e

Устройство выпуска троса связки двух космических аппаратов (варианты)

Группа изобретений относится к оборудованию космических аппаратов и, более конкретно, к орбитальным тросовым системам. Устройство содержит основной корпус (1), в котором установлена безынерционная катушка (2) с тросом, и подвижный подпружиненный корпус (3), где установлены электродвигатели,...
Тип: Изобретение
Номер охранного документа: 0002482032
Дата охранного документа: 20.05.2013
10.06.2013
№216.012.4a07

Устройство обработки видеоинформации системы охранной сигнализации

Изобретение относится к устройствам обработки информации системы охранной сигнализации. Техническим результатом является расширение функциональных возможностей за счет сокращения количества ложных срабатываний и улучшения точности обнаружения границы движущегося объекта. Способ для точного...
Тип: Изобретение
Номер охранного документа: 0002484531
Дата охранного документа: 10.06.2013
20.04.2015
№216.013.4209

Способ получения компаундированного битума

Изобретение относится к способу получения компаундированного битума из остатков перегонки нефти (гудрон/полугудрон) и может быть использовано в нефтеперерабатывающей, дорожной или строительной отраслях промышленности. Способ включает окисление остатка перегонки нефти с добавкой медьсодержащего...
Тип: Изобретение
Номер охранного документа: 0002548403
Дата охранного документа: 20.04.2015
20.10.2015
№216.013.8328

Способ получения серобитумного вяжущего

Изобретение относится к химической промышленности и может быть использовано для получения серобитумной композиции. Способ включает смешивание расплавленного продукта нефтепереработки - тяжелого нефтяного остатка и серы, причем тяжелый нефтяной остаток содержит продукты крекинга. Процесс ведут...
Тип: Изобретение
Номер охранного документа: 0002565179
Дата охранного документа: 20.10.2015
20.11.2015
№216.013.929f

Установка комплексной очистки стоков (варианты)

Группа изобретений относится области нефтехимической промышленности и представляет собой установку комплексной очистки стоков (варианты). Установка согласно изобретению содержит последовательно соединенные блок предварительной очистки сульфидно-щелочных стоков от нефтепродуктов и/или...
Тип: Изобретение
Номер охранного документа: 0002569153
Дата охранного документа: 20.11.2015
27.12.2015
№216.013.9d58

Способ очистки медьсодержащего сульфидно-щелочного смешанного стока

Изобретение может быть использовано для обезвреживания сульфидно-щелочных смешанных сточных вод на нефтехимических предприятиях, содержащих основные процессы по переработки нефти и нефтепродуктов, а также производство акриловой кислоты, на котором используют медьсодержащие ингибиторы...
Тип: Изобретение
Номер охранного документа: 0002571910
Дата охранного документа: 27.12.2015
10.01.2016
№216.013.9ef2

Способ очистки медьсодержащих сточных вод производства акриловой кислоты (варианты)

Изобретения могут быть использованы на нефтехимических предприятиях для обезвреживания сточных вод производства акриловой кислоты, содержащих медь. Способ включает смешение очищаемых сточных вод и сернисто-щелочного стока, с последующим отделением образующегося осадка, при этом отношение...
Тип: Изобретение
Номер охранного документа: 0002572327
Дата охранного документа: 10.01.2016
25.08.2017
№217.015.cc28

Робототехническая система сервисного космического аппарата с силомоментной обратной связью

Изобретение относится к области инструментов для использования в космосе и предназначено для выполнения операций орбитального обслуживания космических аппаратов. Робототехническая система содержит семистепенной манипулятор с конечным звеном в виде устройства для фиксации сменного инструмента,...
Тип: Изобретение
Номер охранного документа: 0002620540
Дата охранного документа: 26.05.2017
26.08.2017
№217.015.e6c7

Способ очистки технологической жидкости от механических примесей и плавающей жидкой среды

Изобретение относится к области очистки технологической жидкости, например воды, загрязненной осаждающимися механическими примесями, например дисперсными твердыми частицами, плотность материала которых выше плотности технологической жидкости, и плавающей жидкой средой, плотность которой ниже...
Тип: Изобретение
Номер охранного документа: 0002626833
Дата охранного документа: 02.08.2017
19.01.2018
№218.016.08f2

Устройство диспергирования газожидкостной смеси

Изобретение относится к нефтедобывающей и нефтеперерабатывающей отрасли и может быть использовано, в частности, для подготовки мелкодисперсной однородной газожидкостной смеси для закачки в нагнетательные скважины. Устройство диспергирования газожидкостной смеси включает корпус с установленными...
Тип: Изобретение
Номер охранного документа: 0002631878
Дата охранного документа: 28.09.2017
+ добавить свой РИД