×
19.04.2019
219.017.2fbd

Результат интеллектуальной деятельности: СПОСОБ СВЯЗЫВАНИЯ УГЛЕРОДА В ВИДЕ МИНЕРАЛА, В КОТОРОМ УГЛЕРОД ИМЕЕТ СТЕПЕНЬ ОКИСЛЕНИЯ +3

Вид РИД

Изобретение

№ охранного документа
0002334547
Дата охранного документа
27.09.2008
Аннотация: Изобретение относится к способу связывания углерода, выбрасываемого в атмосферу в виде СО. Способ включает: a) этап концентрации CO в жидкой фазе; b) этап электровосстановления в апротонной среде до соединения, в котором углерод имеет степень окисления +3, в виде щавелевой или муравьиной кислоты; c) в случае необходимости этап реэкстракции щавелевой или муравьиной кислоты в водную среду, осуществляемый, когда электровосстановление проводится в неводной среде; и d) этап минерализации при помощи реакции вышеуказанного соединения с соединением элемента М, где М представляет собой металлический элемент в степени окисления +2, приводящий к образованию устойчивого соединения, в котором атомное соотношение С/М составляет приблизительно 2/1. Способ позволяет связывать углерод с незначительными энергетическими затратами и подходит для ограничения выброса в атмосферу газа, обладающего парниковым эффектом, образующегося в результате сжигания ископаемых углеводородов. 25 з.п. ф-лы.

Изобретение касается способа связывания углерода, выбрасываемого в атмосферу в виде СО2.

ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ

Электрохимическое восстановление СО2 было изучено многочисленными исследователями, начиная с попыток его использования как обширный источник снабжения углеродом и до попыток его использования как источник энергии в виде метана.

Исследования в области электровосстановления СО2 были начаты в середине 1960-х годов. Они показывают, что, с одной стороны, изменения среды в зависимости от того, является она апротонной или нет, и, с другой стороны, изменения электрода, учитывая то, что прослойка карбонильных радикалов взаимодействует с поверхностью, приводят к образованию различных компонентов, среди которых: монооксид углерода, муравьиная кислота, метан и этан, спирты, такие как метанол, этанол и пропанол, а также щавелевая кислота и даже гликолевая кислота.

Так, реакции электровосстановления СО2 на медных электродах в среде карбоната калия дают выход метана порядка 30%.

Известны исследования, которые позволили идентифицировать продукты, преимущественно получаемые в более или в менее водосодержащих средах и с применением электродов различной природы.

Первый случай: радикал СО2- адсорбируется на электроде

Водная среда (электрод Au, Ag, Cu или Zn): образуется монооксид углерода

Второй случай: радикал СО2- не адсорбируется на электроде

Водная среда (электрод Cd, Sn, In, Pb, Tl или Hg): образуется муравьиная кислота

Неводная среда (электрод Pb, Tl или Hg): образуется щавелевая кислота

В этом же ключе проводились и эксперименты с использованием СО2 в газовой фазе и перовскита, которые приводили преимущественно к образованию спиртов.

Известны также работы по захвату CO2 органическими растворителями, которые позволяют в конце концов получить CO2 в жидкой форме. Этот CO2 затем закачивается в глубины океана или предпочтительно в подземные полости. Однако надежность такого хранения в течение достаточно длительных периодов имеет неопределенный характер.

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Предлагается новый способ связывания углерода, выбрасываемого в атмосферу в виде CO2, который позволяет, в частности, связывать углерод с незначительными энергетическими затратами и в особенности подходит для ограничения выброса в атмосферу газа, обладающего парниковым эффектом, образующегося в результате сжигания ископаемых углеводородов.

Способ связывания углерода согласно изобретению включает:

a) этап концентрации CO2 в жидкой фазе;

b) этап электровосстановления в апротонной среде в соединение, в котором углерод имеет степень окисления +3, в виде щавелевой или муравьиной кислоты;

c) в случае необходимости, этап реэкстракции щавелевой или муравьиной кислоты в водную среду; и

d) этап минерализации при помощи реакции с соединением элемента М, приводящей к образованию устойчивого соединения, в котором атомное соотношение С/М составляет приблизительно 2/1.

Ниже приводится более детальное описание последовательных этапов способа согласно изобретению.

Этап концентрации СО2 в жидкой фазе (а) может быть реализован различными методами.

Первый метод (i) заключается в сжижении СО2 согласно классическим способам улавливания, жидкий СО2 получают тогда под давлением, например, в суперкритическом состоянии.

Другой путь (ii) заключается в абсорбции СО2 в полярной апротонной жидкости, не поддающейся смешиванию с водой или поддающейся смешиванию с водой в различных пропорциях. В качестве примера можно привести ацетонитрил.

Согласно другому пути (iii) рассматривают абсорбцию СО2 в ионной апротонной жидкости (или "расплавленной соли") не поддающейся смешиванию с водой или поддающейся смешиванию с водой в различных пропорциях. Соответствующей подходящей ионной жидкостью является гексафторфосфат 1-бутил-3-метилимидазола, представленный формулой [BMIM]+ PF6-.

Еще один путь (iv) состоит в абсорбции СО2 в водной фазе, содержащей спирт и/или амин.

Другой метод (v) заключается в абсорбции СО2 в гидратированной форме, например, в водном растворителе, активированном энзиматически. Энзимом, активизирующим гидратирование, является, главным образом, карбоангидраза. В этом случае полученный раствор может затем быть рециркулирован для метода абсорбции в водной фазе в присутствии спирта и/или амина так, как это описано выше в (iii).

Водный раствор, полученный по методу абсорбции, подобному тем, что описаны выше в (iv) и (v), может также быть рециркулирован для вышеописанного метода сжижения (i).

К тому же водные растворы, такие как полученные описанными выше методами (iii) или (iv), обычно могут быть перенесены в жидкую не растворимую в воде ионную среду методом экстракции в системе жидкость-жидкость.

В соответствии с методом, использованным для реализации первого этапа концентрации в жидкой фазе согласно изобретению, полученная жидкая фаза будет состоять из жидкого СО2 или из раствора СО2 или угольной кислоты в полярной апротонной жидкости, не смешиваемой с водой или смешиваемой с водой в различных соотношениях, или же в ионной неводной жидкости ("расплавленная соль") более или менее смешиваемой с водой.

Второй этап способа согласно изобретению заключается в электровосстановлении СО2 или угольной кислоты, сконцентрированной в жидкой фазе (степень окисления +4), в соединение, в котором углерод находится в степени окисления +3. Восстановление проводится в жидкой фазе, полученной на предыдущем этапе, при значении рН, находящемся, главным образом, между 3 и 10, предпочтительнее между 3 и 7, и с анодом, поддерживаемым при потенциале от +0,5 до -3,5 вольт по отношению к нормальному водородному электроду. Анод может быть, например, из платины, алмаза, легированного бором, или углерода, легированного азотом.

Путем такого электровосстановления получают оксалат-ион (в виде щавелевой кислоты или оксалата) или формиат-ион (в виде муравьиной кислоты или формиата).

Этап (b) электровосстановления в случае необходимости проводится в жидком СО2 под давлением.

Этап (b) электровосстановления может, кроме того, проводиться в подземном хранилище, в которое жидкий CO2 может быть при необходимости закачан.

Третий этап (с) способа согласно изобретению заключается в реэкстракции щавелевой кислоты (или оксалата) или же муравьиной кислоты (или формиата) водной фазой. Такая реэкстракция осуществляется в случае, когда электровосстановление проводилось в неводной среде. Образование муравьиной кислоты при электровосстановлении происходит, главным образом, в водной фазе, и в этом случае нет необходимости прибегать к проведению этого этапа (с) реэкстракции водной фазой.

Заключительный этап (d) способа согласно изобретению (этап минерализации) состоит в основном из воздействия на карбонатный минерал, например известковый или магнезитный, водным раствором щавелевой кислоты (или оксалата) или же муравьиной кислоты (или формиата), полученным на этапе электровосстановления (или же, возможно, после реэкстракции). Вышеупомянутый раствор вступает в реакцию с соединением элемента М с образованием минерала, в котором атомное соотношение С/М равно приблизительно 2/1.

Реакция оксалатного или формиатного соединения с карбонатным минералом дает один моль CO2 на моль С2О4.

МСО3+(СООН)2→МС2O4+CO22O или

МСО3+2НСООН→М(НСО2)2+CO2+H2O

Высвобожденный таким образом CO2 в количестве, в два раза меньшем, чем было задействовано вначале, может быть снова возвращен в цикл способа согласно изобретению на первом этапе.

Элементом M может быть любой металлический элемент в степени окисления +2. Это чаще всего кальций или магний. Соединением элемента М может быть тогда, например, известковая или магнезитная порода. Предпочтительно элемент M является кальцием. Образующийся минерал - это предпочтительно оксалат кальция, такой как вевеллит СаС2О4·Н2О.

Способ согласно изобретению (или только его последний этап) может быть реализован как в месте нахождения (in situ) в известковой или магнезитной породе, так и вне его (ex situ).

Таким образом, заключительный этап минерализации (d) может осуществляться при введении в контакт с осадочной породой, например известковой или магнезитной, раствора щавелевой или муравьиной кислоты предпочтительно путем его закачивания под землю.

Заметим, что с точки зрения энергетического баланса способа согласно изобретению энергия, приложенная для того, чтобы перевести углерод +4 в углерод +3 в реакции электровосстановления на втором этапе, не потеряна - она фактически хранится в оксалате или формиате образующегося минерала. Щавелевая или муравьиная кислота может быть с успехом повторно извлечена в дальнейшем, чтобы быть использованной для сжигания, например, in situ. Речь может идти об окислении, например бактериальном, in situ или ex situ. В этих процессах углерод перешел бы в степень окисления +4.

ПРИМЕРЫ

Пример 1

Жидкий СО2 получен классическим методом сжижения.

Реактор заполнен жидким СО2 под давлением (50 бар при комнатной температуре), к которому постепенно добавляется вода таким образом, чтобы поддерживать молярное соотношение СО22О порядка 100 для того, чтобы ориентировать реакцию в сторону синтеза щавелевой кислоты. Добавляется перхлорат тетрааммония в количестве 0,1 моль/л.

Электрод выполнен из платины, плотность тока составляет 5 мА/см2. Потенциал электрода -3 В по отношению к потенциалу пары Fe/Fe+. Раствор перемешивается, чтобы ограничить концентрационные эффекты вблизи электродов.

Количество СО2,подлежащего электровосстановлению, определяет необходимое количество электроэнергии.

После электровосстановления образовавшаяся щавелевая кислота закачивается в резервуар, содержащий карбонат кальция. Щавелевая кислота реагирует с карбонатом с образованием оксалата кальция. Увеличение массы сухого и очищенного остатка указывает на связывание СО2 в виде минерала.

Пример 2

Жидкий СО2 получен классическим методом сжижения.

После добавления перхлората тетрааммония он был закачан в подземную полость, содержащую известковые или магнезитные породы.

Электровосстановление проводится прямо в подземной полости при помощи платинового электрода. Плотность тока составляет 5 мА/см2. Потенциал электрода -3 В по отношению к потенциалу пары Fe/Fe+. Раствор перемешивается, чтобы ограничить концентрационные эффекты вблизи электродов.

Синтезируемая таким образом щавелевая кислота вступает в реакцию с известковыми или магнезитными породами, высвобождая СО2, который, в свою очередь, восстанавливается в двухвалентный катион, осаждающийся вместе с оксалатом. Реакции приводят в конечном итоге к связыванию СО2 в виде минерала. Высвобожденный СО2 повторно рециркулируется на этап сжижения.

Пример 3

СО2 абсорбируется водой в присутствии карбоангидразы согласно описанию патента US-A-6524843.

Добавляется перхлорат тетрааммония в количестве 0,1 моль/л.

Электрод выполнен из платины, и плотность тока составляет 5 мА/см2. Потенциал электрода -3 В по отношению к потенциалу пары Fe/Fe+. Раствор перемешивается, чтобы ограничить концентрационные эффекты вблизи электродов.

Количество СО2,подлежащего электровосстановлению, определяет необходимое количество электроэнергии.

После электровосстановления образовавшаяся муравьиная кислота закачивается в резервуар, содержащий карбонат кальция. Муравьиная кислота реагирует с карбонатом с образованием формиата кальция. Увеличение массы сухого и очищенного остатка указывает на связывание СО2 в виде минерала.

Пример 4

СО2 абсорбируется в ионной жидкости - гексафторфосфате 1-бутил-3-метилимидазола, представленной формулой [BMIM]+ PF6-.

Добавляется перхлорат тетрааммония в количестве 0,1 моль/л.

Электрод выполнен из платины, и плотность тока составляет 5 мА/см2. Потенциал электрода -3 В по отношению к потенциалу пары Fe/Fe+. Раствор перемешивается, чтобы ограничить концентрационные эффекты вблизи электродов.

Количество СО2,подлежащего электровосстановлению, определяет необходимое количество электроэнергии.

Ионная жидкость, насыщенная СО2, вводится в непрерывный контакт с водным раствором, который извлекает из нее оксалат.

Образовавшийся водный раствор щавелевой кислоты закачивается в резервуар, содержащий карбонат кальция. Щавелевая кислота реагирует с карбонатом с образованием оксалата кальция. Увеличение массы сухого и очищенного остатка указывает на связывание СО2 в виде минерала.

a)этапконцентрацииСОвжидкойфазе;b)этапэлектровосстановлениявапротоннойсредедосоединения,вкоторомуглеродимеетстепеньокисления+3ввидещавелевойилимуравьинойкислоты;c)вслучаенеобходимости,этапреэкстракциищавелевойилимуравьинойкислотывводнуюсреду,осуществляемыйкогдаэлектровосстановлениепроводитсявневоднойсреде;иd)этапминерализацииприпомощиреакциивышеуказанногосоединенияссоединениемэлементаМ,гдеМпредставляетсобойметаллическийэлементвстепениокисления+2,приводящийкобразованиюминерала,вкотороматомноесоотношениеС/Мсоставляетприблизительно2/1.1.Способсвязываниядиоксидауглерода,выбрасываемоговатмосферу,отличающийсятем,чтоонвключает:12.Способпоп.1,отличающийсятем,чтоэтап(а)концентрациивжидкойфазесостоитвсжиженииСО,жидкийСОполучаютзатемподдавлением,например,всуперкритическомсостоянии.23.Способпоп.1,отличающийсятем,чтоэтап(а)концентрациивжидкойфазесостоитвабсорбцииСОвполярнойапротоннойжидкости,несмешиваемойсводойилисмешиваемойсводойвразличныхсоотношениях.34.Способпоп.1,отличающийсятем,чтоэтап(а)концентрациивжидкойфазесостоитвабсорбцииCOвионнойапротоннойжидкости,несмешиваемойсводойилисмешиваемойсводойвразличныхсоотношениях.45.Способпоп.4,отличающийсятем,чтовышеупомянутаяионнаяапротоннаяжидкостьпредставляетсобойгексафторфосфат1-бутил-3-метилимидазола.56.Способпоп.1,отличающийсятем,чтоэтап(а)концентрациивжидкойфазесостоитвабсорбцииСОвводнойсреде,содержащейспирти/илиамин.67.Способпоп.6,отличающийсятем,чтополученныйводныйрастворрециркулируютнапроцесссжижениясогласноп.2.78.Способпоп.6,отличающийсятем,чтополученныйводныйрастворпереносятвжидкуюнерастворимуювводеионнуюсредупутемэкстракциивсистемежидкость-жидкость.89.Способпоп.1,отличающийсятем,чтоэтап(а)концентрациивжидкойфазесостоитвабсорбцииСОвгидратированнойформе,причемупомянутыйпроцессконцентрацииактивируетсяэнзиматическимпутем.910.Способпоп.9,отличающийсятем,чтополученныйводныйрастворпереносятвжидкуюнерастворимуювводеионнуюсредупутемэкстракциивсистемежидкость-жидкость.1011.Способпоп.9,отличающийсятем,чтоэнзимом,активизирующимгидратирование,служиткарбоангидраза.1112.Способпоп.11,отличающийсятем,чтополученныйводныйрастворрециркулируютнапроцессабсорбциивводнойсредевприсутствииспиртаи/илиаминасогласноп.6.1213.Способпоп.12,отличающийсятем,чтополученныйводныйрастворрециркулируютнапроцесссжижениясогласноп.2.1314.Способпоодномуизпп.1-13,вкоторомэтап(b)электровосстановленияпроводятпризначениирНмежду3и10исанодом,поддерживаемымприпотенциалеот+0,5до-3,5вольтапоотношениюкнормальномуводородномуэлектроду.1415.Способпоп.14,вкоторомзначениерНнаходитсямежду3и7.1516.Способпоп.14,вкоторомиспользуемыйнаэтапе(b)электровосстановленияанодсостоитизплатины,алмаза,легированногобором,илиуглерода,легированногоазотом.1617.Способпоодномуизпп.1-13,15и16,вкоторомэтап(b)электровосстановленияпроводитвжидкомСОподдавлением.1718.Способпоодномуизпп.1-13,15и16,вкоторомсоединением,получаемымнаэтапе(b)электровосстановления,являетсящавелеваякислотаилиоксалат.1819.Способпоп.18,вкоторомщавелеваякислотаилиоксалат,полученныевневоднойсреде,реэкстрагируютводнойфазой.1920.Способпоодномуизпп.1-13,15и16,вкоторомнавыходесэтапа(а)жидкийCOзакачиваютвподземноехранилищеСО.2021.Способпоп.20,вкоторомэтап(b)электровосстановленияпроводятвподземномхранилищеСО.2122.Способпоодномуизпп.1-13,15и16,вкоторомконечныйэтап(d)минерализациизаключаетсяввоздействиинакарбонатныйминералводнымрастворомщавелевойкислотыилимуравьинойкислоты,полученнымнаэтапеэлектровосстановления.2223.Способпоп.22,вкоторомвышеупомянутыйкарбонатныйминералпредставляетсобойкарбонатныйминерал,известковыйилимагнезитный.2324.Способпоодномуизпп.1-13,15и16,вкоторомнаэтапеминерализации(d)элементомМявляетсякальций,аобразующимсяминералом-вевеллитСаСO·НO.2425.Способпоодномуизпп.1-13,15и16,вкоторомэтапминерализации(d)осуществляютпривведениивконтактсосадочнойпородой,например,известковойилимагнезитной,водногорастворащавелевойилимуравьинойкислоты,полученногонаэтапеэлектровосстановления.2526.Способпоодномуизпп.1-13,15и16,вкоторомконечныйэтапминерализации(d)проводятпутемзакачиванияраствораподземлю.26
Источник поступления информации: Роспатент

Показаны записи 1-9 из 9.
20.02.2019
№219.016.be04

Способ удаления галогенсодержащих соединений из газа или жидкости

Изобретение относится к способу удаления, уменьшения и/или устранения галогенсодержащих соединений, в частности хлорированных соединений, содержащихся в газе или в жидкости, в котором вводят во взаимодействие газ или жидкость с композицией, полученной путем осаждения на оксид алюминия по...
Тип: Изобретение
Номер охранного документа: 02219995
Дата охранного документа: 27.12.2003
20.03.2019
№219.016.e5d9

Катализатор на основе кобальта для синтеза фишера-тропша

Настоящее изобретение относится к катализатору на основе кобальта для синтеза Фишера-Тропша и к способу синтеза Фишера-Тропша из смеси моноксида углерода и водорода с его использованием. Описан катализатор, применимый для процесса конверсии синтез-газа, причем указанный катализатор содержит: а)...
Тип: Изобретение
Номер охранного документа: 0002383388
Дата охранного документа: 10.03.2010
29.03.2019
№219.016.f0cc

Способ обогащения тяжелых загрузок при помощи дезасфальтации и гидрокрекинга в кипящем слое

Изобретение может быть использовано для переработки нефтяных фракций. Углеводородную загрузку подают по линии 1 в секцию 2 для дезасфальтации в присутствии растворителя. Фракцию асфальта и часть растворителя, нагнетаемого в секцию 2, извлекают через линию 4 и направляют к секции 5 для...
Тип: Изобретение
Номер охранного документа: 0002344160
Дата охранного документа: 20.01.2009
10.04.2019
№219.017.01ef

Способ удаления галоидных соединений, содержащихся в газе или в жидкости, при помощи состава на основе, по меньшей мере, одного металла

Изобретение относится к способам удаления галоидных соединений из газов или жидкостей. Газ или жидкость, содержащие галоидные соединения, контактируют с составом. Состав содержит окись алюминия и/или гидрат окиси алюминия и соединение, по меньшей мере, одного металла. Металл выбирают из VIII,...
Тип: Изобретение
Номер охранного документа: 02217208
Дата охранного документа: 27.11.2003
29.05.2019
№219.017.6758

Способ получения средних дистиллятов гидроизомеризацией и гидрокрекингом загрузок, полученных по способу фишера-тропша

Изобретение относится к способу обработки с помощью гидрокрекинга и гидроизомеризации навесок, полученных по способу Фишера-Тропша. Описан способ получения средних дистиллятов из парафиновой загрузки, полученной синтезом Фишера-Тропша, в котором используют катализатор...
Тип: Изобретение
Номер охранного документа: 0002320703
Дата охранного документа: 27.03.2008
09.06.2019
№219.017.7cf2

Способ мягкого гидрокрекинга, включающий разбавление сырья

Изобретение относится к технической области крекинга углеводородного сырья. Изобретение касается способа обработки углеводородного сырья, содержащего фракцию вакуумного дистиллята, или деасфальтированную нефть, или смесь этих двух фракций, в котором дистилляцией при атмосферном давлении сырой...
Тип: Изобретение
Номер охранного документа: 0002412976
Дата охранного документа: 27.02.2011
29.06.2019
№219.017.9d67

Способ и устройство для разделения компонентов жидкой загрузки при помощи центробежной хроматографии типа жидкость-жидкость

Изобретение относится к способу разделения компонентов жидкой загрузки при помощи центробежной хроматографии типа жидкость-жидкость и к устройству для осуществления этого способа. Компоненты (А, В), имеющие различные коэффициенты распределения, такие, что эти компоненты приводятся в движение с...
Тип: Изобретение
Номер охранного документа: 0002353416
Дата охранного документа: 27.04.2009
10.07.2019
№219.017.abc7

Система распределения-сбора текучей среды, устройство для приведения в контакт текучих сред и твердых веществ и способ выделения, по меньшей мере, одного соединения из смеси

Изобретение относится к химической промышленности и касается системы распределения-сбора текучей среды для устройства, предназначенного для приведения в контакт текучих сред и твердых веществ, при этом устройство содержит камеру, по меньшей мере, один трубопровод для введения основной текучей...
Тип: Изобретение
Номер охранного документа: 02223140
Дата охранного документа: 10.02.2004
10.07.2019
№219.017.abca

Устройство для сбора, распределения, смешивания или отвода нескольких текучих сред, разделительная колонна и способ выделения по меньшей мере одного соединения из смеси

Изобретение относится к области хроматографии, применяемой для текучих сред. Устройство содержит по меньшей мере средства для сбора основной текучей среды, по меньшей мере два распределителя впуска и/или отвода, которые обеспечивают прохождение дополнительных текучих сред, по меньшей мере две...
Тип: Изобретение
Номер охранного документа: 02223141
Дата охранного документа: 10.02.2004
+ добавить свой РИД