×
19.04.2019
219.017.2f85

Результат интеллектуальной деятельности: РАЗМЕРОСТАБИЛЬНАЯ ОБОЛОЧКА

Вид РИД

Изобретение

Аннотация: Изобретение относится к конструкциям размеростабильных оболочек подкрепленного типа и может применяться в высокоточных космических и наземных системах, например, в качестве несущих корпусов телескопов и оптических приборов. Размеростабильная оболочка содержит металлическую обшивку цилиндрической формы, стрингеры, ориентированные вдоль продольной оси оболочки, и торцевые металлические шпангоуты. Обшивка имеет кольцевые П-образные гофры. Стрингеры выполнены из слоев волокнистого материала, пропитанного полимерным связующим, и расположены на внешней поверхности кольцевых П-образных гофров. Стрингеры имеют отрицательный термический коэффициент линейного расширения вдоль продольной оси оболочки и механически соединены с ее обшивкой на участках их прилегания к кольцевым П-образным гофрам. Достигается повышение осевой размеростабильности оболочки в условиях действия температуры и вакуума. 2 з.п. ф-лы, 3 ил.

Изобретение относится к конструкциям размеростабильных оболочек подкрепленного типа и может применяться в высокоточных космических и наземных системах, например, в качестве несущих корпусов телескопов и оптических приборов.

Степень разрешения космического телескопа определяется постоянством пространственного положения его оптической оси и точностью поддержания фокусного расстояния в условиях эксплуатации, то есть жесткостью и осевой размерной стабильностью (близкими к нулю осевыми перемещениями) несущего корпуса.

Известна конструкция тубуса космического телескопа в виде цилиндрической оболочки, содержащей обшивку из слоистого полимерного углепластика и торцевые шпангоуты из титанового сплава, соединенные с обшивкой посредством клея, причем обшивка выполнена с отрицательным продольным термическим коэффициентом линейного расширения для компенсации термических перемещений шпангоутов в осевом направлении (Jurcevich В.К., Bruner М.Е. Use of Graphite Epоху Composites in the Solar-A Soft X-Ray Telescope // Advances in Optical Structure Systems: SPIE Proceedings, 16-19 April 1990. - Vol.1303. - P. 406-415).

Такое техническое решение позволяет обеспечить осевую термонейтральность конструкции, однако, наряду с недостаточной конструктивной жесткостью, не в полной мере отвечает требованиям по размерной стабильности оболочки из-за десорбции в условиях вакуума летучих веществ, в том числе влаги, из органической матрицы углепластиковой обшивки. Например, десорбция влаги из полимерного композиционного материала на уровне 0,3%, определяемом исходным равновесным ее содержанием в материале при наземной эксплуатации, приводит к изменению линейных размеров 1 м погонного конструкции на величину порядка 0,1 мм, что сопоставимо с требованиями по геометрической точности, предъявляемыми к прецизионным изделиям. Кроме того, осаждение легкоконденсируемых продуктов газации органических материалов на оптических поверхностях недопустимо ухудшает оптические характеристики прибора.

Ближайшим аналогом, выбранным в качестве прототипа, является конструкция металлической оболочки корпуса космического аппарата, содержащей обшивку, продольные элементы жесткости (стрингеры) и кольцевые шпангоуты, при этом соединение конструктивных элементов производится механическим способом (Паничкин Н.И., Слепушкин Ю.В., Шинкин В.П., Яцынин Н.А. Конструкция и проектирование космических летательных аппаратов. - М.: Машиностроение, 1986. - С.178.). Несмотря на высокую жесткость оболочки и отсутствие проблемы влажностной размерной нестабильности, конструкция характеризуется низкой геометрической точностью в условиях температурного нагружения, обусловленной высокими значениями термического коэффициента линейного расширения (ТКЛР) металлов. Так, например, вариация температуры на 10°С приводит к изменению характерного размера конструкции, выполненной из алюминиевого сплава, на величину 0,25 мм/м. Использование специальных сплавов с пониженным значением ТКЛР (инвар или суперинвар) позволяет на порядок снизить термические перемещения, однако даже в этом случае для крупногабаритных конструкций, работающих в широком диапазоне изменения температуры эксплуатации (100°С и более), не удается достичь требуемой размерной точности, которая для современных космических оптических систем составляет величину менее 0,1 мм/м.

Целью изобретения является создание оболочки с высокой осевой размеростабильностью в условиях действия градиентов температуры и вакуума.

Для достижения этой цели в размеростабильной оболочке, выполненной в виде сборной конструкции с механическим соединением образующих ее элементов и содержащей металлическую обшивку цилиндрической формы, стрингеры, ориентированные вдоль продольной оси оболочки, и торцевые металлические шпангоуты, согласно предлагаемому изобретению обшивка имеет кольцевые П-образные гофры, а стрингеры выполнены из слоев волокнистого материала, пропитанного полимерным связующим, и расположены на внешней поверхности кольцевых П-образных гофров, при этом стрингеры имеют отрицательный термический коэффициент линейного расширения вдоль продольной оси оболочки и механически соединяются с обшивкой на участках их прилегания к кольцевым П-образным гофрам.

Стрингеры, выполняемые из слоев волокнистого материала, пропитанного полимерным связующим, могут иметь вид П-образных или трапециевидных профилей, при этом стенки каждого профиля образуются перекрестно армированными слоями волокнистого материала, а полка и лапки каждого профиля могут дополнительно содержать слои волокнистого материала, ориентированные вдоль продольной оси профиля.

Отношение суммы длин закрепленных на гофрах участков каждого стрингера к его длине может составлять величину от 0 до 0,5.

Обшивка и торцевые шпангоуты могут изготавливаться из специальных металлов и сплавов, например, инвара, алюминиевых и титановых сплавов. Для стрингеров может использоваться материал на основе углеродных, арамидных, стеклянных волокон или их комбинации и термореактивных связующих, например, эпоксидных, цианатных или полиэфирных. Соединение конструктивных элементов оболочки может выполняться посредством болтов, заклепок или другими видами механического крепежа.

Процесс получения размеростабильной оболочки состоит из следующих основных технологических операций: изготовление металлической обшивки из листовых заготовок гибкой и обтяжкой на оправке с последующим креплением по образующей, например сваркой, пайкой, болтами, заклепками; изготовление фрезеровкой шпангоутов; механическое соединение шпангоутов с обшивкой, например, посредством болтов; изготовление стрингеров из слоев волокнистого материала, пропитанного полимерным связующим, включающее раскрой и выкладку слоев материала на пуансонную матрицу в соответствии со схемой армирования, формование заготовок стрингеров автоклавно-вакуумным методом по заданному режиму отверждения с приложением давления и температуры, механическую обрезку контура заготовок; механическое крепление стрингеров к обшивке и шпангоутам, например, с помощью заклепок.

Наличие в обшивке кольцевых П-образных гофров повышает крутильную и кольцевую жесткости оболочки, а исполнение обшивки из металла или металлического сплава обеспечивает постоянство в условиях вакуума размеров корпусной оболочки в составе оптического прибора, поддержания фокусного расстояния и сохранения чистоты размещенных внутри оболочки оптических поверхностей.

Подкрепление металлической обшивки стрингерами из слоистого полимерного композиционного материала, ориентированными вдоль продольной оси оболочки и имеющими отрицательный продольный термический коэффициент линейного расширения, позволяет реализовать заданную осевую терморазмеростабильность оболочки за счет компенсации продольных термических перемещений обшивки обратными по знаку деформациями стрингеров и повысить продольную и изгибную жесткость конструкции. При этом могут применяться стрингеры как открытого (уголки, швеллеры, тавры, двутавры и т.п.), так и закрытого (П-образные, трапециевидные и т.д.) сечения. Форма сечения, геометрические и жесткостные параметры стрингеров, а также их необходимое количество определяются из условия требуемых значений жесткости оболочки, размерной точности (перемещений) конструкций, условий заделки стрингеров, технологических ограничений, компоновочных решений и заданных эксплуатационных нагрузок.

Расположение стрингеров из полимерного композиционного материала на внешней поверхности гофров обшивки позволяет, с одной стороны, увеличить внутренний полезный объем оболочки, а с другой, исключить непосредственный контакт органического материала с оптическими поверхностями внутри оболочки, и тем самым снизить влияние продуктов газации стрингеров на характеристики прибора.

Применение стрингеров закрытого сечения из полимерного композиционного материала, выполняемых в виде П-образных или трапециевидных профилей, обеспечивает высокие критические напряжения оболочки и уменьшает крутку стрингеров. Ориентация слоев волокнистого материала в элементах профилей, когда стенки профилей образованы перекрестно армированными слоями, а полка и лапки дополнительно содержат слои, ориентированные вдоль продольной оси профиля, позволяет увеличить момент инерции подкрепляющего элемента, рационально распределить массу материала по его сечению, и за счет рационального выбора угла армирования перекрестных слоев и соотношения перекрестие армированных и продольных слоев в полке и лапках получить отрицательное значение продольного термического коэффициента линейного расширения профиля, удовлетворяющее заданным требованиям по деформациям и жесткостным свойствам оболочки, то есть реализовать управление осевыми термическими перемещениями оболочки.

Соединение стрингеров с обшивкой на участках их прилегания к гофрам, в совокупности с признаком отрицательного продольного термического коэффициента линейного расширения стрингеров, также направлено на решение задачи достижения осевой размерной стабильности оболочки. Дискретность соединения стрингеров с обшивкой приводит к неоднородному термоупругому деформированию оболочки вдоль продольной оси и возможности реализации взаимной термокомпенсации перемещений элементов конструкции: на участках заделки стрингеров деформации оболочки определяются положительными перемещениями обшивки, а на участках между гофрами преобладает суммарная жесткость стрингеров, и деформации оболочки в этих зонах отрицательны. Это дает дополнительную возможность управления термическими деформациями оболочки посредством изменения длины заделки стрингеров на гофрах обшивки. Для достижения осевой размерной стабильности оболочки, в зависимости от значений ТКЛР и продольных суммарных моментов инерции обшивки со шпангоутами и стрингеров, отношение суммы длин закрепленных на гофрах участков каждого стрингера к его длине может составлять величину от 0 до 0,5, где значение 0 соответствует заделке стрингера на каждом гофре в одной точке, то есть одним крепежным элементом на каждой лапке стрингера, а значение 0,5 - заделке стрингера на всей длине каждого гофра.

На фиг.1 представлен общий вид размеростабильной оболочки, на фиг.2 - стрингеры в виде П-образных и трапециевидных профилей из полимерного композиционного материала и структура образующих их слоев, на фиг.3 - схема заделки стрингеров на обечайке.

Размеростабильная оболочка (фиг.1) выполнена в виде сборной конструкции с механическим соединением образующих ее элементов и содержит металлическую обшивку 1 цилиндрической формы, стрингеры 2, ориентированные вдоль продольной оси Х оболочки, и торцевые металлические шпангоуты 3. Обшивка 1 имеет кольцевые П-образные гофры 4, а стрингеры 2 выполнены из слоев волокнистого материала, пропитанного полимерным связующим, и расположены на внешней поверхности кольцевых П-образных гофров 4, при этом стрингеры 2 имеют отрицательный термический коэффициент линейного расширения вдоль продольной оси Х оболочки и механически соединены с ее обшивкой 1 на участках 5 их прилегания к кольцевым П-образным гофрам 4.

Стрингеры 2 (фиг.2) выполнены в виде П-образных или трапециевидных профилей, стенки 6 каждого профиля образованы перекрестно армированными слоями 7 волокнистого материала, а полка 8 и лапки 9 каждого профиля дополнительно содержат слои 10 волокнистого материала, ориентированные вдоль продольной оси Хс профиля.

Отношение суммы длин ℓ (фиг.3) закрепленных на гофрах 4 участков каждого стрингера 2 к его длине L составляет величину от 0 до 0,5.

Примером использования предложенного технического решения является размеростабильная оболочка корпуса крупногабаритного космического телескопа, содержащая цилиндрическую обшивку толщиной 1 мм и наружным диаметром ~1900 мм с кольцевыми П-образными гофрами, изготовленную из алюминиевого сплава АМг3, торцевые шпангоуты в виде уголков из сплава АМг6 и шестнадцать стрингеров, расположенных на внешней поверхности гофров и выполненных из углепластика КМУ-4Л на основе ленты углеродной ЛУ-П/0.1А ГОСТ 28006-88 и эпоксидного связующего ЭНФБ ТУ 1-596-36-98 в виде трапециевидных профилей строительной высотой ~25 мм. Крепление шпангоутов к обшивке - болтовое, стрингеры соединяются с обшивкой и шпангоутами посредством заклепок. Общая длина корпуса телескопа составляет ~3600 мм.

При модулях упругости 70 ГПа и 95 ГПа и значениях термического коэффициента линейного расширения 24×10-61/°С и (-0,6…-0,8)×10-61/°С для обшивки со шпангоутами и профилей соответственно максимальные осевые перемещения корпуса в диапазоне рабочих температур составили 0,35-0,36 мм, что соответствует требованиям по размерной точности 0,1 мм/м, предъявляемым к прецизионным космическим конструкциям.

При этом установлено, что для данного конструктивного исполнения изменение коэффициента заделки стрингеров, то есть отношение суммы длин закрепленных на гофрах участков стрингера к его длине, в диапазоне от 0 (заделка в одной точке на гофре) до 0,5 (заделка по всей длине гофра) приводит к восьмикратному увеличению осевых термических перемещений оболочки.

Таким образом, заявляемое техническое решение позволяет получать крупногабаритные оболочечные конструкции с высокой осевой размеростабильностью для прецизионных изделий космической и наземной техники.

Источник поступления информации: Роспатент

Показаны записи 41-49 из 49.
19.06.2019
№219.017.87ec

Установка для упрочнения изделий из стеклокристаллических материалов путем ионного обмена

Изобретение относится к стекольной и керамической промышленности и производству радиотехнических изделий из стеклокристаллических материалов. Установка содержит: камеры сушки и охлаждения, между которыми размещена камера упрочнения, отделенная от них шиберами, направляющие, каретки с кассетами...
Тип: Изобретение
Номер охранного документа: 0002305078
Дата охранного документа: 27.08.2007
29.06.2019
№219.017.9a1e

Антенный обтекатель ракеты

Изобретение относится к ракетной технике, а точнее к конструкции антенных обтекателей ракет с радиолокационной системой управления. Технический результат заключается в повышении термоустойчивости и улучшении радиотехнических характеристик при обеспечении несущей способности оболочки и...
Тип: Изобретение
Номер охранного документа: 0002267837
Дата охранного документа: 10.01.2006
29.06.2019
№219.017.9e55

Опорно-поворотное устройство

Изобретение может быть использовано при разработке опорно-поворотных устройств антенных систем без точек опоры в осях вращения, в частности в антенных системах стендов для измерения радиотехнических характеристик обтекателей и других радиопрозрачных защитных устройств. Техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002306642
Дата охранного документа: 20.09.2007
10.07.2019
№219.017.ad8c

Способ получения керамических изделий на основе волластонита

Изобретение относится к технологии производства футеровочных и конструкционных керамических элементов оснастки литейных агрегатов алюминиевой промышленности. Техническим результатом изобретения является сокращение продолжительности технологического цикла производства крупногабаритных и...
Тип: Изобретение
Номер охранного документа: 0002358951
Дата охранного документа: 20.06.2009
10.07.2019
№219.017.b05e

Формовой комплект для формования сложнопрофильных керамических заготовок

Изобретение относится к технологии формования крупногабаритных, сложнопрофильных керамических изделий из водных шликеров, типа заготовок головных антенных обтекателей ракет. Изобретение позволит увеличить срок службы водопоглощающей матрицы формовых комплектов. Формовой комплект для формования...
Тип: Изобретение
Номер охранного документа: 0002438865
Дата охранного документа: 10.01.2012
10.07.2019
№219.017.b065

Антенный обтекатель

Изобретение относится к области авиационной и ракетной техники, в частности к антенным обтекателям скоростных ракет из пористой керамики. Улучшение радиотехнических характеристик антенного обтекателя является техническим результатом изобретения. Антенный обтекатель содержит радиопрозрачную...
Тип: Изобретение
Номер охранного документа: 0002432647
Дата охранного документа: 27.10.2011
10.07.2019
№219.017.b1fd

Способ изготовления формовочной оснастки из полимерного композиционного материала

Способ относится к области формования изделий из полимерного композиционного материала и может быть использован для формования и склейки интегральных и трехслойных объемных изделий, например, панелей фюзеляжа, крыла самолета. В способе изготовления формовочной оснастки из полимерного...
Тип: Изобретение
Номер охранного документа: 02188126
Дата охранного документа: 27.08.2002
10.07.2019
№219.017.b21a

Слоистая труба

Изобретение может быть использовано при производстве трубчатых стержневых элементов для высокоточных изделий космического и наземного применения. Технический результата изобретения состоит в создании слоистой трубы с высокой стабильностью формы и размером в интервале температур (- 50) - (+...
Тип: Изобретение
Номер охранного документа: 02197670
Дата охранного документа: 27.01.2003
14.07.2019
№219.017.b4c4

Способ моллирования листового стекла

Изобретение относится к области изготовления гнутого стекла, которое может быть использовано в качестве авиационного остекления. Технический результат изобретения заключается в снижении оптических дефектов. На формующей поверхности формы рамочного типа размещают, по меньшей мере, две...
Тип: Изобретение
Номер охранного документа: 0002444478
Дата охранного документа: 10.03.2012
Показаны записи 11-13 из 13.
09.06.2019
№219.017.7cbb

Внутренняя многослойная теплоизоляция головных обтекателей

Изобретение относится к области космической техники, а именно к области средств тепловой защиты космических аппаратов, выводимых на орбиту внутри головных обтекателей ракет. Многослойная внутренняя теплоизоляция головных обтекателей состоит из временного защитного покрытия, снимаемого после...
Тип: Изобретение
Номер охранного документа: 0002410297
Дата охранного документа: 27.01.2011
05.07.2019
№219.017.a5f3

Устройство для испытания трубчатых образцов из проницаемых материалов при комбинированном нагружении осевой силой и внешним давлением

Изобретение относится к области исследования прочностных свойств твердых материалов путем создания в них широкого диапазона напряжений, конкретно к испытаниям трубчатых образцов при действии внешнего давления и осевой растягивающей или сжимающей нагрузки. Устройство состоит из камеры высокого...
Тип: Изобретение
Номер охранного документа: 0002693547
Дата охранного документа: 03.07.2019
23.05.2023
№223.018.6ccf

Переходная ферма

Изобретение относится к ракетно-космической технике, а именно к конструкции переходных ферм. Переходная ферма содержит восемь нижних опорных узлов, совмещенных с вершинами правильного восьмиугольника, и четыре верхних опорных узла, совмещенных с вершинами квадрата. Нечетные пролеты фермы...
Тип: Изобретение
Номер охранного документа: 0002779010
Дата охранного документа: 30.08.2022
+ добавить свой РИД