×
19.04.2019
219.017.2f05

СПОСОБ ПЕРЕРАБОТКИ УГЛЕРОД- И/ИЛИ УГЛЕВОДОРОДСОДЕРЖАЩИХ ПРОДУКТОВ И РЕАКТОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Группа изобретений относится к промышленной переработке углерод- и/или углеводородсодержащих продуктов и может быть использована, в частности, для переработки разнообразных техногенных и бытовых отходов, для переработки низкокачественных горючих полезных ископаемых. В способе переработки, реализованном на специальном реакторе, оснащенном температурными датчиками, непосредственно за зоной коксования и пиролиза формируют зону синтеза и гидрирования углеводородов с температурой 250-400°С, в зоне горения поддерживают температуру 850-1300°С, в зоне коксования и пиролиза выделяют химически несвязанный углерод и в зоне горения обрабатывают его водяным паром с образованием свободного водорода, который подают в зону синтеза и гидрирования, последовательно осуществляя синтез и гидрирование углеводородов, при этом внутри рабочего пространства реактора формируют разрежение и процесс ведут в присутствии катализатора, который входит в состав насадки. Технический результат - снижение энергетической емкости процесса, расширение технологических возможностей в части управления химическим составом и увеличение выхода готовых к дальнейшему использованию продуктов, улучшение их качества. 2 н. и 5 з.п. ф-лы, 2 ил., 1 табл.
Реферат Свернуть Развернуть

Группа изобретений относится к области промышленной переработки углерод- и углеводородсодержащих продуктов и может быть использована, в частности, для переработки разнообразных техногенных и бытовых отходов, для переработки низкокачественных горючих полезных ископаемых, таких, например, как бурые угли, горючие сланцы и им подобных.

Проблема переработки разнообразных низкокачественных горючих полезных ископаемых, бытовых и техногенных отходов, включающих углеродную и углеводородную составляющие, стоит весьма остро. Разработаны разнообразные способы, позволяющие разложить углерод- и углеводородсодержащие продукты на составляющие, однако использовать для дальнейшей переработки, например, в качестве горючего компонента можно лишь их определенную часть. Оставшаяся часть представляет собой, как правило, токсичные отходы, а в случае с исходными отходами - даже более токсичные по сравнению с ними. И хотя утилизация оставшихся после переработки продуктов возможна, однако из-за больших затрат она является экономически неэффективной. Кроме этого, следует отметить одну немаловажную особенность реализации процессов переработки низкокачественных горючих полезных ископаемых и упомянутых отходов - они, в большинстве существующих способов, реализуются в масштабах лабораторных установок. При переходе на промышленные масштабы реализации сразу же сказывается экономическая неэффективность проектов, связанная, в первую очередь, с необходимостью дополнительной утилизации попутных химических компонентов, полученных в ходе основного процесса. Именно по этой причине промышленная переработка низкокачественных горючих полезных ископаемых, а также углерод- и углеводородсодержащих отходов не получила широкого распространения.

Известен способ переработки твердых бытовых отходов путем их газификации, реализованный в реакторе с огнеупорной футеровкой длиной 1600 мм и внутренним диаметром 250 мм, для чего в вертикальную шахтную печь противотоком подают газифицирующий агент, содержащий кислород, отходы (как правило, перемешанные с кусковым топливом) последовательно пребывают в зоне нагревания и сушки, зоне пиролиза, зоне горения (окисления) и зоне охлаждения, при этом максимальную температуру в реакторе поддерживают в пределах 700-1400°С путем регулирования по меньшей мере массовой доли кислорода в газифицирующем агенте, и/или массовой доли негорючего материала в отходах, и/или массовой доли горючего материала в отходах, причем процесс осуществляют периодически, для чего загрузку отходов и выгрузку твердых продуктов переработки производят после остановки реактора [описание изобретения к патенту РФ №2079051 от 1994.06.23, МПК6 F23G 5/027, опубл. 1997.05.10]. В итоге обеспечивается эффективная переработка ТБО, в том числе низкокалорийных, без использования дополнительных источников энергии и с получением экологически приемлемых (после соответствующей очистки) продуктов.

Недостатком способа является высокий удельный расход газа-окислителя, что приводит к образованию излишнего количества оксидов и кислотных компонентов в продукт-газе и необходимость в загрузке дополнительного твердого кускового топлива в случае низкой калорийности перерабатываемого продукта, а также его низкая производительность.

Известен способ переработки горючих твердых бытовых отходов, являющийся модификацией способа по патенту РФ №2079051, отличие которого заключается в том, что температуру в реакторе поддерживают в пределах от 800 до 1300°С, в качестве газифицирующего агента используются дымовой газ, преимущественно в смеси с воздухом, а выделяющийся при сушке водяной пар включают в состав газифицирующего агента [описание изобретения к патенту РФ №2150045 от 1998.01.22, МПК7 F23G 5/027, опубл. 2000.05.27]. Способ обеспечивает переработку ТБО без подвода тепла извне с высокой энергетической эффективностью, высоким выходом ценных продуктов, включая смолы пиролиза и горючий газ, и высокой общей энергетической эффективностью процесса.

Недостатком способа является наличие избыточного количества химически несвязанного углерода в твердом остатке на выходе из реактора, высокое содержание воды, оксидов и кислотных компонентов в продукт-газе, что делает неэффективным его полное использование. Кроме этого, при осуществлении способа имеют место значительные потери тепла с дымовыми газами и он отличается низкой производительностью.

Известен способ переработки конденсированных горючих, являющийся модификацией способа по патенту РФ №2079051, для чего в реактор загружают шихту, состоящую из горючих компонентов и кускового твердого негорючего материала, устанавливают газовый поток сквозь загрузку с подачей в реактор газифицирующего агента с кислородом, водяным паром и углекислым газом, выводят продукты переработки из реактора, где последовательные сечения упомянутой загрузки последовательно пребывают в зонах нагревания, пиролиза, коксования, газификации и охлаждения, регулируют температуры в зоне горения в пределах от 800 до 1300°С, выгружают из реактора твердые продукты, сжигают по крайней мере часть газообразных, при этом в качестве газифицирующего агента используют дымовой газ в смеси с воздухом и водяным паром, причем управление процессом осуществляют изменением доли дымового газа в газифицирующем агенте [описание изобретения к патенту РФ №2152561 от 1998.01.22, МПК7 F23G 5/027, опубл. 2000.07.10]. В результате обеспечивается переработка конденсированных горючих без подвода тепла извне с высокой энергетической эффективностью, высоким выходом ценных продуктов, включая смолы пиролиза и горючий газ.

Недостатком способа является избыточное количество химически несвязанного углерода в твердом остатке на выходе из реактора, высокое содержание воды, оксидов и кислотных компонентов в продукт-газе, что снижает эффективность его дальнейшего использования, а также его низкая производительность.

Известен способ обезвреживания и уничтожения твердых отходов, преимущественно госпитальных, содержащих горючие материалы, включающий загрузку отходов в камеру газификации, их первоначальное зажигание с образованием зоны газификации, подачи в нее газифицирующего агента, продвижение отходов по камере, проведение пиролиза при относительном недостатке воздуха и последующее дожигание продуктов пиролиза в камере дожигания при избытке воздуха, регулирование подачи воздуха в зависимости от температур в камерах газификации и дожигания, при этом вывод газообразных продуктов газификации осуществляют непосредственно из зоны газификации при температуре не ниже 800°С и обеспечивают подвод тепла к зоне газификации путем нагрева отходящими газами стенок камеры газификации при температуре в пределах 800-1200°С [описание изобретения к патенту РФ №2089786 от 1994.06.23, МПК6 F23G 5/00, опубл. 1997.09.10].

Недостатком способа является высокий удельный расход газа-окислителя, высокая температура продукт-газа на выходе из камеры газификации, образование излишнего количества оксидов и кислотных компонентов в газе на выходе из камеры дожигания, необходимость в дополнительном источнике нагрева в случае низкой калорийности и высокой влажности загружаемого продукта для инициирования и поддержания процесса газификации, а также его низкая производительность. Кроме этого, способ отличается низкой производительностью и невозможностью реализации в промышленных объемах.

Известен способ переработки изношенных шин, включающий их термическое разложение при 400-600°С с образованием парогазовых продуктов и твердого углеродного остатка, разделение их на жидкие и парообразные фазы и твердый углеродный остаток, разделение жидкой фазы на легкую и тяжелую фракции, измельчение углеродного остатка, гранулирование углеродного остатка с использованием смачивающей жидкости, карбонизацию углеродного остатка, а образующиеся в предлагаемом процессе газы и легкие смолы подают на сжигание в топки реактора, карбонизатора и активатора [описание изобретения к патенту РФ №2142357 от 1998.07.03, МПК6. В29В 17/00, C10G 1/10, C08J 11/02, опубл. 1999.12.10]. Способ уменьшает объем и спектр выбросов от процесса переработки изношенных шин.

Недостатком способа является его недостаточная производительность и необходимость сжигании собственных пиролизных газов и легких смол для поддержания теплового режима реактора, что приводит к высокому расходу газа-окислителя и образованию излишнего количества оксидов и кислотных компонентов.

Известен способ переработки горючих отходов, таких как изношенные шины и подобные полимерные отходы, содержащие каучук, путем пиролиза полимерной составляющей шин с тем, чтобы получить углеводородные продукты пиролиза и топливный газ, для чего шихту из кусков шин или смеси кусков шин с твердым негорючим материалом загружают в реактор, максимальную температуру в котором поддерживают в пределах 800-1700°С, и в противотоке кислородсодержащего газифицирующего агента (воздуха) организуют последовательное прохождение загруженной шихты через зону предварительного нагрева, зону пиролиза, зону коксования, зону горения и зону охлаждения шихты, осуществляют выгрузку из реактора твердого остатка и выводят целевой продукт переработки в виде аэрозоля, содержащего пары и мелкие капли смол пиролиза и горючий газ с температурой ниже 300°С, регулируя при этом скорость подачи газифицирующего агента, и/или массовое отношение расхода газифицирующего агента, и/или расход шихты, и/или состав газифицирующего агента, и/или состав шихты [описание изобретения к патенту РФ №2062284 от 1994.06.23, МПК6 С10В 49/04, С10В 57/04, F23G 5/027, опубл. 1996.06.20]. Процесс ведут без подвода тепла с высокой энергетической эффективностью и высоким выходом продуктов.

Недостатком способа является необходимость использования в составе газифицирующего агента воды или диоксида углерода, а также необходимость введения в зону горения и/или охлаждения воды для регулирования теплового режима, что приводит к дополнительным затратам тепла и снижению теплотворной способности продукт-газа на выходе из реактора, а также образованию излишнего количества оксидов и кислотных компонентов в продукт-газе ввиду излишне высокой температуры в зоне горения.

Наиболее близким по совокупности существенных признаков заявляемому способу переработки горючих углерод- и углеводородсодержащих отходов является способ экологически чистой утилизации маслоотходов или шламов и иных отходов, содержащих тяжелые, в том числе жидкие, углеводороды [описание изобретения к патенту РФ №2116570 от 1996.09.25, МПК6 F23G 7/00, F23G 7/05, опубл. 1998.07.27]. Способ включает послойную высокотемпературную обработку отходов в реакторе, при подаче кислородсодержащего агента и водяного пара, сжигание части отходов, пиролиз горючих составляющих отходов с образованием парогазовых продуктов с преимущественным содержанием углеводородов и твердых остатков, их охлаждение, отвод и выведение из рабочей зоны реактора.

Недостатками способа является необходимость использования в составе газифицирующего агента воды, что приводит к дополнительным затратам тепла и снижению теплотворной способности продукт-газа на выходе из реактора, необходимость в загрузке дополнительного твердого кускового топлива в случае низкой калорийности перерабатываемого продукта, а также повышенный расход кислорода в составе газифицирующего агента и образование излишнего количества оксидов и кислотных компонентов при сжигании продукт-газа. Кроме этого, способ реализован на уровне лабораторного эксперимента, что не дает возможности оценить его потенциал и технологические особенности.

Задача, решаемая первым изобретением группы и достигаемый технический результат заключаются в создании очередного экологически чистого высокопроизводительного способа высокотемпературной переработки горючих углерод- и/или углеводородсодержащих продуктов, снижении его энергетической емкости, расширении технологических возможностей в части управления химическим составом и увеличении выхода готовых к дальнейшему использованию продуктов, а также улучшении их качества.

Для решения поставленной задачи и достижения заявленного технического результата в способе переработки горючих углерод- и/или углеводородсодержащих продуктов, включающем их послойную высокотемпературную обработку в реакторе в присутствии насадки при подаче кислородсодержащего агента и водяного пара, сжигание, коксование и пиролиз горючих составляющих, образование парогазовой смеси и твердых остатков, их охлаждение, отвод и выведение из рабочего пространства реактора, непосредственно за зоной коксования и пиролиза формируют зону синтеза и гидрирования углеводородов с температурой 250-400°С, в зоне горения поддерживают температуру 850-1300°С, в зоне коксования и пиролиза выделяют химически несвязанный углерод и в зоне горения обрабатывают его водяным паром с образованием свободного водорода, который подают в зону синтеза и гидрирования, последовательно осуществляя синтез и гидрирование углеводородов, при этом внутри рабочего пространства реактора формируют разрежение и процесс ведут в присутствии катализатора, который входит в состав насадки.

Кроме этого:

- в зону синтеза и гидрирования углеводородов вводят дополнительный водород;

- насадка дополнительно содержит химически несвязанный углерод;

- насадка выполнена из золы уноса, содержащей химически несвязанный углерод.

Каждый цитируемый выше из уровня техники способ может быть реализован на соответствующем устройстве.

Наиболее близким по совокупности существенных признаков заявляемому устройству - реактору для переработки горючих углерод- и углеводородосодержащих отходов - является представленное в виде схемы устройство периодического или непрерывного действия для экологически чистой утилизации маслоотходов или шламов и иных отходов [описание изобретения к патенту РФ №2116570], которое включает оборудованную соответствующими контрольно-измерительными приборами герметичную рабочую камеру с расположенными в технологической последовательности рабочими зонами: выгрузки твердых остатков переработки с выгрузным окном, подачи воздуха и водяного пара, нагрева воздуха и водяного пара, горения, коксования, пиролиза, нагрева отходов, отбора парогазовых продуктов с, по меньшей мере, одним каналом отбора и загрузки отходов со шлюзом, причем каждая зона снабжена температурными датчиками, а каналы подачи воздуха и отбора парогазовых продуктов снабжены датчиками давления.

Данному устройству присущи те же недостатки, что и реализованному по нему способу.

Задача, решаемая вторым изобретением группы и достигаемый технический результат заключаются в создании экономичного реактора, который реализует экологически чистый высокопроизводительный способ переработки горючих углерод- и/или углеводородсодержащих продуктов по первому изобретению, обеспечивающий снижение энергетической емкости процесса, расширение технологических возможностей в процессе высокотемпературной обработки отходов, увеличение выхода готовых к дальнейшему использованию продуктов и улучшение их качества.

Для решения поставленной задачи и достижения заявленного технического результата реактор для переработки горючих углерод- и/или углеводородсодержащих продуктов, включает герметичную рабочую камеру с расположенными в технологической последовательности рабочими зонами: выгрузки твердых остатков переработки с выгрузным окном, подачи воздуха и водяного пара через соответствующие каналы, нагрева воздуха и водяного пара, горения, коксования и пиролиза, нагрева продуктов переработки, отбора парогазовой смеси с, по меньшей мере, одним каналом отбора, и зоной загрузки продуктов переработки со шлюзом, причем каждая зона снабжена, по меньшей мере, одним температурным датчиком, а зоны нагрева воздуха и водяного пара и отбора парогазовой смеси снабжены датчиками давления, при этом рабочая камера содержит оснащенную дополнительными температурными датчиками зону синтеза и гидрирования углеводородов, расположенную непосредственно за зоной коксования и пиролиза.

Кроме этого:

- зона синтеза и гидрирования углеводородов выполнена с возможностью поддерживания рабочей температуры 250-400°С;

- зона синтеза и гидрирования углеводородов снабжена, по меньшей мере, двумя, расположенными на разных уровнях каналами дополнительной подачи водорода.

Изобретения поясняются чертежами, где:

- на фиг.1 показана конструкция реактора для переработки горючих углерод- и/или углеводородсодержащих отходов - общий вид;

- на фиг.2 изображена схема распределения характерных рабочих зон в реакторе.

Способ переработки горючих углерод- и/или углеводородсодержащих продуктов реализуется на соответствующем оборудовании - в реакторе, который включает герметичную теплоизолированную рабочую камеру 1 с расположенными в технологической последовательности рабочими зонами: выгрузки твердых остатков переработки 2 с выгрузным окном 3; подачи воздуха и водяного пара 4 через каналы 5; нагрева воздуха и водяного пара 6; горения 7; коксования и пиролиза 8; нагрева продуктов переработки 9; отбора парогазовой смеси 10 с, по меньшей мере, одним каналом 11 ее отбора; и зоной 12 загрузки продуктов переработки со шлюзом (условно не показан), причем каждая зона снабжена, по меньшей мере, одним температурным датчиком 13 соответствующей конструкции, а зоны нагрева воздуха и водяного пара 6 и отбора парогазовой смеси 10 (пересекается с зоной 12 загрузки продуктов переработки) снабжены датчиками давления 14, при этом рабочая камера 1 содержит оснащенную температурными датчиками 15 зону 16 синтеза и гидрирования углеводородов, расположенную непосредственно за зоной 8 коксования и пиролиза. Особенностями реактора является то, что зона 16 синтеза и гидрирования углеводородов выполнена с возможностью поддерживания рабочей температуры 250-400°С, причем эта зона 16 снабжена, по меньшей мере, двумя, расположенными на разных уровнях каналами 17 и 18 дополнительной подачи водорода.

Разделение реактора на зоны в определенной степени условно, поскольку эти зоны могут смещаться вдоль реактора в определенных пределах, их границы не всегда четкие и, зачастую, на этих границах происходят процессы, характерные для каждой из них. Тем не менее, при проектировании технологических процессов и проведении расчетов удобнее рассматривать эти зоны как самостоятельные. Таким образом, описываемый реактор реализует способ высокотемпературной переработки углерод- и/или углеводородсодержащих продуктов в присутствии насадки с подачей кислородсодержащего агента и водяного пара, сжиганием, коксованием и пиролизом их горючих составляющих, образованием парогазовой смеси и твердых остатков, их охлаждением, отводом и выведением из рабочего пространства реактора через каналы 11, при этом непосредственно за зоной 8 коксования и пиролиза сформирована зона 16 синтеза и гидрирования углеводородов с температурой 250-400°С, в зоне 7 горения поддерживается температура 900-1300°С, в зоне 8 коксования и пиролиза выделяют химически несвязанный углерод, который в зоне горения 7 обрабатывают водяным паром с образованием свободного водорода, подаваемого в зону синтеза и гидрирования углеводородов 16, последовательно осуществляя их синтез (условный элемент 19 зоны 16) и гидрирование (условный элемент 20 зоны 16), при этом в рабочем пространстве реактора формируют разрежение и процесс ведут в присутствии катализатора, который входит в состав насадки. Особенностями способа является то, что в зону 16 синтеза и гидрирования углеводородов вводят дополнительный водород, при этом насадка дополнительно содержит химически несвязанный углерод, например, она выполнена из золы уноса, содержащей его некоторое, необходимое для использования в технологическом процессе количество.

Проанализируем существенность признаков изобретений. При реализации в соответствующем реакторе способа переработки горючих углерод- и/или углеводородсодержащих продуктов в разделенном на зоны реакторе была сформирована дополнительная зона 16 синтеза и гидрирования углеводородов с температурой 250-400°С. Сами по себе процессы синтеза и гидрирования углеводородов изучены достаточно хорошо и многократно реализованы на практике, в частности, процесс синтеза более известный под наименованием «синтез Фишера-Тропша» [Печуро Н.С., Капкин В.Д. и Песин О.Ю. Химия и технология синтетического жидкого топлива и газа. - М.: Химия, 1986, с.265-307].

Макрокинетика процессов синтеза и гидрирования углеводородов является очень сложной, поскольку на протекание реакций синтеза и гидрирования влияет большое количество факторов, таких, например, как давление, температура, состав исходного газа (в продуктах пиролиза), время контакта, условия транспортирования веществ, количество передаваемого тепла и другие. Данные процессы присутствует практически во всех способах переработки отходов, однако в этих случаях они хаотичны и не поддаются управлению, поскольку зона синтеза и гидрирования в объемах известных реакторов явно не выделяется и не рассматривается в качестве самостоятельной зоны. В заявленном способе переработки горючих углерод- и/или углеводородсодержащих продуктов сформирована самостоятельная зона 16 синтеза и гидрирования углеводородов. Это позволило поднять глубину процесса переработки сырья.

Возможность поддерживать в зоне 7 горения температуру ниже 1300°С позволяет исключить образование окислов азота, при этом нижняя граница температуры 850°С обеспечивает гарантированное горение продуктов переработки. Более низкая температура горения делает неустойчивым или, даже, невозможным процесс образования водорода в зоне 7 горения в результате реакции взаимодействия углерода с водой.

При протекании процессов синтеза и гидрирования необходимо присутствие катализатора в объеме реактора. Наиболее благоприятным для протекания разнообразных химических процессов случаем использования катализатора будет такой, когда он входит в состав насадки. Среди существующих продуктов переработки многих производств имеются такие, где органично сочетаются нейтральная для заявляемого процесса основа и наличие включений необходимых металлов на ее поверхности. Такими активными насадками могут служить отходы обогащения железорудных месторождений, твердые отходы тепловых станций, работающих на твердом топливе и другие им подобные продукты, в составе которых имеются металлические включения, способные выступать в роли катализаторов.

Зона 8 коксования и пиролиза заведомо не разделяется на условные зоны - зону коксования и зону пиролиза - по той причине, что в зависимости от перерабатываемого сырья их величина и, соответственно, соотношение могут варьировать в очень широких пределах, например для случая переработки твердых бытовых отходов зона пиролиза будет доминировать над зоной коксования, а для случая переработки автомобильных покрышек - наоборот.

Выделение в зоне 8 коксования и пиролиза химически несвязанного углерода и обработка его водяным паром в зоне горения позволило получить свободный водород, который последовательно подают в зону 16 синтеза (19) и гидрирования (20) парогазовых продуктов, так же последовательно осуществляя синтез и гидрирование углеводородов. В зависимости от перерабатываемого сырья, полученного таким образом количества водорода может быть недостаточно для протекания реакций синтеза и гидрирования, то в этом случае предусмотрена возможность введения в соответствующую зону реактора дополнительного водорода. Ввод водорода осуществляется, по меньшей мере, в двух, разнесенных по высоте реактора уровнях. Это связано с тем, что водород может понадобиться как на стадии синтеза углеводородов, так и на стадии их гидрирования.

Обезуглероженный остаток продуктов переработки и обезуглероженная насадка выводятся из реактора и могут быть использованы по специальному назначению, например для изготовления строительных смесей и т.д.

Промышленный реактор, рассчитанный на непрерывную переработку разнообразных горючих углерод- и углеводородсодержащих продуктов имеет существенное преимущество перед его, условно называемыми «лабораторными», образцами маленьких размеров, в нем, благодаря большой площади поверхности зон, становится невозможной ситуация закупорки внутреннего сечения реактора разнообразными пластичными (смолистыми) веществами продуктов пиролиза - они попросту не успевают слиться в единый объем. Таким образом становится возможной ситуация беспрепятственного прохождения реакторных газов по всей высоте реактора.

Настоящим образом организованный процесс переработки сырья позволил сформировать разрежение порядка 500-5000 Па (50-500 мм вод. ст.) внутри реактора, что исключает попадание продуктов разложения и синтеза в окружающую среду. Таким образом, заявляемый процесс можно считать экологически безопасным.

Способ переработки горючих углерод- и углеводородсодержащих продуктов можно реализовать на реакторе, рабочая камера которого в отличие от типовых реакторов (см. уровень техники) содержит зону 16 синтеза и гидрирования углеводородов, расположенную непосредственно за зоной 8 пиролиза и коксования. Местоположение указанной зоны 16 отмечено на реакторе соответствующими выводами температурных датчиков 15. В зоне 8 происходит полное или частичное коксование продуктов переработки

Для получения водорода по реакции СО+Н2O=СO22 и/или С+2Н2O=СO2+2Н2 в зону 4 через каналы 5 подают воздух и водяной пар. Целесообразно разделить подачу воздуха и водяного пара в реактор, например, осуществляя подачу воздуха через специальные каналы 21, а пара - через каналы 22. В этом случае не происходит конденсации паровоздушной смеси в трубопроводе на подходе к реактору, соответственно, не требуются затраты на ее повторное испарение. Таким образом, воздух и водяной пар, продолжая нагреваться о твердые остатки переработки и охлаждая их, поднимаются вверх в зону 7 горения для взаимодействия с углеродом и его оксидом. Выделяющийся в результате реакции водород поднимается далее вверх в зону 16 и участвует в реакциях синтеза и гидрирования углеводородов. Если имеющегося водорода окажется недостаточно, то его необходимо ввести извне через соответствующие каналы 17, 18 в огнеупорных стенках 23 реактора. Если водород оказался избыточным, то он выводится из внутреннего объема реактора вместе с другими продуктами переработки. Особенностью такого режима является то, что на выходе из реактора отсутствует свободный (несвязанный) кислород, который в соединении с водородом мог бы образовать взрывоопасную смесь.

Возможна ситуация, когда для получения дополнительного водорода можно использовать насадку, заранее содержащую химически несвязанный углерод (и металлы - катализаторы), который может быть использован в зоне 7 горения для протекания реакции взаимодействия с водой. Такую насадку возможно изготовить из золы уноса, например, ТЭС, производя ее обезуглероживание в реакторе для целей дальнейшей самостоятельной переработки.

В итоге, в зоне 10 выхода парогазовая смесь содержит такие продукты пиролиза и синтеза, как изопрен, дипентен, углеводороды C4-C8, составляющие бензиновую фракцию, углеводороды C9-C12, составляющие керосиновую фракцию и легкую газойлевую фракцию, а также уносимые газом в виде капель высококипящие соединения и другие вещества, состав которых зависит от исходного сырья и используемых катализаторов. Перечисленные продукты выводятся из реактора через соответствующие каналы отбора 11 для непосредственного использования или последующей переработки.

Способ переработки горючих углерод- и углеводородсодержащих продуктов вначале рассмотрим для случая их загрузки в реактор непрерывного действия и их дальнейшего движения сверху - вниз с полным разложением высокомолекулярных органических соединений и конверсией углеродсодержащих неорганических до оксида углерода и водорода при неизменном состоянии инертных компонентов и дальнейшего последовательного синтеза из полученных оксида углерода и водорода углеводородов и их дальнейшего гидрирования с приобретением заданных химических свойств. Такое изложение информации об изобретениях будет наиболее полно иллюстрировать работу реактора.

Продукты переработки с насадкой, содержащей катализатор (железо, оксиды железа и др.), через шлюз поступают в зону 12 загрузки реактора с температурой 20-50°С и последовательно проходят зону 9 нагрева продуктов переработки (куда входит и зона 10 отбора парогазовой смеси) с температурой 150-250°С, зону 16 синтеза и гидрирования углеводородов с температурой 250-400°С, зону 8 пиролиза и коксования с температурой 350-850°С, зону 7 горения с температурой 850-1300°С, зону 6 нагрева участвующих в процессе переработки воздуха и пара до температуры 800-1000°С, зону 4 подачи воздуха и пара с температурой 20-140°С, и зону 2 выгрузки твердых остатков переработки с температурой 20-60°С.

В зоне 8 пиролиза и коксования продукты переработки разлагаются на составляющие неструктурированные углеводородные фрагменты, которые поднимаясь вверх и отдавая тепло вновь поступающим продуктам переработки попадают в зону 16 синтеза и гидрирования углеводородов, образуя в основном насыщенные (предельные) углеводороды. При необходимости в зону 16 синтеза и гидрирования извне подают дополнительный водород. После того, как прошли все, запланированные процессы, получаемая парогазовая смесь, содержащая капли высококипящей жидкости, охлаждается, отдавая тепло загружаемым твердым отходам, и с температурой 190-240°С выводится за пределы реактора для дальнейшей переработки.

Конкретные способы переработки горючих углерод- и углеводородсодержащих продуктов, в том числе разнообразных отходов в зависимости от их классификации, рассмотрим на следующих примерах.

Пример 1

Переработке подлежат изношенные автомобильные шины.

В реактор непрерывного действия подают смесь, состоящую из 1600 кг/час порезанных кусков шин из изопренового каучука с линейными размерами 20-100 мм и из 1600 кг/час насадки с линейными размерами 25-100 мм, содержащей катализатор в виде железа и оксидов железа.

Количественный состав компонентов, входящих в шины из изопренового каучука, следующий, кг/час:

каучук изопреновый - 776;

металлический корд - (нержавеющая сталь типа Х18Н10Т) - 310;

углерод химически несвязанный - 310;

кислород адсорбированный - 30;

водород адсорбированный - 10;

мягчители (растительные масла, воск, высшие кислоты) - 128;

сера - 30;

оксиды металлов - 6.

Количественный состав компонентов, входящих в насадку, следующий, кг/час:

шамот - 1550;

катализатор (железо, магнетит, гематит) - 50.

В качестве газифицирующего агента в соответствующую зону реактора подают воздух в количестве 2300 нм3/час или 2967 кг/час, в том числе, азота - 2255 кг/час и кислорода - 712 кг/час.

Температура в зоне горения не превышает 1100°С.

Для получения водорода по реакции С+2Н2O→СO2+2Н2↑ и/или СО+Н2O→СO22↑ вместе с воздухом подают водяной пар в количестве 180 кг/час.

Дополнительно в зону 16 синтеза и гидрирования углеводородов подают водород в количестве около 60 кг/час.

Выходящие из реактора парогазовые продукты с температурой 240°С и содержащиеся в них углеводороды разделяются на жидкую и газовую составляющие, что осуществляется последовательно в циклоне и конденсаторах, охлаждаемых водой с начальной температурой около 18°С.

После системы конденсации газовая составляющая, количество которой составит 3598 кг/час, будет иметь следующий состав, % мас.:

N2 - 62,67; CO2 - 25,89; Н2O - 5,92; СО - 1,68;
H2S+SO2 - 1,67; Н2 - 0,06; СН4 - 2,11

После системы конденсации жидкостная составляющая была подвергнута анализу на хроматографе «Кристаллюкс-4000М» с двумя пламенноионизационными детекторами и кварцевой капиллярной колонкой длиной 30 м и внутренним диаметром 0,53 мм. Объем пробы составил 1 мм3 при следующих условиях:

- температура детектора - 300°С;

- температура испарителя - 300°С;

- температура колонок: начальная - 60°С, конечная - 150°С;

- давление капиллярной колонки - 1 атм;

- скорость развертки - 10°С/мин;

- расход газов-носителей (азот): 30 см3/мин, 60 см3/мин и 29 см3/мин;

- расход воздуха - 500 см3/мин;

- расход водорода - 60 см3/мин.

Результаты хроматографического анализа сведены в таблицу. Таким образом, жидкостная составляющая, количество которой составило 870 кг/час, имеет следующий состав, % мас.:

- фракция C510 - 30

- фракция С11-C16 - 40

- фракция С17 и выше - 30

Выходной поток твердых остатков из зоны выгрузки реактора составил по количеству 1936 кг/час и его структура включает:

насадку - 1600; металлический корд - 320;
утлеродсодержащие (сажа) - 10; оксиды металлов - 6.

Пример 2 (сравнительный)

Как и в предыдущем примере, в реактор непрерывного действия подают смесь, состоящую из 1600 кг/час порезанных кусков шин из изопренового каучука с линейными размерами 20-100 мм и 1600 кг/час насадки. Отличие заключается в качественном составе насадки. Ее единственным компонентом является шамот, имеющий линейные размеры 25-100 мм, при этом катализатор в составе насадки отсутствует.

В качестве газифицирующего агента в реактор также подают воздух в количестве 2300 нм3/час.

Температура в зоне горения не выше 1100°С.

Выходящие из реактора парогазовые продукты с температурой 200°С и содержащиеся в ней углеводороды разделяются на жидкую и газовую составляющие.

После системы конденсации газовая составляющая, количество которой 3889 кг/час имеет следующий состав, % мас.:

N2 - 58,00; СO2 - 9,30; Н2O - 2,60; СО - 27,50;
H2S+SO2 - 1,50; Н2 - 1,10

После системы конденсации жидкостная составляющая, количество которой 320 кг/час, имеет следующий состав по хроматографическому анализу, % мас.:

- фракция C59 - 40

- фракция С10-C16 - 30

- фракция С17 и выше - 30

Выходной поток твердых остатков из зоны выгрузки реактора по количеству аналогичен примеру 1.

Пример 3

Исходным сырьем для переработки в реакторе является бытовой мусор с плотностью 200-300 кг/м3, включающий следующие компоненты, % мас.:

бумага - 47,0; пищевые отходы - 29,0; текстиль - 5,0;
стекло и камни - 4,9; металл - 4,5; пластмасса - 2,0;
кожа и резина - 1,8; древесина - 1,0; кости - 0,5;
отсев менее 15 мм - 4,5; прочее - 0,4.
Состав рабочей массы, % мас.:
вода - 39,65; зольность - 18,43; углерод - 21,36;
кислород - 17,52; сера - 0,13; водород - 2,80;
азот - 0,13

После прессования рабочей массы получены брикеты с размерами 150×150×150 мм, следующего состава, % мас.:

вода - 20,00; зольность - 24,40; углерод - 28,32;
кислород - 23,23; сера - 0,17; водород - 3,71;
азот - 0,17

В реактор непрерывного действия загружают 1600 кг/час брикетов и 1600 кг/час насадки с линейными размерами 25-100 мм, содержащей катализатор в виде железа и оксидов железа.

В зону подачи воздуха подают газифицирующий агент, в качестве которого используется воздух в количестве 2064 кг/час (1600 нм3/час) и водяной пар в количестве 200 кг/час, а в зону синтеза и гидрирования углеводородов - водород в количестве 30 кг/час.

Процесс горения ведут при температуре около 1000°С.

Выходящие из реактора парогазовые продукты с температурой 190°С и содержащиеся в них углеводороды разделяются на жидкую и газовую составляющие, что осуществляется последовательно в циклоне и конденсаторах, охлаждаемых водой с начальной температурой около 18°С.

После системы конденсации газовая составляющая, количество которой 2694,5 кг/час, имеет следующий состав, % мас.:

N2 - 60,50; СO2 - 37,85; Н2O - 1,50; СО - 0,05;
H2S - 0,05; Н2 - 0,05

После системы конденсации получена органическая жидкостная составляющая в количестве 320 кг/час, содержащая смесь углеводородов С610 (в том числе октан, бензол, изомеры ксилола).

Выходной поток твердых остатков из зоны выгрузки реактора составил по количеству 2020 кг/час и его структура включает, кг/час:

насадку - 1600; минеральное сырье - 320;
металл - 90; серосодержащие соединения - 10.

Пример 4

В качестве исходного сырья используется бурый уголь Подмосковного бассейна следующего состава, % мас.:

вода - 32,00; зольность - 21,00; углерод - 28,70;
кислород - 9,00; сера общая - 2,70; водород - 2,20;
азот - 0,60

В реактор непрерывного действия загружают 2000 кг/час брикетов бурого угля с линейными размерами 150-100 мм и 2000 кг/час насадки с линейными размерами 75-100 мм, содержащей катализатор в виде железа и оксидов железа.

В зону подачи воздуха реактора подают газифицирующий агент (воздух) в количестве 3870 кг/час или 3000 нм3/час и водяной пар в количестве 300 кг/час, а в зону синтеза и гидрирования углеводородов - водород в количестве 30 кг/час. Процесс горения ведут при температуре не превышающей 1100°С.

Выходящие из реактора парогазовые продукты с температурой 190°С и содержащиеся в них углеводороды разделяются на жидкую и газовую составляющие, что осуществляется последовательно в циклоне и конденсаторах, охлаждаемых водой с начальной температурой около 18°С.

После системы конденсации газовая составляющая, количество которой 4602 кг/час, имеет следующий состав, % мас.:

N2 - 64,8; СO2 - 31,88; Н2O - 2,17; СО - 0,2;
H2S+SO2 - 0,75; Н2 - 0,2

После системы конденсации органическая жидкостная составляющая получена в количестве 293 кг/час, содержащая смесь углеводородов С6-C18 (в том числе октан, бензол, изомеры ксилола, декан, н-гексадекан).

Выходной поток твердых остатков из зоны выгрузки реактора составил по количеству 2665 кг/час и его структура включает, кг/час:

- насадку - 2000

- порошковое минеральное сырье - 420

- серосодержащие соединения - 25

Следует отметить, что упоминаемая в примерах 1, 3 и 4 насадка может быть изготовлена из золы уноса, например Черепетской ГРЭС Тульской области или других электростанций. В дополнение к нейтральной основе зола уноса содержит достаточное количество оксидов железа. В ней также содержится оксид алюминия (Аl2O3), являющийся промотором катализаторов на основе оксидов железа.

Аналогично приведенным примерам перерабатываются и другие горючие углерод- и/или углеводородсодержащие продукты.

В результате решения поставленных задач были созданы экологически чистый высокопроизводительный способ высокотемпературной переработки горючих углерод- и/или углеводородсодержащих продуктов и реактор для его осуществления, снизилась энергетическая емкость процесса, расширились технологические возможности в части управления химическим составом и увеличении выхода готовых к дальнейшему использованию продуктов, а также улучшилось их качество.

РЕЗУЛЬТАТЫ ХРОМАТОГРАФИЧЕСКОГО АНАЛИЗА
No п/п Время, мин Детектор Компонент Высота, мм Площадь, мВ×мин Высота, % Площадь, %
1 3,565 ПИД-2 изопрен 70,8681 1,3585 10,1593 2,2621
2 5,726 ПИД-2 54,5009 1,2334 7,8130 2,0538
3 7,156 ПИД-2 65,9565 1,9622 9,4552 3,2673
4 14,316 ПИД-2 58,6702 4,4906 8,4107 7,4774
5 18,369 ПИД-2 16,9725 2,1847 2,4331 3,6378
6 28,222 ПИД-2 дипентен 430,5990 48,8263 61,7287 81,3017
Сумма: 697,5672 60,0557 100,00 100,00

Источник поступления информации: Роспатент

Показаны записи 1-4 из 4.
10.10.2013
№216.012.72eb

Способ переработки горючих углерод- и/или углеводородсодержащих продуктов, реактор для его осуществления (варианты) и установка для переработки горючих углерод- и/или углеводородсодержащих продуктов

Изобретения относятся к промышленной переработке горючих углерод- и углеводородсодержащих продуктов. Способ переработки горючих углерод- и/или углеводородсодержащих продуктов реализуют в реакторах, оснащенных температурными датчиками (18, 20). Шихту разогревают (13), подвергают пиролизу и...
Тип: Изобретение
Номер охранного документа: 0002495076
Дата охранного документа: 10.10.2013
20.03.2015
№216.013.338a

Способ переработки горючих углерод- и/или углеводородсодержащих продуктов и реактор для его осуществления

Изобретения могут быть использованы в области промышленной переработки горючих углерод- и углеводородсодержащих продуктов. Способ переработки горючих углерод- и/или углеводородсодержащих продуктов включает последовательную послойную переработку шихты в реакторе в присутствии катализатора. В...
Тип: Изобретение
Номер охранного документа: 0002544669
Дата охранного документа: 20.03.2015
01.09.2018
№218.016.8271

Способ получения сорбента для очистки воды

Изобретение относится к области промышленной экологии, в частности к способу получения сорбционного материала для очистки сточных вод и водоподготовки. Способ получения сорбента включает следующие стадии: брусит термически обрабатывают при температуре 250-300°C, затем размалывают до размера...
Тип: Изобретение
Номер охранного документа: 0002665516
Дата охранного документа: 30.08.2018
11.03.2019
№219.016.d74b

Способ очистки газовых смесей от диоксида углерода (варианты) и устройство для очистки газовых смесей от диоксида углерода (варианты)

Изобретения относятся к области очистки газовых смесей от диоксида углерода. Абсорбцию ведут на контактных устройствах с сопротивлением по газу не более 50 кПа, при этом раствор этаноламина в процессе абсорбции, по меньшей мере, один раз подвергают промежуточному охлаждению до 30-35°С. Тонкую...
Тип: Изобретение
Номер охранного документа: 0002252063
Дата охранного документа: 20.05.2005
Показаны записи 1-3 из 3.
10.10.2013
№216.012.72eb

Способ переработки горючих углерод- и/или углеводородсодержащих продуктов, реактор для его осуществления (варианты) и установка для переработки горючих углерод- и/или углеводородсодержащих продуктов

Изобретения относятся к промышленной переработке горючих углерод- и углеводородсодержащих продуктов. Способ переработки горючих углерод- и/или углеводородсодержащих продуктов реализуют в реакторах, оснащенных температурными датчиками (18, 20). Шихту разогревают (13), подвергают пиролизу и...
Тип: Изобретение
Номер охранного документа: 0002495076
Дата охранного документа: 10.10.2013
20.03.2015
№216.013.338a

Способ переработки горючих углерод- и/или углеводородсодержащих продуктов и реактор для его осуществления

Изобретения могут быть использованы в области промышленной переработки горючих углерод- и углеводородсодержащих продуктов. Способ переработки горючих углерод- и/или углеводородсодержащих продуктов включает последовательную послойную переработку шихты в реакторе в присутствии катализатора. В...
Тип: Изобретение
Номер охранного документа: 0002544669
Дата охранного документа: 20.03.2015
01.09.2018
№218.016.8271

Способ получения сорбента для очистки воды

Изобретение относится к области промышленной экологии, в частности к способу получения сорбционного материала для очистки сточных вод и водоподготовки. Способ получения сорбента включает следующие стадии: брусит термически обрабатывают при температуре 250-300°C, затем размалывают до размера...
Тип: Изобретение
Номер охранного документа: 0002665516
Дата охранного документа: 30.08.2018
+ добавить свой РИД