×
19.04.2019
219.017.2e35

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ УНОСА ДИСПЕРСНОЙ ФАЗЫ В ГАЗОВОМ ПОТОКЕ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области контроля качества подготовки природного и попутного газов к транспорту в нефтегазодобывающей промышленности и может быть использовано на топливно-энергетических, химических, нефтехимических и нефтегазоперерабатывающих предприятиях. Техническим результатом изобретения является получение более точных значений величины уноса дисперсной фазы в газовом потоке при малом времени отбора пробы. Способ измерения уноса дисперсной фазы в газовом потоке включает пропускание при давлении, температуре и скорости газового потока через фильтр-патрон определенного объема пробы газа с последующим определением привеса фильтр-патрона за счет осаждения дисперсной фазы. Объем пробы газа отбирают из газового потока через пробоотборный зонд. При наборе давления в системе установки выделившуюся влагу улавливают в дополнительном фильтре-патроне. После набора давления дополнительный фильтр-патрон перекрывают, и определенный объем пробы газа направляют в фильтр-патрон. Из фильтр-патрона направляют во второй дополнительный фильтр-патрон при постоянном расходе газа, который обеспечивает регулятор. Из привеса фильтр-патрона вычитают привес второго дополнительного фильтр-патрона. Установка для осуществления способа содержит фильтр-патрон, регулятор постоянного расхода газа. Установка дополнительно содержит пробоотборный зонд, дополнительный фильтр-патрон и второй дополнительный фильтр-патрон для коррекции результатов измерений. Регулятор постоянного расхода газа выполнен в виде блока с набором откалиброванных критических сопел. 2 н.п. ф-лы, 1 ил., 2 табл.

Изобретение относится к области контроля качества подготовки природного и попутного газов к транспорту в нефтегазодобывающей промышленности и может быть использовано на топливно-энергетических, химических, нефтехимических и нефтеперерабатывающих предприятиях. Контроль качества газа осуществляют путем отбора проб и определения в ней уноса дисперсной фазы.

Известно в практике газового анализа техническое решение, предусматривающее пропускание исследуемой смеси через две камеры, снабженные чувствительными элементами, см. SU Авторское свидетельство № 320771, C01N 30/00, 1971.

Однако это техническое решение не позволяет фиксировать капельную влагу.

Известен способ индикации наличия в газовой смеси капельной влаги, заключающийся во введении пробы в камеру и замере в этой камере влагосодержания смеси. Устройство для осуществления этого способа содержит пробоотборник, подсоединенную к нему камеру с входным и выходным отверстиями, в которой установлен датчик влагосодержания, см. US Патент № 3552187, кл. 73-23, публ. 1971.

Известный способ и устройство для его осуществления указывают только на обнаружение (индикацию), но не фиксирует наличие капельно-взвешенной влаги в отобранной пробе газа из его потока, что в свою очередь, снижает достоверность определения величины влагосодержания.

Известен способ индикации наличия в газовой смеси капельной влаги, заключающийся во введении пробы в камеру и замере в этой камере влагосодержания смеси, одновременно вводят пробу во вторую камеру, давление в камерах устанавливают разное по величине, но ниже давления в месте отбора, измеряют величину влагосодержания во второй камере, по отклонению которой от величины влагосодержания в первой камере судят о наличии в смеси капельной влаги. Температуру в камерах поддерживают не ниже температуры в месте отбора.

Установка для осуществления указанного способа содержит пробоотборник, подсоединенную к нему камеру с входным и выходным отверстиями, в которой установлен датчик влагосодержания, устройство снабжено подсоединенной к пробоотборнику второй камерой, сечение входного отверстия которой равно сечению входного сечения первой камеры, а сечение выходного отверстия не равно сечению выходного отверстия первой камеры, см. SU Авторское свидетельство № 879425, МПК G01N 25/56, 1981.

Известный способ и установка для его осуществления могут только обнаружить присутствие капельной влаги в пробе газа и не позволяют количественно измерить унос как капельно-взвешенной влаги, так и дисперсной фазы в потоке газа.

Известен способ измерения уноса дисперсной фазы в газовом потоке, включающий пропускание через пробоотборный зонд в систему установки определенного объема пробы газа при температуре газового потока, далее с помощью вентиля на сепараторе по счетчику газа устанавливают необходимый расход отбираемого газа, контролируя его в процессе измерения, при необходимости приоткрывают вентиль капельницы для осуществления подачи ингибитора гидратообразования, и по стеклу мерной емкости определяют не ранее чем через 0,5 часа количество накапливаемой жидкости, а содержание твердых частиц в фильтр-патроне сепаратора определяют после просушки супертонкого волокна фильтра по его привесу.

Установка для осуществления указанного способа содержит пробоотборный зонд, представляющий собой наконечник, с внутренним каналом квадратного сечения с выходом под углом 90°C, сепаратор, внутри которого последовательно по ходу газа установлены фильтр-патрон, выполненный из супертонкого стекловолокна, и сетчатый отбойник, выполненный из рукавной вязаной сетки, причем сепаратор соединен с карманом для установки термометра, а также с мерной емкостью, выполненной в виде сосуда с отводом и смотровым стеклом для визуального измерения уловленного объема жидкости, при этом мерная емкость через отвод соединена с регулятором постоянного расхода газа - счетчиком газовым ротационным, который соединен с сепаратором через регулирующий вентиль, см. Г.А.Лончаков, А.Н.Кульков Г.К.Зиберт «Технологические процессы подготовки природного газа и методы расчета оборудования», ООО «Недра. Бизнесцентр», г.Москва. Отпечатано в Производственно-издательском комбинате ВИНИТИ, с.210, 2000 г.

Недостатками указанного способа с устройством для осуществления этого способа являются неточное измерение величины уноса дисперсной фазы в потоке газа, длительность отбора проб и сложное аппаратурное оформление.

Наиболее близким по технической сущности является способ измерения уноса дисперсной фазы в газовом потоке, включающий пропускание через фильтр-патрон определенного объема пробы газа при расчетном давлении в установке с последующим определением привеса фильтр-патрона за счет осаждения дисперсной фазы, причем пропускание пробы газа через фильтр-патрон ведут при давлении, температуре и скорости газового потока и в течение определенного промежутка времени при постоянном расходе газа через установку, регулируемом при помощи вентиля, контролируемом по показаниям манометра, установленного перед дросселем.

Установка для осуществления указанного способа, включающая фильтр-патрон, регулятор постоянного расхода газа при давлении, температуре и скорости в установке, равных давлению, температуре и скорости газового потока, в качестве регулятора содержит вентиль и дроссель с манометром, см. Г.А.Лончаков, А.Н.Кульков Г.К.Зиберт. «Технологические процессы подготовки природного газа и методы расчета оборудования», ООО «Недра. Бизнесцентр» г.Москва. Отпечатано в Производственно-издательском комбинате ВИНИТИ, с.204, 2000 г.

Недостатками указанного способа измерения уноса дисперсной фазы в газовом потоке и устройства для осуществления этого способа является высокая погрешность измерения величины уноса дисперсной фазы в потоке газа, связанная с выделением влаги при наборе давления в установке, которая улавливается фильтр-патроном и снижает достоверность полученных результатов измерения. Кроме того, при пропускании пробы газа через дроссель происходит резкое снижение температуры газа, который охлаждает стенки установки и снижает температуру внутри нее, при этом температура пробы газа уже не равна температуре газового потока, что приводит к искажению полученных результатов. Дополнительно, конструкция установки позволяет отбирать пробы газа только около стенки трубопровода, по которому движется газовый поток.

Задачей изобретения является получение более точных значений величины уноса дисперсной фазы в газовом потоке при малом времени отбора пробы.

Техническая задача решается способом измерения уноса дисперсной фазы в газовом потоке, включающим пропускание при давлении, температуре и скорости газового потока через фильтр-патрон определенного объема пробы газа с последующим определением привеса фильтр-патрона за счет осаждения дисперсной фазы, в котором объем пробы газа отбирают из газового потока через пробоотборный зонд, и при наборе давления в системе установки, равного давлению газового потока, выделившуюся влагу улавливают в дополнительном фильтр-патроне, а после набора давления дополнительный фильтр-патрон перекрывают, и определенный объем пробы газа направляют в фильтр-патрон, а из фильтр-патрона направляют во второй дополнительный фильтр-патрон в течение определенного промежутка времени при постоянном расходе газа, который обеспечивает регулятор, выполненный в виде блока с набором откалиброванных критических сопел, после чего из привеса фильтр-патрона вычитают привес второго дополнительного фильтр-патрона.

Установка для осуществления способа содержит фильтр-патрон, регулятор постоянного расхода газа при давлении, температуре и скорости в системе установки, равных давлению, температуре и скорости газового потока, и дополнительно содержит пробоотборный зонд, дополнительный фильтр-патрон для улавливания выделившейся влаги при наборе в системе устройства давления, равного давлению газового потока, после фильтр-патрона имеет второй дополнительный фильтр-патрон для коррекции результатов измерения, а регулятор постоянного расхода газа выполнен в виде блока с набором откалиброванных критических сопел.

Решение технической задачи позволяет получить более точные значения величины уноса дисперсной фазы в газовом потоке при малом времени отбора пробы.

Установка для измерения уноса дисперсной фазы в газовом потоке содержит пробоотборный зонд 1, фильтр-патрон 2 и дополнительный фильтр-патрон 3 для улавливания выделившейся влаги при наборе в системе установки давления, равного давлению газового потока, второй дополнительный фильтр-патрон 4 для коррекции результатов измерения, регулятор 5 постоянного расхода газа при давлении, температуре и скорости в системе установки, равных давлению, температуре и скорости газового потока, который выполнен в виде блока с набором откалиброванных критических сопел, при этом устройства в составе установки соединены с помощью системы трубопроводов и кранов 6-11, см. чертеж.

Установка для осуществления способа измерения уноса дисперсной фазы в газовом потоке работает следующим образом.

Определяют содержание дисперсной фазы в газовом потоке, движущемся по трубопроводу с внутренним диаметром D. Объемный расход газа Q.

Предварительно определяют расход газа через установку для соблюдения скорости, равной скорости газового потока. Для этого рассчитывают объемный расход газа через установку по формуле

где d - внутренний диаметр пробоотборного зонда.

По рассчитанному значению q подбирают набор откалиброванных критических сопел и устанавливают их в регулятор постоянного расхода газа 4, обеспечивающий данный объемный расход газа.

Определяют массу фильтр-патрона 2 и массу второго дополнительного фильтр-патрона 4.

К пробоотборному штуцеру трубопровода герметично подключают пробоотборный зонд 1 с возможностью перемещения его внутри трубопровода для отбора объема пробы газа.

Далее проводят продувку пробоотборного зонда путем открытия и закрытия крана 11.

При подготовке к набору давления в системе установки, равного давлению газового потока при закрытых кранах 6 и 10, открывают краны 7 и 8. Набор давления проводят путем открытия крана 6, в момент которого происходит дросселирование части газа через кран и выделение капельной влаги, которую улавливают дополнительным фильтр-патроном 3.

После набора давления открывают кран 10 и перекрывают дополнительный фильтр-патрон 3 путем закрытия кранов 6 и 7.

Как показали исследования, газ обладает влажностью, т.е. содержит некапельную влагу, которая вместе с капельной влагой поглощается фильтр-патроном 2. Для точности измерения уноса дисперсной фазы необходимо использовать коррекцию измерений на величину, зависящую от влажности газа. При этом определенный объем пробы газа направляют в фильтр-патрон 2, а из фильтр-патрона 2 направляют во второй дополнительный фильтр-патрон 4, который поглощает некапельную влагу вместе с фильтр-патроном 2, в течение определенного промежутка времени при постоянном расходе газа через установку. Для этого открывают кран 9, а по истечении определенного промежутка времени закрывают кран 10, при этом постоянный расход газа через установку при давлении, температуре и скорости в системе устройства, равных давлению, температуре и скорости газового потока, обеспечивает регулятор 5, выполненный в виде блока откалиброванных критических сопел.

После достижения атмосферного давления в установке, которое контролируют по манометру, установленному на регуляторе 5 постоянного расхода газа, фильтр-патрон 2 и второй дополнительный фильтр-патрон 4 снимают и определяют их привес. Величину уноса дисперсной фазы определяют как разность привеса фильтр-патрона 2 и привеса второго дополнительного фильтр-патрона 4.

Результаты измерений для газового потока при Q=299000 норм, м3/ч, D=374 мм при разных положениях пробоотборного зонда показаны в таблице 1.

Таблица 1
№ Примера Положение пробоотборного зонда в трубопроводе Среднее значение уноса дисперсной фазы, г/1000 норм. м3
1 По прототипу 20,125
2 Установка по заявляемому объекту, пробоотборный зонд расположен около стенки трубопровода 14,212
3 Установка по заявляемому объекту, пробоотборный зонд расположен на оси трубопровода 3,46

Сравнение результатов измерений по заявляемому объекту и контрольной установки без второго дополнительного фильтр-патрона в зависимости от времени отбора пробы приведены в таблице 2. При этом пробоотборный зонд расположен около стенки трубопровода, см. примеры 1-4 и пробоотборный зонд расположен на оси трубопровода, см. примеры 5-8.

Таблица 2
№ Примера Время отбора пробы, мин Среднее значение уноса дисперсной фазы, г/1000 норм, м3
Контрольная установка Заявляемый объект
1 3 17,839 14,375
2 5 16,125 14,082
3 10 14,732 14,14
4 20 14,253 14,25
5 3 6,981 3,464
6 5 5,495 3,462
7 10 4,065 3,456
8 20 3,461 3,458

Как видно из примеров конкретного выполнения, объект по прототипу определяет величину уноса дисперсной фазы с высокой погрешностью, конструкция установки позволяет отбирать пробы газа только около стенки трубопровода (см. таблицу 1).

В сравнении с контрольной установкой (см. таблицу 2) видно, что заявляемый объект позволяет получать достоверные данные даже при времени отбора пробы 3 минуты, тогда как на контрольной установке достоверные результаты получают только при времени отбора пробы не менее 20 минут.

Заявляемый объект позволяет более точно определять величину уноса дисперсной фазы, к тому же в различных точках трубопровода и при малом времени отбора пробы.

Установка для осуществления способа измерения величины уноса дисперсной фазы в газовом потоке прошла промышленные испытания и зарекомендовала себя как простая и удобная в эксплуатации.

Источник поступления информации: Роспатент

Показаны записи 1-7 из 7.
20.01.2013
№216.012.1ba4

Сепаратор для очистки газа

Изобретение относится к области очистки газа от примесей, преимущественно от различного рода жидких сред, и может быть использовано для подготовки газа в газовой, газодобывающей, нефтяной, химической и других отраслях промышленности. Сепаратор для очистки газа содержит корпус с патрубком входа...
Тип: Изобретение
Номер охранного документа: 0002472570
Дата охранного документа: 20.01.2013
20.05.2013
№216.012.3fb2

Контактный элемент колпачковой тарелки

Изобретение относится к конструкциям массообменных тарелок для систем газ (пар) - жидкость, предназначенных для процессов абсорбции, ректификации и может найти применение в химической, нефтехимической и других смежных отраслях промышленности. Контактный элемент включает паровой патрубок,...
Тип: Изобретение
Номер охранного документа: 0002481876
Дата охранного документа: 20.05.2013
10.11.2013
№216.012.7f2e

Установка для определения содержания дисперсной фазы в газовом потоке

Установка для определения содержания дисперсной фазы в газовом потоке включает пробоотборный зонд, блок сепарации, содержащий сепаратор, снабженный фильтр-патроном и мерником для отсепарированной жидкости из газа. Установка содержит также блок поддержания постоянного расхода газа при давлении,...
Тип: Изобретение
Номер охранного документа: 0002498231
Дата охранного документа: 10.11.2013
10.04.2014
№216.012.afd5

Фильтрующий элемент (варианты)

Изобретение относится к щелевым фильтрующим элементам, используемым в фильтрующих устройствах для очистки жидкой и газообразной среды, и может быть использовано в химической, нефтехимической, металлургической, машиностроительной промышленности и других отраслях народного хозяйства. Фильтрующий...
Тип: Изобретение
Номер охранного документа: 0002510728
Дата охранного документа: 10.04.2014
19.04.2019
№219.017.33ce

Сепаратор для очистки газа

Изобретение относится к области очистки газа от примесей, преимущественно от различного рода жидких сред, и может быть использовано для подготовки газа в газовой, газодобывающей, нефтяной, химической и других отраслях промышленности. Сепаратор для очистки газа содержит корпус с патрубками входа...
Тип: Изобретение
Номер охранного документа: 0002469771
Дата охранного документа: 20.12.2012
19.04.2019
№219.017.33d6

Сепаратор для очистки газа

Изобретение относится к области очистки газа от примесей, преимущественно от различного рода жидких сред, и может быть использовано для подготовки газа в газовой, газодобывающей, нефтяной, химической и других отраслях промышленности. Сепаратор для очистки газа содержит корпус с патрубками входа...
Тип: Изобретение
Номер охранного документа: 0002469770
Дата охранного документа: 20.12.2012
19.06.2019
№219.017.8a99

Контактное устройство

Изобретение относится к конструкциям контактных тарелок для массообменных аппаратов и может быть использовано в химической промышленности, гидрометаллургии и других отраслях промышленности. Контактное устройство включает горизонтальный лист и направляющие элементы. Каждый направляющий элемент...
Тип: Изобретение
Номер охранного документа: 0002436613
Дата охранного документа: 20.12.2011
Показаны записи 11-20 из 43.
10.07.2015
№216.013.5e71

Способ обработки и очистки призабойной зоны скважины и устройство для его осуществления

Группа изобретений относится к нефтедобывающей отрасли, в частности к увеличению притока нефти на добывающих скважинах и приемистости нагнетательных скважин. Способ включает формирование компрессионного перепада давления между призабойной зоной пласта и полостью насосно-компрессорных труб путем...
Тип: Изобретение
Номер охранного документа: 0002555718
Дата охранного документа: 10.07.2015
27.10.2015
№216.013.8964

Способ получения неокисленного битума

Изобретение относится к области переработки высокосмолистых нефтей и может быть использовано для получения битумных вяжущих материалов, используемых в дорожно-строительной промышленности. Способ получения неокисленного битума из высокосмолистой нефти с использованием перегретого водяного пара...
Тип: Изобретение
Номер охранного документа: 0002566775
Дата охранного документа: 27.10.2015
10.11.2015
№216.013.8c6d

Способ получения изобутилена из трет-бутанолсодержащей фракции (варианты)

Изобретение относится к способу получения изобутилена из трет-бутанолсодержащей фракции путем дегидратации при температуре 90-120°C и давлении 1-3 кгс/см на слое сульфокатионитного катализатора при подаче трет-бутанолсодержащей фракции в верхнюю часть ректификационной зоны...
Тип: Изобретение
Номер охранного документа: 0002567556
Дата охранного документа: 10.11.2015
10.05.2016
№216.015.3cde

Теплообменник радиально-спирального типа (варианты)

Изобретение относится к аппаратам для проведения теплообменных процессов и может быть использовано в теплообменниках радиально-спирального типа. Теплообменник радиально-спирального типа содержит вертикальный корпус с патрубками подвода и отвода теплоносителей, снабжен коллекторами для первого...
Тип: Изобретение
Номер охранного документа: 0002583316
Дата охранного документа: 10.05.2016
19.01.2018
№218.016.08df

Способ получения циклопентана из дициклопентадиена

Изобретение относится к способу получения циклопентана путем разложения дициклопентадиена при температуре 280-350°С до циклопентадиена, отделения циклопентадиена от дициклопентадиена в зоне разделения реакционно-дистилляционного аппарата, подачи полученного парообразного циклопентадиена в зону...
Тип: Изобретение
Номер охранного документа: 0002631658
Дата охранного документа: 26.09.2017
13.02.2018
№218.016.1f46

Устройство распределения газожидкостного потока (варианты)

Изобретение относится к внутренним устройствам, используемым в газовых сепараторах, осуществляющих процессы отделения жидкой фазы от газовой фазы, и колонных аппаратах, осуществляющих массообменные процессы в системе газ-жидкость, таких как ректификация, абсорбция, и может быть использовано в...
Тип: Изобретение
Номер охранного документа: 0002641133
Дата охранного документа: 16.01.2018
04.04.2018
№218.016.2ea8

Измеритель содержания дисперсной фазы в газовом потоке

Изобретение относится к области контроля качества подготовки природного и попутного нефтяного газов к транспорту, а также к области контроля качества жидкостей, транспортируемых по трубопроводам, в нефтегазодобывающей промышленности и может быть использовано на топливно-энергетических,...
Тип: Изобретение
Номер охранного документа: 0002644449
Дата охранного документа: 12.02.2018
04.04.2018
№218.016.31bb

Способ сжижения природного газа по циклу высокого давления с предохлаждением этаном и переохлаждением азотом "арктический каскад" и установка для его осуществления

Изобретение относится к технологии сжижения природного газа. Способ сжижения природного газа заключается в том, что подготовленный природный газ предварительно охлаждают, отделяют этан, переохлаждают сжижаемый газ с использованием охлажденного азота в качестве хладагента, снижают давление...
Тип: Изобретение
Номер охранного документа: 0002645185
Дата охранного документа: 16.02.2018
29.05.2018
№218.016.53a4

Центробежный многоступенчатый компрессорный агрегат

Изобретение относится к компрессоростроению. Центробежный многоступенчатый компрессорный агрегат содержит параллельно установленные многоступенчатые компрессоры, каждый из которых состоит из двух соединенных между собой выходными улитками секций с несколькими рабочими колесами, мультипликатор с...
Тип: Изобретение
Номер охранного документа: 0002653643
Дата охранного документа: 11.05.2018
09.06.2018
№218.016.5bb6

Установка для измерения дебита продукции газоконденсатных скважин

Изобретение относится к нефтегазодобывающей отрасли и может быть использовано для оперативного учета дебитов продукции газоконденсатных месторождений и исследований работы многофазных расходомеров на реальной смеси газа, пластовой воды и нестабильного газового конденсата, получаемой...
Тип: Изобретение
Номер охранного документа: 0002655866
Дата охранного документа: 29.05.2018
+ добавить свой РИД