×
19.04.2019
219.017.2dcd

Результат интеллектуальной деятельности: ЗЕРКАЛО ДЛЯ ЛАЗЕРОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к технической физике, а именно к полупрозрачным зеркалам с многослойным интерференционным покрытием, используемым в лазерной технике. Зеркало для лазера содержит подложку и нанесенное на нее многослойное диэлектрическое покрытие чередующихся слоев с высоким и низким показателями преломления с защитным слоем. Подложка выполнена из фтористого кальция с дополнительным защитным слоем. Толщины защитных слоев - первого и седьмого, считая от подложки, выполнены из фторида иттрия размером не более λ/40. Остальные чередующиеся слои покрытия выполнены из селенида цинка и фторида иттрия, причем толщины второго слоя - размером, менее или равным λ/2; а третьего, четвертого, пятого, шестого слоев - размером, равным λ/4, где λ длина волны в середине спектрального диапазона длин волн 2700...4100 нм. Технический результат - создание полупрозрачного резонаторного зеркала, обеспечивающего высокоэффективную генерацию в широком спектральном диапазоне от 2700 до 4100 нм и имеющего коэффициент отражения зеркала R=70...80%. 2 ил.

Область техники

Изобретение относится к технической физике, а именно к полупрозрачным зеркалам с многослойным интерференционным покрытием, используемым в лазерной технике.

Уровень техники

Известно, что зеркало для лазеров, выполненное в виде многослойного покрытия, состоящего из 3-15 или большего числа чередующихся слоев с высоким и низким показателями преломления, может повысить отражение от прозрачной подложки, например обычного оптического стекла, с 4 до 55-99%. Отражение растет по мере увеличения числа слоев покрытия тем значительнее, чем больше разница в показателях преломления слоев. При этом расчет спектрального отражения от поверхности с многослойной пленкой достаточно громоздок, с использованием различных счетно-решающих устройств. Максимальное значение коэффициента отражения дает многослойное покрытие, состоящее из чередующихся слоев высокого и низкого показателей преломления равной оптической толщины по четверти длины волны излучения. Покрытие может содержать как четное, так и нечетное число чередующихся слоев. Наиболее широко применяются покрытия с нечетным числом слоев, у которых крайние слои, граничащие с подложкой и окружающей средой, имеют высокий показатель преломления [1].

Известно диэлектрическое зеркало, состоящее из перемежающихся слоев двуокиси кремния и титана, нанесенных на подложку, и нанесенного на зеркало защитного слоя из двуокиси кремния с оптической толщиной λ/2, где λ - длина волны излучения [2].

Известно лазерное зеркало, содержащее подложку и нанесенное на нее многослойное диэлектрическое покрытия из перемежающихся слоев с низким и высоким коэффициентами преломления. Покрытие имеет защитный слой из двуокиси кремния, оптическая толщина которого равна полуволне излучения [3].

Недостатком этого зеркала является малая лучевая прочность, связанная с нагревом внешних слоев покрытия и защитного слоя из двуокиси кремния при поглощении в них части проходящего лазерного излучения, их дальнейшего расплава и выхода зеркала из строя.

Известно зеркало для лазеров, содержащее подложку и нанесенное на нее многослойное диэлектрическое покрытие с защитным слоем из двуокиси кремния, оптическая толщина каждого слоя которого равна полуволне излучения. Для повышения лучевой прочности зеркала на его защитный слой нанесен буферный слой из тугоплавкого прозрачного материала с оптической толщиной в 2-3 длины волны излучения [4].

Недостатком этого лазерного зеркала является то, что оно не может быть использовано для химического лазера, в частности с активной средой на основе возбужденных молекул фтористого водорода (HF) и фтористого дейтерия (DF).

Известно, что с активной средой на основе возбужденных молекул фтористого водорода (HF) и фтористого дейтерия (DF) область генерации этого лазера находится в спектральном диапазоне от 2700 до 4100 нм. Рабочая смесь химического лазера на основе обоих фторсодержащих компонентов с молекулами водорода (Н2) и дейтерия (D2) позволяет осуществить лазерную генерацию в широком спектральном диапазоне [5].

За прототип выбрано, как наиболее близкое по технической сущности, зеркало для лазеров, выполненное из многослойного покрытия, описанного в работе [4].

Недостатком данного зеркала является то, что оно не обладает устойчивостью к воздействию агрессивной химической среды, каковыми являются молекулы HF и DF и не позволяет осуществлять высокоэффективную генерацию в широком спектральном диапазоне, т.к. не обеспечивает значения коэффициента отражения 70-80% для длин волн от 2700 до 4100 нм.

Необходимым условием эффективной генерации лазера в широком спектральном диапазоне является наличие соответствующих широкополосных резонаторных зеркал. Особую технологическую проблему представляет изготовление выходного полупрозрачного зеркала такого лазера, поскольку оно не может быть изготовлено с использованием металлов и металлических пленок, а также диэлектрических и полупроводниковых материалов, обладающих поглощением в области генерации. Принципиальной трудностью при изготовлении подобного широкополосного зеркала является также то обстоятельство, что оно должно быть устойчиво к воздействию агрессивной химической среды, каковыми являются молекулы HF и DF.

Раскрытие изобретения

Технический результат

Техническим результатом изобретения является создание полупрозрачного резонаторного зеркала, обладающего устойчивостью к воздействию агрессивной химической среды, обеспечивающего значение коэффициента отражения зеркала, равное 70-80%, позволяющего осуществлять высокоэффективную генерацию в широком спектральном диапазоне.

Технический результат достигается тем, что зеркало для лазеров содержит подложку и нанесенное на нее многослойное диэлектрическое покрытие чередующихся слоев с высоким и низким показателями преломления с защитным слоем. Новым в зеркале является то, оно снабжено дополнительным защитным слоем, нанесенным на подложку из фтористого кальция. Оставшееся нечетное число чередующихся слоев покрытия выполнено из селенида цинка и фторида иттрия, причем толщины защитных слоев - первого и седьмого слоя, считая от подложки, выполнены из фторида иттрия размером, не более λ0/40, второго слоя - размером, менее или равным λ0/2; а третьего, четвертого, пятого, шестого слоев - размером, равным λ0/4, где λ0 длина волны в середине спектрального диапазона длин волн 2700...4100 нм.

Проведенные исследования использования интерференционных резонаторных зеркал лазеров на основе HF и DF показывают, что их химическая стойкость может быть существенно повышена с помощью защитного покрытия в виде слоя фторида металла. Для большей технологичности многослойной структуры зеркала оно должно быть двухкомпонентным, поэтому фторид металла следует использовать не только в качестве верхнего защитного покрытия, но и внутри интерференционной стопы в качестве чередующего слоя с низким показателем преломления. Известны следующие наиболее часто используемые в качестве пленкообразующих материалов фториды металлов: магния MgF2, стронция SrF2, бария BaF2, свинца PbF, иттрия YF3 [6-7]. Однако пленки из MgF2 в интересующем нас диапазоне длин волн обладают сильными растягивающими напряжениями, что приводит к растрескиванию многослойного покрытия; пленки SrF2 отличаются сильным диффузным рассеянием, вызывающим значительные потери оптической мощности; пленки BaF2 растворимы в воде, а пленки PbF2 обладают повышенной токсичностью, что затрудняет их практическое использование. Пленки из YF3 характеризуются высокой механической и температурной стабильностью, устойчивостью к агрессивной среде химического лазера, нетоксичны и нерастворимы в воде. Эти свойства фторида иттрия позволяют использовать его в качестве низкопреломляющего компонента многослойного интерференционного зеркала.

В качестве пленкообразующего вещества с высоким показателем преломления в среднем инфракрасном диапазоне длин волн излучения обычно используют сульфит и селенид цинка ZnS и ZnSe, а также полупроводниковые материалы Si и Ge [6-7]. Использование полупроводников в структуре выходного зеркала для химического лазера менее целесообразно, поскольку это понижает лучевую стойкость и затрудняет юстировку резонатора с помощью лазерных источников видимого диапазона по причине непрозрачности Si и Ge в видимой области. Селенид цинка более предпочтителен для использования в интерференционной структуре, чем сульфит цинка, поскольку селенид цинка обладает большим по сравнению с сульфитом цинка показателем преломления и, следовательно, позволяет создавать в паре с фторидом иттрия широкополосные покрытия.

Таким образом, по совокупности свойств селенид цинка и фторид иттрия являются оптимальным выбором компонент полупрозрачного зеркала химического лазера на основе молекул HF и DF. В качестве подложки для интерференционной стопы в рассматриваемом здесь спектральном диапазоне, как правило, используется флюорит кальция, отличающийся отсутствием поглощения, а также хорошей лучевой, механической и химической стойкостью [7]. Отобранные выше составляющие полупрозрачное зеркало материалы в области длин волн от 2700 до 4100 нм имеют следующие показатели преломления: селенид цинка n=2.42÷2.43; фторид иттрия n=1.50÷1.52; фторид кальция n=1.40÷1.42 [7].

Толщина защитных слоев многослойного покрытия из фторида иттрия размером не более λ0/40 выбрана достаточной для того, чтобы выполнить функцию защиты зеркала от агрессивной среды активного вещества лазера, не влиять на спектр отражения зеркала. Кроме того, наличие защитного слоя из фторида иттрия непосредственно на подложке защищает зеркало от последствий возможных процессов долговременной диффузии агрессивных компонентов рабочего вещества лазера вдоль границы раздела подложка - многослойное покрытие.

Толщина второго оптического слоя из селенида цинка экспериментально подобрана таким образом, чтобы максимально выровнять характеристику отражения в спектральном диапазоне 2700...4100 нм. В результате оптическая толщина второго слоя, равная λ0/2, в сочетании с оптической толщиной третьего, четвертого, пятого, шестого слоев - размером, равным λ0/4, где λ0 длина волны в середине спектрального диапазона длин волн 2700...4100 нм приводит к достижению вышеуказанному технического результату, а именно получению коэффициента отражения в спектральном диапазоне 2700...4100 нм, равного 70-80%.

Не обнаружены технические решения, совокупность признаков которых совпадает с совокупностью признаков заявляемого зеркала для лазеров, в том числе с отличительными признаками. Эта новая совокупность признаков обеспечивает получение технического результата, что позволяет сделать вывод о соответствии заявляемого изобретения критерию «изобретательский уровень».

На фиг.1 представлена спектральная зависимость коэффициента отражения зеркала при выполнении покрытия из чередующихся слоев селенида цинка и фторида иттрия с оптической толщиной, равной λ0/4. Из фиг.1 видно, что коэффициент отражения в спектральном диапазоне 2700...4100 нм неравномерен и равен 35-87%.

На фиг.2 представлена спектральная зависимость коэффициента отражения заявляемого зеркала при нормальном падении лучей.

Зеркало для лазера, преимущественно для рабочих веществ HF и DF, содержащее подложку из фтористого кальция с нанесенным на одну ее сторону многослойным покрытием из семи чередующихся слоев фторида иттрия и селенида цинка, причем первый и седьмой слои выполнены из фторида иттрия. При этом оптические толщины первого и седьмого слоя, считая от подложки, выполнены размером не более λ0/40, второго слоя - размером, равным λ0/2; а третьего, четвертого, пятого, шестого слоев - размером, равным λ0/4, где λ0 длина волны в середине спектрального диапазона длин волн от 2700 до 4100 нм.

Предлагаемая конструкция выходного зеркала для химического лазера на основе HF/DF практически реализована нанесением в вакууме методом электронно-лучевого испарения пленкообразующих материалов ZnSe и YF3 на одну поверхность плоскопараллельной подложки CaF2 диаметром 25 мм и толщиной 7 мм. Необходимые значения показателей преломления, входящих в состав заявляемого покрытия компонент, достигались подбором оптимальных условий нанесения: температурой и скоростью осаждения пленок, а также значением давления остаточных газов в камере. Оптические толщины слоев контролировались фотометрическим методом по пропусканию неподвижной тестовой подложки.

Выходные зеркала по предлагаемому техническому решению прошли ресурсные испытания внутри резонатора химического лазера на основе HF/DF. Результаты испытаний свидетельствуют о том, что заявляемая конструкция полупрозрачных зеркал обладает необходимой лучевой, механической, климатической и химической стойкостью и позволяет осуществлять высокоэффективную лазерную генерацию в широком спектральном диапазоне от 2700 до 4100 нм. Уровень выходной мощности лазера свидетельствует о близости параметров выходной зеркала к требуемым значениям.

Изобретение найдет применение для лазеров-локаторов, лазерных систем, предназначенных для газоанализа и зондирования земной атмосферы, а также для физических исследовательских установок.

Источники информации

1. Т.Н.Крылова «Интерференционные покрытия», Л., «Машиностроение», 1973, с.224;

2. Авторское свидетельство СССР №789452, кл. С03С 17/34, опубл. 23.12.1980, БИ №47.

3. Технологическая инструкция. Покрытия оптические для ОКГ, ИАБ-50-74. Государственный оптический институт, 1976, с.12.

4. Патент RU №2059331, кл. Н01S 3/08 опубл.27.04.96.

5. С.Д.Великанов, А.С.Елутин, А.Ф.Запольский и др. «Широкополосный химический лазер, работающий одновременно на возбужденных молекулах HF и DF». Квантовая электроника", 18, № 2 (1991 г.), с.186.

6. Э.Риттер «Пленочные диэлектрические материалы для оптических применений», Физ. тонк. пл., том 8, М., «Мир», 1978, с.7-60;

7. Е.М.Воронкова, Б.Н.Гречушников, Г.И.Дистлер, И.П.Петров «Оптические материалы для инфракрасной техники», М., «Наука», 1965, с.87-91.

Зеркалодлялазеров,содержащееподложкуинанесенноенанеемногослойноедиэлектрическоепокрытиечередующихсяслоевсвысокиминизкимпоказателямипреломлениясзащитнымслоем,отличающеесятем,чтооноснабженодополнительнымзащитнымслоем,нанесеннымнаподложкуизфтористогокальция,толщинызащитныхслоев-первогоиседьмого,считаяотподложки,выполненыизфторидаиттрияразмеромнеболееλ/40,остальныечередующиесяслоипокрытиявыполненыизселенидацинкаифторидаиттрия,причемтолщинывторогослоя-размеромменееилиравнымλ/2;атретьего,четвертого,пятого,шестогослоев-размером,равнымλ/4,гдеλдлинаволнывсерединеспектральногодиапазонадлинволн2700...4100нм.
Источник поступления информации: Роспатент

Показаны записи 111-120 из 524.
20.01.2018
№218.016.1246

Способ и устройство исследования характеристик заряда взрывчатого вещества и способ идентификации свойств взрывчатого вещества

Группа изобретений относится к области исследования материалов с помощью протонной радиографии при ударно-волновом нагружении. Способ исследования характеристик заряда взрывчатого вещества (ВВ) включает ударно-волновое нагружение элемента при подрыве исследуемого заряда ВВ, при этом, с помощью...
Тип: Изобретение
Номер охранного документа: 0002634249
Дата охранного документа: 24.10.2017
20.01.2018
№218.016.12a7

Поворотный пневмодвигатель

Пневмодвигатель предназначен для преобразования возвратно-поступательного движения поршня в возвратно-поворотное движение исполнительного механизма. Пневмодвигатель содержит корпус со штуцерами для подачи газа, поворотный механизм с валом. Корпус выполнен в виде цилиндра, с двух сторон которого...
Тип: Изобретение
Номер охранного документа: 0002634346
Дата охранного документа: 25.10.2017
20.01.2018
№218.016.12bc

Устройство возбуждения квадратного волновода

Изобретение относится к области радиотехники, а именно к элементам и узлам СВЧ-трактов антенн с круговой поляризацией поля излучения, и может быть использовано для возбуждения волноводных поляризационных секций квадратного поперечного сечения. Устройство содержит плавный волноводный переход от...
Тип: Изобретение
Номер охранного документа: 0002634334
Дата охранного документа: 25.10.2017
20.01.2018
№218.016.1357

Способ эксплуатации ядерного реактора в ториевом топливном цикле с наработкой изотопа урана u

Изобретение относится к способу эксплуатации ядерного реактора в ториевом топливном цикле с наработкой изотопа U. Способ включает первоначальную загрузку активной зоны реактора оксидным топливом, содержащим изотоп тория Th и изотоп урана U, формирование интенсивности нейтронного потока и его...
Тип: Изобретение
Номер охранного документа: 0002634476
Дата охранного документа: 31.10.2017
20.01.2018
№218.016.1cd7

Способ сборки электродетонатора

Изобретение относится к способам сборки электровзрывных устройств. Способ включает установку в корпус предварительно смонтированных и снаряженных детонирующего узла с основным зарядом взрывчатого вещества (ВВ), в котором происходит преобразование горения в детонацию, и инициатора, монтаж и...
Тип: Изобретение
Номер охранного документа: 0002640446
Дата охранного документа: 09.01.2018
20.01.2018
№218.016.1db9

Способ уничтожения конфиденциальной информации, хранимой в микросхемах памяти электронных приборов

Изобретение относится к вычислительной технике. Технический результат заключается в уничтожении конфиденциальной информации, хранимой в микросхемах памяти электронных приборов с целью ее защиты от несанкционированного доступа. Способ уничтожения конфиденциальной информации, хранимой в...
Тип: Изобретение
Номер охранного документа: 0002640725
Дата охранного документа: 11.01.2018
13.02.2018
№218.016.2283

Способ получения и обработки изображений быстропротекающего процесса, сформированных с помощью протонного излучения и устройство осуществления способа

Группа изобретений относится к области исследования материалов радиографическими методами с применением ударных нагружений и воздействием магнитного поля. Сущность изобретений заключается в том, что пучок протонов направляют под углом к силовым линиям магнитного поля, после облучения области...
Тип: Изобретение
Номер охранного документа: 0002642134
Дата охранного документа: 24.01.2018
13.02.2018
№218.016.2312

Электротеплоизолирующая соединительная вставка

Изобретение относится к испытательному оборудованию и может быть использовано при испытаниях объекта и его элементов на одновременное комплексное воздействие высокотемпературных нагрузок в условиях полной защиты испытательного оборудования. Электротеплоизолирующая соединительная вставка состоит...
Тип: Изобретение
Номер охранного документа: 0002641988
Дата охранного документа: 23.01.2018
13.02.2018
№218.016.24d9

Способ нанесения металлосодержащих покрытий на микросферы

Изобретение относится к химической технологии нанесения на микросферы металлосодержащих покрытий. Способ нанесения металлосодержащих покрытий на микросферы пиролитическим разложением металлоорганических соединений заключается во взаимодействии паров металлоорганического соединения с...
Тип: Изобретение
Номер охранного документа: 0002642596
Дата охранного документа: 25.01.2018
13.02.2018
№218.016.2587

Разрядная камера для проведения плазмохимических реакций

Разрядная камера для проведения плазмохимических реакций относится к плазмохимии, к синтезу озона и окислов азота из атмосферного воздуха, смеси кислорода с азотом с помощью барьерного разряда и может найти применение в научных исследованиях и медицине. Разрядная камера включает два...
Тип: Изобретение
Номер охранного документа: 0002642798
Дата охранного документа: 26.01.2018
Показаны записи 11-13 из 13.
10.07.2019
№219.017.a9d9

Способ идентификации растительных объектов по космическим снимкам дистанционного зондирования

Изобретение относится к области дистанционного зондирования Земли и касается способа идентификации растительных объектов по космическим снимкам дистанционного зондирования. Способ включает в себя наземные измерения на тестовых полигонах, одновременную космическую съемку тестовых полигонов и...
Тип: Изобретение
Номер охранного документа: 0002693880
Дата охранного документа: 05.07.2019
07.09.2019
№219.017.c8b0

Способ заправки жидким диэлектриком высоковольтных электротехнических приборов и устройство для его реализации

Изобретение относится к области электротехники, а именно к способу заправки жидким диэлектриком высоковольтных электротехнических приборов и устройству для заправки. В предложенном способе перед заполнением внутреннего объема высоковольтного прибора жидким диэлектриком устройство вакуумируют,...
Тип: Изобретение
Номер охранного документа: 0002699365
Дата охранного документа: 05.09.2019
01.11.2019
№219.017.dc6a

Способ установки термоэлектрических модулей

Изобретение относится к приборостроению и может быть использовано для разработки устройств, в том числе лазерных, особенно при их серийном производстве и эксплуатируемых в условиях ударных и вибрационных нагрузок. Технический эффект, заключающийся в исключении влияния динамических нагрузок на...
Тип: Изобретение
Номер охранного документа: 0002704568
Дата охранного документа: 29.10.2019
+ добавить свой РИД