×
19.04.2019
219.017.2dc0

Результат интеллектуальной деятельности: СПОСОБ ЗАЩИТЫ СТАЛЬНЫХ ДЕТАЛЕЙ МАШИН ОТ СОЛЕВОЙ КОРРОЗИИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области машиностроения и металлургии и может быть использовано в авиационном и энергетическом турбиностроении, преимущественно для защиты деталей компрессора газотурбинного двигателя от солевой коррозии. Способ включает последовательное нанесение на поверхность детали первого слоя конденсированного покрытия из сплава на основе никеля, содержащего кобальт, хром, алюминий, иттрий, и второго слоя покрытия, который получают последовательным нанесением шликерных слоев - силикатного, фосфатного и вновь силикатного, после нанесения каждого из слоев проводят его сушку и термообработку при температуре 350-450°С в течение 5-20 минут. Способ позволяет создать стойкое к солевой коррозии покрытие, не снижающее механические характеристики деталей машин из сталей, имеющих температуру отпуска ниже 600°С. 4 з.п. ф-лы, 1 табл.

Изобретение относится к области машиностроения и металлургии и может использоваться в авиационном и энергетическом турбостроении для защиты деталей из конструкционных сталей от солевой коррозии.

Известен способ получения металлостеклокерамического покрытия Дифа-СФ на стальной лопатке компрессора, включающий в себя насыщения поверхности лопатки алюминием при температуре 600-620°С в порошковой смеси, содержащей мелкодисперсную алюминиевую пудру, последующее нанесение внешнего стеклокерамического слоя из водных силикатных и фосфатно-бихроматных растворов и термическую обработку лопатки при температурах 400-600°С (см. Иванов Е.Г., Шкурат А.С. Механизм повышения жаростойкости и сопротивляемости электрохимической коррозии стальных лопаток компрессора ГТД с металлостеклокерамическим покрытием Дифа-СФ. - В кн.: Получение и применение защитных покрытий. - Л.: Наука, 1987, с.164-167).

Известен также способ обработки поверхности металлического изделия, в котором для повышения коррозионной стойкости используют накопление и диффузию на поверхности изделия сплава на основе алюминия из плазмы этого сплава и последующую термообработку при 600-620°С, в течение 4-6 ч (патент РФ №2241067).

Недостатком известных способов является большая трудоемкость получения покрытия (для ДИФА-СФ ˜48 ч) и необходимость проведения длительного диффузионного насыщения в смесях, содержащих мелкодисперсный и взрывоопасный порошок из алюминия, что ограничивает, а в ряде случаев сдерживает применение известного способа получения ДИФА-СФ в промышленности, а также то, что процесс термообработки после насыщения поверхности изделия в плазме сплава на основе алюминия проводят при температурах (600-620)°С, и эта температура выше температуры отпуска материала для большинства ответственных деталей машин.

Наиболее близким аналогом, взятым за прототип, является способ защиты стальных деталей машин от солевой коррозии, включающий последовательное осаждение в вакууме первого слоя конденсированного покрытия из сплава на основе никеля, содержащего, мас.%: 16-30 кобальта, 16-28 хрома, 8-13,5 алюминия и 0,05-0,6 иттрия, последующее осаждение второго слоя из сплава на основе алюминия и термическую обработку при температуре 580-620°С в течение 4-6 ч (Патент РФ №2165475).

Недостатком известного способа является относительно высокая температура термообработки детали с покрытием (580-620)°С и длительность термообработки 4-6 часов, не позволяющая использовать данное покрытие для стальных деталей, имеющих температуру отпуска <600°С, что ограничивает область применения известного способа в промышленности.

Технической задачей настоящего изобретения является создание покрытия, стойкого к солевой коррозии и не снижающего механические характеристики деталей машин из сталей, имеющих температуру отпуска ниже 600°С.

Это достигается тем, что в способе защиты стальных деталей машин от солевой коррозии, преимущественно деталей компрессора газотурбинного двигателя, включающем последовательное нанесение на поверхность детали первого слоя конденсированного покрытия из сплава на основе никеля, содержащего кобальт, хром, алюминий, иттрий, последующее нанесение второго слоя и термообработку, второй слой покрытия получают последовательным нанесением шликерных слоев - силикатного, фосфатного и вновь силикатного, после нанесения каждого из шликерных слоев проводят его сушку и термообработку при температуре (350-450)°С в течение 5-20 минут.

Силикатные слои наносят из водного раствора жидкого стекла с плотностью 1,05-1,07 г/см3.

Фосфатный слой наносят из шликера на основе водного раствора алюмохромофосфатного связующего с плотностью 1,05-1,07 г/см3.

В шликер на основе водного раствора алюмохромофосфатного связующего дополнительно вводят до 8 мас.% хромового ангидрида при сохранении его плотности (1,05-1,07) г/см3.

Сушку шликерных слоев проводят на воздухе, а затем при температуре 150-250°С в течение 15-25 минут.

Использование в качестве первого слоя покрытия конденсированного покрытия из сплава на основе никеля, содержащего кобальт, хром, алюминий, иттрий, а второго слоя покрытия - трех последовательно нанесенных шликерных слоев (силикатного, фосфатного и силикатного слоев), сушка и термообработка каждого шликерного слоя, проводимая при температуре (350-450)°С в течение 5-20 минут, обеспечивают закрытие незначительной пористости первого слоя конденсированного покрытия за счет пропитки поверхности этого слоя покрытия из первого шликерного силикатного слоя и формирования на поверхности детали сплошного металлокерамического покрытия из сплава системы Ni-Co-Cr-Al-Y и силикофосфатного покрытия, обладающего высокой коррозионной стойкостью в условиях солевой коррозии. Предварительная сушка каждого из шликерных слоев и термообработка после нанесения каждого из этих слоев при температуре (350-450)°С в течение 5-20 минут обеспечивают нагрев шликерных слоев до температуры их «стеклования» и предохраняют материал детали от нагрева его до температуры отпуска, чем и достигается цель изобретения, т.е. получение коррозионно-стойкого покрытия на поверхности стальной детали при температуре материала детали ниже температуры ее отпуска.

Плотность 1,05-1,07 г/см3 силикатного и фосфатного растворов обеспечивает качественное нанесение шликера кистью, окунанием и распылением на поверхность первого слоя покрытия. Использование до 8 мас.% хромового ангидрида в шликере для нанесения фосфатного слоя обеспечивает возможность более длительного хранения фосфатного шликера при его использовании в производстве, однако экологически небезопасно. Содержание хромового ангидрида в АХФС ограничивается 8 мас.% ввиду недопустимости большого содержания в растворе шликера шестивалентного хрома. При этом содержание хромового ангидрида более 8% не дает прибавки по защитным свойствам покрытия.

Сущность изобретения поясняется следующим примером.

На детали компрессора ГТД (призонные болты, шпильки) и образцы из стали 30Х13 с температурой отпуска 300°С, обладающие низкой коррозионной стойкостью при рабочей температуре деталей <300°С, ионно-плазменным методом наносили конденсированный слой из никелевого сплава, содержащего 22% Со, 22% Cr, 12% Al и 0,3% Y, толщиной 5 мкм. Затем с помощью шликерной технологии на образцы и детали наносили второй слой покрытия, состоящий из силикатного, фосфатного и силикатного слоев. Силикатные слои наносили при помощи пневматического распылителя из водного раствора жидкого стекла (Na2SiO3, с силикатным модулем 2,6-3,2) плотностью 1,05-1,07 г/см3. Фосфатный слой покрытия наносили методом окунания из шликера с плотностью 1,05-1,07 г/см3 на основе водного раствора алюмохромофосфатного связующего (связующее АХФС, ТУ 2149-150-10964029-01). В примере 3 в водный раствор АХФС дополнительно вводят 8 мас.% хромового ангидрида. После нанесения каждого из слоев слои подвергали сушке при комнатной температуре или в потоке теплого воздуха с температурой 40-60°С, а затем при температуре 200°С в течение 20 минут. После сушки каждого шликерного слоя часть образцов и деталей подвергали термической обработке при температуре 350°С в течение 20 минут, другую часть при 400°С в течение 12,5 минут, а последнюю часть образцов и деталей термообрабатывали при 450°С в течение 5 минут. Температуру и время термической обработки выбрали, исходя из условия прогрева материала деталей и образцов из стали 30Х13 до температуры <300°С. Полученные детали и образцы с коррозионно-стойким металлокерамическим покрытием были испытаны в лабораторных условиях.

Для сравнения на образцы из стали 30Х13 было нанесено покрытие по способу-прототипу.

Коррозионную стойкость деталей и образцов с покрытием исследовали по методике ускоренных циклических испытаний на плоских образцах 20×30×1,5 мм по режиму: нагрев до температуры 300°С и выдержка 1 ч, подстуживание на воздухе 2 минуты, охлаждение в 3% растворе NaCl, выдержка в течение 22-24 часов во влажной камере. Отметим, что удовлетворительной коррозионной стойкостью считается 10 циклов испытаний без коррозионного повреждения.

Из результатов лабораторных исследований видно, что сплав с двухслойным покрытием при ускоренных циклических испытаниях на солевую коррозию обладает высокой коррозионной стойкостью, заметно большей, чем сталь 30Х13 без покрытия (см. таблицу). В таблице приведены усредненные данные по 5 образцам на каждый вид покрытия. Одновременно образцы из стали с покрытием и без покрытия испытывались на прочность, полученные данные в относительных единицах приведены в таблице.

Аналогичные результаты были получены при защите образцов и деталей из сталей 38Х2МЮА и 95Х18. Исследования показали, что покрытие, полученное по предлагаемому способу, не оказывает влияния на механические характеристики сталей.

Вид образцаЧисло циклов до появления очагов коррозииКратковременная прочность, %
1Сталь без покрытия3100
2Сталь с покрытием. Термообработка 350°С, 20 мин18100
3Сталь с покрытием. Термообработка 400°С, 12,5 мин19100
4Сталь с покрытием. Термообработка 450°С, 5 мин18100
5Сталь с покрытием, полученным по способу-прототипу1845

Детали сопряжения, применяемые в газотурбинных двигателях (ГТД), имеют повышенную точность, и толщина защитных покрытий для этих деталей ограничена величиной до 10-12 мкм. Однослойное покрытие из сплава системы Ni-Co-Cr-Al-Y не обеспечивает защиты стальных деталей ГТД ввиду незначительной пористости (0,1-0,2)%. Применение второго слоя покрытия на основе силикатного, фосфатного и силикатного слоев устраняет незначительную пористость первого слоя покрытия и в целом позволяет сформировать на поверхности детали металлокерамическое покрытие, обладающее высокой коррозионной стойкостью. Шликеры на основе водных растворов с плотностью 1,05-1,07 г/см3 обеспечивают получение качественных (сплошных) покрытий (пленок) минимальной толщины, а использование фосфатного покрытия с добавкой хромового ангидрида обеспечивает возможность хранения готового шликера в течение нескольких суток, что важно в условиях серийного производства. Отсутствие в фосфатном покрытии хромового ангидрида несколько снижает защитные свойства покрытия и срок хранения фосфатного шликера, но зато обеспечивает максимальную экологическую безопасность шликера. Максимальная концентрация хромового ангидрида ограничена 8% ввиду большого содержания в растворе шликера шестивалентного хрома. Термообработка шликерных покрытий второго слоя покрытия в течение 5-20 минут при температуре (350-450)°С позволяет получать качественное металлокерамическое покрытие, обеспечивающее защиту детали от солевой коррозии.

В целом предлагаемый способ защиты стальных деталей от солевой коррозии обеспечивает защиту поверхности деталей при минимальной толщине двухслойного покрытия 7-8 мкм. Поэтому при ограниченной толщине 4-5 мкм первого слоя покрытия и толщине 3-4 мкм второго слоя покрытия оно гарантировано обеспечивает защиту деталей из конструкционных сталей с низкой температурой отпуска (600°С и менее).

Испытания покрытия, полученного в соответствии с предлагаемым техническим решением, на деталях соединения вала ротора турбины низкого давления с ротором вентилятора газотурбинного двигателя из сталей 30Х13 и 38Х2МЮА показали, что новый способ позволит увеличить ресурс деталей с низкой температурой отпуска более чем в три раза по сравнению с деталями без покрытия. Это даст в совокупности значительный экономический эффект. В настоящее время детали, обработанные по предлагаемому способу, проходят испытания в составе газотурбинного двигателя.

1.Способзащитыстальныхдеталеймашинотсолевойкоррозии,преимущественнодеталейкомпрессорагазотурбинногодвигателя,включающийпоследовательноенанесениенаповерхностьдеталипервогослояконденсированногопокрытияизсплаванаосновеникеля,содержащегокобальт,хром,алюминий,иттрий,нанесениевторогослояпокрытияитермообработку,отличающийсятем,чтовторойслойпокрытияполучаютпоследовательнымнанесениемсиликатного,фосфатногоивновьсиликатногошликерныхслоев,посленанесениякаждогоизкоторыхпроводятсушкуитермообработкупритемпературе350-450°Свтечение5-20мин.12.Способпоп.1,отличающийсятем,чтосиликатныеслоинаносятизводногорастворажидкогостекласплотностью1,05-1,07г/см.23.Способпоп.1,отличающийсятем,чтофосфатныйслойнаносятизшликеранаосновеводногораствораалюмохромофосфатногосвязующегосплотностью1,05-1,07г/см.34.Способпоп.3,отличающийсятем,чтовшликернаосновеводногораствораалюмохромофосфатногосвязующегодополнительновводятдо8мас.%хромовогоангидридаприсохраненииегоплотности1,05-1,07г/см.45.Способпоп.1,отличающийсятем,чтосушкушликерныхслоевпроводятнавоздухе,азатемпритемпературе150-250°Свтечение15-25мин.5
Источник поступления информации: Роспатент

Показаны записи 81-90 из 354.
10.12.2015
№216.013.97c1

Способ соединения слоистого алюмостеклопластика

Изобретение относится к слоистым композиционным материалам для использования в авиационной и машиностроительной промышленности и касается способа соединения слоистого алюмостеклопластика. Укладывают по меньшей мере два металлических слоя, каждый из которых состоит из отдельных уложенных встык...
Тип: Изобретение
Номер охранного документа: 0002570469
Дата охранного документа: 10.12.2015
20.12.2015
№216.013.9c70

Способ изготовления ротора турбины из никелевого жаропрочного сплава

Изобретение относится к области изготовления ротора турбины газотурбинного двигателя, состоящего из двух и более деталей, изготовленных преимущественно из никелевого жаропрочного сплава с применением электронно-лучевой сварки. Способ включает получение по меньшей мере двух заготовок компонентов...
Тип: Изобретение
Номер охранного документа: 0002571673
Дата охранного документа: 20.12.2015
20.12.2015
№216.013.9c71

Жаропрочный деформируемый сплав на основе никеля и изделие, выполненное из этого сплава

Изобретение относится к области металлургии жаропрочных деформируемых сплавов на основе никеля и изделий, выполненных из этих сплавов, и может быть использовано для изготовления дисков турбин газотурбинных двигателей и других узлов и деталей ротора, работающих при температурах до 900°C. Сплав...
Тип: Изобретение
Номер охранного документа: 0002571674
Дата охранного документа: 20.12.2015
27.12.2015
№216.013.9dfd

Способ нанесения межкристаллитных коррозионных поражений на алюмиевые сплавы

Изобретение относится к области проведения коррозионных испытаний алюминиевых сплавов. Способ нанесения межкристаллитных коррозионных поражений на деталь из алюминиевого сплава, в котором деталь обрабатывают путем наложения на нее анодного тока в водном электролите, содержащем хлорид натрия....
Тип: Изобретение
Номер охранного документа: 0002572075
Дата охранного документа: 27.12.2015
27.12.2015
№216.013.9e27

Способ получения суперсплавов на основе никеля, легированных редкоземельными металлами

Изобретение относится к области металлургии, а именно к производству жаропрочных сплавов на основе никеля, легированных редкоземельными металлами. Способ получения сплава на основе никеля включает загрузку в плавильный тигель шихты в виде металлических отходов или смеси металлических отходов и...
Тип: Изобретение
Номер охранного документа: 0002572117
Дата охранного документа: 27.12.2015
27.12.2015
№216.013.9e3d

Способ получения углепластиков на основе термостойкого связующего

Изобретение относится к технологиям изготовления углепластиков на основе углеродных наполнителей и термостойких связующих и может быть применимо при изготовлении элементов рабочего колеса центробежного компрессора. Описан способ получения углепластика на основе термостойкого связующего, в...
Тип: Изобретение
Номер охранного документа: 0002572139
Дата охранного документа: 27.12.2015
10.01.2016
№216.013.9ea8

Звукопоглощающий материал и конструктивные элементы двигателя и мотогондолы двигателя, выполненные из него

Изобретение относится к области звукопоглощающих полимерных композиционных материалов, предназначенных для использования преимущественно в двигателях и мотогондолах двигателей. Звукопоглощающий материал включает слой ячеистой структуры и звукопоглощающий наполнитель, пропитанный раствором...
Тип: Изобретение
Номер охранного документа: 0002572253
Дата охранного документа: 10.01.2016
20.01.2016
№216.013.9fc3

Композиционный вибропоглощающий материал

Изобретение относится к авиакосмической промышленности и может быть использовано в бортовой звукотеплоизолирующей конструкции пассажирских самолетов и касается композиционного вибропоглощающего материала. Материал содержит: армирующий металлический слой, полимерные вибропоглощающий слой,...
Тип: Изобретение
Номер охранного документа: 0002572541
Дата охранного документа: 20.01.2016
20.01.2016
№216.013.a143

Способ термической обработки отливок из жаропрочных никелевых сплавов

Изобретение относится к области металлургии, а именно к термической обработке отливок из жаропрочных никелевых сплавов, предназначенных для производства деталей газотурбинных двигателей и газотурбинных установок, и может быть использовано в авиационной и энергетической промышленности. Способ...
Тип: Изобретение
Номер охранного документа: 0002572925
Дата охранного документа: 20.01.2016
20.01.2016
№216.013.a3ac

Металлические волокна из жаростойкого сплава (варианты) и изделие, выполненное из металлических волокон

Группа изобретений относится к металлическим волокнам жаростойкого сплава, которые могут быть использованы для получения истираемых уплотнений проточной части турбины авиационного газотурбинного двигателя. Волокна по варианту 1 выполнены из сплава на основе системы Fe-Cr-Al-Y и содержат 21-27...
Тип: Изобретение
Номер охранного документа: 0002573542
Дата охранного документа: 20.01.2016
Показаны записи 21-23 из 23.
09.06.2019
№219.017.7a23

Установка для нанесения защитных покрытий

Изобретение относится к установке для нанесения защитных покрытий и может найти применение для получения защитных покрытий на изделиях авиационной техники. Для повышения качества покрытий за счет устранения их остаточной пористости и расширения технологических возможностей установки при...
Тип: Изобретение
Номер охранного документа: 0002318078
Дата охранного документа: 27.02.2008
09.06.2019
№219.017.7dba

Способ защиты деталей газовых турбин из никелевых сплавов

Изобретение относится к области металлургии и машиностроения и может быть использовано в авиационном и энергетическом турбостроении для защиты деталей от высокотемпературного окисления, в том числе рабочих и сопловых лопаток газовых турбин из никелевых сплавов. Предложен способ защиты деталей...
Тип: Изобретение
Номер охранного документа: 0002452793
Дата охранного документа: 10.06.2012
13.06.2019
№219.017.811d

Способ нанесения защитных покрытий и устройство для его осуществления

Изобретение относится к области нанесения защитных покрытий. Может применяться для получения керамического слоя теплозащитных покрытий на изделия авиационной техники, преимущественно на рабочих и сопловых лопатках турбин из жаропрочных литейных сплавов. Устройство для нанесения покрытий методом...
Тип: Изобретение
Номер охранного документа: 0002691166
Дата охранного документа: 11.06.2019
+ добавить свой РИД