×
19.04.2019
219.017.2dba

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ЛИТОГО ТРУБНОГО КАТОДА ИЗ СПЛАВОВ НА ОСНОВЕ АЛЮМИНИЯ ДЛЯ ИОННО-ПЛАЗМЕННОГО НАНЕСЕНИЯ ПОКРЫТИЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургической промышленности. Способ включает плавление сплава из шихты и его заливку расплава в предварительно нагретую литейную форму в вакууме, осуществляемые в вакуумно-индукционной печи. Шихта содержит алюминий и один или несколько элементов, выбранных из ряда, состоящего из кремния, иттрия, никеля, кобальта, хрома, бора или лигатуры на их основе. В процессе плавки проводят электромагнитное перемешивание и рафинирование расплава. Заливку расплава осуществляют со скоростью 6-20 кг/мин при температуре 710-850°С в графитовую форму с заливочной чашей и цилиндрическим трубным стержнем или металлический разъемный кокиль с цилиндрическим трубным стержнем из песчано-глиняной смеси или из литейного графита. На внутреннюю поверхность отлитого катода наносят припой и осуществляют пайку катода с охлаждаемой оправкой. Достигается повышение качества литых анодов. 3 з.п. ф-лы.

Изобретение относится к области металлургии и машиностроения и может использоваться в авиационном и энергетическом турбостроении для получения трубных катодов из алюминиевых сплавов, используемых при вакуумно-дуговом или магнетронном испарении и нанесении ионно-плазменных защитных покрытий на лопатки авиационных и промышленных газотурбинных двигателей и установок.

Известен способ получения литых качественных катодов или мишеней из сплавов на основе никеля и кобальта для процесса вакуумно-дугового нанесения покрытий (ЕР 1111086).

Согласно известному способу катод получают путем изготовления слитка из материала катода одним из известных способов, например, вакуумно-индукционной плавкой, и последующего электронно-лучевого плавления слитка, рафинирования расплава с последующей заливкой расплава в охлаждаемый кристаллизатор с подвижным подом. Таким способом удается получать заготовки катодов в виде цилиндрических прутков.

Недостатками известного способа являются многостадийность технологии изготовления катода и большая трудоемкость процесса его получения, а также то, что известный способ позволяет получать катоды из сплавов на основе никеля или кобальта.

Известны также способы получения литых катодов, где для получения слитка используется многолучевой нагрев расплавляемого слитка и кристаллизатора (патент США № 4838340), или используется многолучевой нагрев и промежуточный лоток для плавки и рафинирования сплава или промежуточная воронка (патенты США №№ 4838340, 4588729, 4190404).

Недостатками известных способов являются сложность технологии изготовления слитков из сплавов на основе алюминия и большая трудоемкость процесса его получения, а также высокая стоимость получаемых слитков.

Известен также способ изготовления полой катодной мишени, включающий получение заготовки, содержащей тантал, ниобий или их сплавы, поперечную холодную прокатку заготовки и проведение холодной обработки прокатанной заготовки для получения фасонной заготовки (патент РФ № 2261288).

Однако этот способ не позволяет получать методом холодной прокатки трубные изделия из хрупких алюминиевых сплавов для покрытий, а также большая трудоемкость процесса являются его недостатками.

Наиболее близким по технической сути к предлагаемому изобретению является способ получения литых трубных изделий из сплава на основе кремния с содержанием алюминия (5-50)%, включающий размещение шихтовых материалов и предварительно нагретой литейной формы в вакуумно-индукционной печи, нагрев и плавку шихтовых материалов, заливку расплава в литейную форму через воронку, охлаждение формы с отливкой, удаление литейной формы и механическую обработку отливки для получения катода, нанесение припоя на внутреннюю поверхность катода и пайку катода к охлаждаемой оправке. Литейная графитовая форма состоит из сплошного графитового цилиндрического стержня и внешнего трубного кокиля, причем внутренний цилиндрический стержень и внешний трубный кокиль графитовой формы удаляют гидравлическим прессом (заявка США № 2005/0092455).

Известный способ позволяет получать качественные трубные катоды или мишени из сплавов на основе кремния. В известном способе используется сплошной цилиндрический стержень из литейного графита, что позволяет получать литые трубные изделия из сплавов на основе кремния, так как эти сплавы имеют коэффициент линейного термического расширения (КТР), очень близкий к графиту. Однако известный способ не позволяет получать трубные катоды из алюминиевых сплавов, так как при кристаллизации полых отливок за счет усадки металла происходит сжатие внутреннего стержня заливочной формы, что приводит к образованию горячих продольных трещин в отливках из алюминиевых сплавов за счет низкой податливости внутреннего стержня формы.

Недостатком известного способа является невозможность получения литых трубных катодов высокого качества из алюминиевых сплавов.

Технической задачей предлагаемого изобретения является создание способа получения качественных трубных катодов из сплавов на основе алюминия с плотностью не менее 98% для процесса ионно-плазменного нанесения жаростойких диффузионных покрытий.

Для достижения технической задачи предложен способ получения литого трубного катода из сплавов на основе алюминия для ионно-плазменного нанесения покрытий, включающий плавление сплава из шихты в вакууме, заливку расплава в вакууме в предварительно нагретую литейную форму, охлаждение литейной формы с отливкой, удаление отливки из формы, ее механическую обработку, нанесение припоя на внутреннюю поверхность катода и пайку катода с охлаждаемой оправкой, отличающийся тем, что осуществляют плавление алюминиевого сплава из шихты, включающей алюминий и один или несколько элементов, выбранных из ряда, состоящего из кремния, иттрия, никеля, кобальта, хрома, бора или лигатуры на их основе, при этом плавку и заливку предварительно нагретой литейной формы осуществляют в вакуумно-индукционной печи, в процессе плавки проводят электромагнитное перемешивание и рафинирование расплава со скоростью 6-20 кг/мин в графитовую форму с заливочной чашей и цилиндрическим трубным стержнем или металлический разъемный кокиль с цилиндрическим трубным стержнем.

Цилиндрический трубный стержень выполняют из песчано-глиняной смеси или из литейного графита.

Заливку литейной формы проводят при температуре расплава 710-850°С.

Наряду с шихтовыми материалами используют до 60% литейных отходов сплава.

Использование в качестве шихтовых материалов алюминия и одного или нескольких элементов из ряда: кремний, иттрий, никель, кобальт, хром, бор или лигатуры на их основе, позволяет расширить номенклатуру литых трубных катодов из сплавов на основе алюминия и получать качественные катоды, которые можно использовать в установках для нанесения ионно-плазменных жаростойких диффузионных алюминидных покрытий различного назначения (для защиты от высоких температур, для защиты от сульфидной коррозии, для защиты от солевой коррозии и др.).

Использование в качестве литейной формы графитовой формы с заливочной чашей и цилиндрическим трубным стержнем или металлического разъемного кокиля с цилиндрическим трубным стержнем позволяет повысить податливость этого стержня, что обеспечивает получение цилиндрических трубных металлических отливок из сплавов на основе алюминия различного состава, так как при кристаллизации расплава и последующем охлаждении отливки и ее термической усадки имеет место разрушение внутреннего цилиндрического стержня литейной формы. Это в свою очередь предохраняет от образования горячих трещин на внутренней поверхности отливки из сплавов на основе алюминия, имеющих температурный коэффициент линейного расширения свыше 20·10-6 1/град. При этом с целью снижения взаимодействия жидкого расплава с материалом формы для литья трубных катодов используют либо форму из литейного графита, либо разъемный металлический (чугунный) кокиль с цилиндрическим трубным стержнем из литейного графита или из песчано-глиняной смеси. Причем, вместо заливочной воронки, располагаемой над литейной формой, как используется в прототипе, используют заливочную чашу, завершающую литейную форму и выполняющую частично роль прибыльной части отливки, что позволяет для графитовых литейных форм уменьшить прибыльную часть по высоте отливки с (20-25)% как в известном способе до (10-12)%, обеспечивает увеличение КИМ шихтовых материалов и способствует получению катодов с плотностью не менее 98%.

Рафинирование расплава в вакууме, электромагнитное перемешивание расплава, заливка расплава в предварительно нагретую литейную форму при скоростях от 6 до 20 кг/мин обеспечивает высокое качество литых трубных катодов - высокую однородность сплава катода (минимальная ликвация по высоте катода), минимальную его пористость (<2%) при минимальном газосодержании (<0,02% по мас.). Использование при вакуумно-индукционной плавке до 60% литейных отходов обеспечивает увеличение коэффициента использования металла (КИМ) и не влияет на качество катодов благодаря рафинированию расплава в процессе плавки.

Предварительный нагрев литейной формы и заливка литейной формы расплавом при скоростях от 6 до 20 кг/мин способствует получению качественной отливки. При скоростях заливки меньше 6 кг/мин на отливках могут образоваться дефекты в виде «непропая», обусловленные быстрой кристаллизацией на стенках формы струй металла с окислением их поверхности, что при продолжающейся заливке формы не позволяет получить металлургическую связь между основной отливкой и закристаллизовавшимися струйками первичного металла на внутренней поверхности литейной формы. Максимально возможная скорость заливки 20 кг/мин для алюминиевых сплавов определяется пропускной возможностью литейной формы.

Для формы из литейного графита или металлического разъемного кокиля в качестве цилиндрического трубного стержня (формообразующего элемента внутренней полости трубного изделия) используют стержень, выполненный из песчано-глиняной смеси, или стержень из литейного графита с толщиной стенки 3-6 мм.

Для формирования качественной отливки из алюминиевых сплавов заливку формы в зависимости от конкретного состава сплава проводят в диапазоне температур расплава (710-850)°С, что обеспечивает оптимальный тепловой режим при кристаллизации отливки и формирование пористости и рыхлоты в заливочной чаше и в самой верхней части отливки.

Таким образом, предлагаемая совокупность отличительных признаков технического предложения позволит получать качественные трубные катоды с плотностью не менее 98% и минимальным газосодержанием из сплавов на основе алюминия для ионно-плазменного нанесения покрытий.

Сущность изобретения поясняется следующими примерами.

Пример 1. Для получения трубного катода из сплава на основе алюминия системы Al-5%Si-1,5%Y (мас.%) использовали чистый алюминий, кремний и лигатуру Al-Y и отходы сплавов. Шихтовые материалы и нагретую до 200°С графитовую форму с заливочной чашей и с цилиндрическим трубным стержнем размещали в вакуумно-индукционной печи. Графитовую форму перед нагревом собирали (внешний цилиндрический трубный кокиль и внутренний цилиндрический стержень устанавливали соосно на основании формы, сверху устанавливали заливочную чашу, которая обеспечивала по верхней части формы соосность трубного цилиндрического стержня к внешнему цилиндрическому кокилю, затем фиксировали заливочную чашу от осевого перемещения вверх). Затем начинали откачку воздуха из плавильной печи, и после достижения в печи вакуума 6-0,6 Па начинали процесс плавки.

После полного расплавления алюминия, кремния и отходов сплава и прекращения кипения металла, проводили первичное рафинирование металла при его электромагнитном перемешивании (ЭМП). Затем вводили в расплав с выдержкой лигатуру алюминий-иттрий и проводили ЭМП. Затем заливали расплав в графитовую оболочковую форму при скорости заливки 6 кг/мин и температуре расплава 710°С.

После охлаждения отливки удаляли литейную форму, производили отрезку прибыльной части отливки, проводили ее механическую обработку до получения трубного катода требуемых размеров и чистоты поверхности. Затем производили нанесение припоя на внутреннюю поверхность катода. Для этого проводили сначала контактное никелирование внутренней поверхности катода, затем проводили химическое снятие слоя никеля и осветление этой поверхности, затем последовательно проводили гальваническое меднение с толщиной слоя 15-18 мкм и лужение поверхности внутренней полости катода с толщиной слоя 30-50 мкм. Затем проводили пайку катода к предварительно луженой медной оправке. В таком виде катод может быть использован в установках для нанесения ионно-плазменных жаростойких покрытий диффузионного типа из сплавов на основе алюминия. Полученный литой катод имел плотность 98,6% при КИМ - 93,8%.

Пример 2. Пример аналогичен примеру 1 и отличается тем, что в качестве сплава катода использовали сплав на основе алюминия системы Al-Ni-Y. В качестве литейной формы использовали металлический разъемный кокиль с песчано-глиняным трубным цилиндрическим стержнем, и нагревали литейную форму до температуры 160°С. В вакуумно-индукционную печь помещали нагретую литейную форму, алюминий и отходы сплава Al-Ni-Y, и после их расплавления и первичного рафинирования давали присадку лигатуры Ni-10%Y, проводили выдержку расплава и проводили ЭМП. Затем проводили заливку расплава в литейную форму при скорости 13 кг/мин и температуре расплава 760°С. Полученный литой катод имел плотность 98,7% при КИМ - 94,3%.

Пример 3. Пример аналогичен примеру 1 и отличается тем, что в качестве сплава катода используется сплав на основе алюминия системы Al-Co-Si-Y. В вакуумно-индукционную печь помещали нагретую до 120°С литейную графитовую форму, кобальт в виде тонких пластин и алюминий (в чушках), и после выдержки расплава в течение 20 минут и ЭМП расплава давали присадку кремния и включали ЭМП. Затем давали присадку лигатуры Al-10%Y. Затем после повторного рафинирования расплава проводили заливку графитовой формы с песчано-глиняным стержнем при скорости заливки 20 кг/мин и температуре расплава 800°С. Полученный литой катод имел плотность 98,2% при КИМ - 94,6%.

Пример 4. Пример аналогичен примеру 1 и отличается тем, что в качестве сплава катода использовали сплав на основе алюминия системы Al-Cr-Ni-Y. В вакуумно-индукционную печь помещали литейную форму, предварительно нагретую до 200°С, никель в виде тонких пластин, алюминий (в чушках), хром и очищенные отходы сплава и после расплавления и рафинирования расплава давали присадку лигатуры Al-10%Y или Ni-10%Y, делали выдержку расплава в течение 20 минут, включали ЭМП, затем проводили заливку расплава в форму при скорости 20 кг/мин и температуре расплава 850°С. Полученный литой катод имел плотность 98,5% при КИМ - 94,5%.

Пример 5. Пример аналогичен примеру 2 и отличается тем, что в качестве сплава катода использовали сплав на основе алюминия системы Al-Si-Ni-B. В вакуумно-индукционную печь помещали литейную форму с металлическим разъемным кокилем и цилиндрическим трубным стержнем из литейного графита, предварительно нагретую до температуры 120°С, алюминий (в чушках), лигатуру Ni-10%B и отходы сплава Al-Si-Ni-B, и после выдержки и рафинирования расплава и ЭМП давали присадку кремния, проводили выдержку расплава в течение 25 минут, включали ЭМП, затем проводили заливку расплава в форму при скорости 15 кг/мин и температуре расплава 830°С. Полученный литой катод имел плотность 98,8% при КИМ - 94,8%.

Лабораторные исследования катодов, полученных в соответствии с предлагаемым техническим решением, показали, что новый способ позволяет получать катоды высокой плотности (свыше 98%) из сплавов на основе алюминия и высокой чистоты (сумма кислорода, азота и водорода в катодах из сплавов на основе алюминия составляет не более 0,02% по массе). Испытания охлаждаемых трубных катодов в установках для вакуумно-дугового испарения показали, что предлагаемый способ обеспечивает получение качественных диффузионных покрытий на лопатках ГТД.

1.Способполучениялитоготрубногокатодаизсплавовнаосновеалюминиядляионно-плазменногонанесенияпокрытий,включающийплавлениесплаваизшихтыввакууме,заливкурасплававвакуумевпредварительнонагретуюлитейнуюформу,охлаждениелитейнойформысотливкой,удалениеотливкиизформы,еемеханическуюобработку,нанесениеприпоянавнутреннююповерхностькатодаипайкукатодасохлаждаемойоправкой,отличающийсятем,чтоосуществляютплавлениеалюминиевогосплаваизшихты,включающейалюминийиодинилинесколькоэлементов,выбранныхизряда,состоящегоизкремния,иттрия,никеля,кобальта,хрома,бораилилигатурынаихоснове,приэтомплавкуизаливкупредварительнонагретойлитейнойформыосуществляютввакуумно-индукционнойпечи,впроцессеплавкипроводятэлектромагнитноеперемешиваниеирафинированиерасплава,заливкурасплаваосуществляютсоскоростью6-20кг/минвграфитовуюформусзаливочнойчашейицилиндрическимтрубнымстержнем,илиметаллическийразъемныйкокильсцилиндрическимтрубнымстержнем.12.Способпоп.1,отличающийсятем,чтоцилиндрическийтрубныйстерженьвыполняютизпесчано-глинистойсмесиилилитейногографита.23.Способпоп.1,отличающийсятем,чтозаливкулитейнойформыпроводятпритемпературерасплава710-850°С.34.Способпоп.1,отличающийсятем,чтошихтавключаетдо60%литейныхотходовсплава.4
Источник поступления информации: Роспатент

Показаны записи 321-330 из 354.
09.06.2019
№219.017.7826

Жаропрочный свариваемый сплав на основе никеля и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к жаропрочным свариваемым сплавам на основе никеля, предназначены для изготовления корпусов, кожухов, теплозащитных экранов и других сварных узлов и деталей, работающих при температурах до 900°С. Предложен жаропрочный свариваемый сплав на...
Тип: Изобретение
Номер охранного документа: 0002256717
Дата охранного документа: 20.07.2005
09.06.2019
№219.017.7932

Защитное технологическое покрытие для сталей и сплавов

Изобретение относится к защитным покрытиям от окисления при технологических нагревах в процессе получения высококачественных деталей и полуфабрикатов из сталей и сплавов. Технический результат изобретения заключается в повышении температуроустойчивости и теплоизоляционных свойств защитного...
Тип: Изобретение
Номер охранного документа: 0002345963
Дата охранного документа: 10.02.2009
09.06.2019
№219.017.796c

Способ получения литейных жаропрочных сплавов на никелевой основе

Изобретение относится к области металлургии, а именно к производству жаропрочных сплавов на никелевой основе с применением различного вида отходов, и может быть использовано при получении шихтовых заготовок для литья изделий. Обеспечивается снижение в сплаве содержания вредных примесей,...
Тип: Изобретение
Номер охранного документа: 0002392338
Дата охранного документа: 20.06.2010
09.06.2019
№219.017.79c6

Способ получения высокотемпературного волокна на основе оксида алюминия

Изобретение относится к области теплозащитных материалов. Технический результат изобретения заключается в сокращении технологического цикла, повышении контролируемости процесса доведения волокнообразующего раствора до требуемой вязкости и стабильности химического состава и свойств получаемого...
Тип: Изобретение
Номер охранного документа: 0002395475
Дата охранного документа: 27.07.2010
09.06.2019
№219.017.79e6

Защитное технологическое покрытие для сталей и сплавов

Изобретение относится к защитным технологическим покрытиям для защиты сталей и сплавов от окисления при технологических нагревах и при термомеханической обработке давлением в процессе получения деталей. Технический результат изобретения заключается в понижении сцепления покрытия к сталям и...
Тип: Изобретение
Номер охранного документа: 0002312827
Дата охранного документа: 20.12.2007
09.06.2019
№219.017.7a17

Связующее для получения антифрикционных изделий, препрег и изделие, выполненное из него

Изобретение относится к области производства антифрикционных материалов и изделий и может быть использовано при изготовлении высоконагруженных подшипников скольжения в машино- и судостроении, авиационной промышленности и других областях техники. Предложено связующее для получения...
Тип: Изобретение
Номер охранного документа: 0002313010
Дата охранного документа: 20.12.2007
09.06.2019
№219.017.7a23

Установка для нанесения защитных покрытий

Изобретение относится к установке для нанесения защитных покрытий и может найти применение для получения защитных покрытий на изделиях авиационной техники. Для повышения качества покрытий за счет устранения их остаточной пористости и расширения технологических возможностей установки при...
Тип: Изобретение
Номер охранного документа: 0002318078
Дата охранного документа: 27.02.2008
09.06.2019
№219.017.7ad9

Сплав на основе титана и изделие, выполненное из него

Изобретение относится к цветной металлургии, а именно к созданию титановых сплавов, предназначенных для использования в качестве конструкционного материала при изготовлении обшивки, лонжеронов, шпангоутов, фюзеляжа, крыльев, агрегатов и других деталей летательных аппаратов. Сплав на основе...
Тип: Изобретение
Номер охранного документа: 0002356977
Дата охранного документа: 27.05.2009
09.06.2019
№219.017.7add

Низковязкая силоксановая композиция

Изобретение относится к области низковязких силоксановых композиций, способных отверждаться при комнатной температуре с образованием эластомерных материалов, которые могут быть использованы в качестве диэлектриков и изоляторов. Предложена низковязкая силоксановая композиция, включающая, мас.ч.:...
Тип: Изобретение
Номер охранного документа: 0002356117
Дата охранного документа: 20.05.2009
09.06.2019
№219.017.7ade

Сплав на основе титана и изделие, выполненное из него

Изобретение относится к цветной металлургии, а именно к созданию титановых сплавов Может использоваться для деталей и узлов авиакосмической и ракетной техники, изготовление которых требует высокой технологической пластичности сплава. Сплав на основе титана содержит, мас.%: алюминий 2,0-6,5;...
Тип: Изобретение
Номер охранного документа: 0002356976
Дата охранного документа: 27.05.2009
Показаны записи 321-329 из 329.
21.05.2020
№220.018.1f5a

Жаропрочный деформируемый сплав на основе никеля с низким температурным коэффициентом линейного расширения и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к жаропрочным деформируемым сплавам на основе никеля с низким коэффициентом линейного расширения. Жаропрочный деформируемый сплав на основе никеля, содержащий, мас. %: углерод 0,02-0,08, кобальт 18,0-25,0, железо 20,0-35,0, хром 0,3-1,2,...
Тип: Изобретение
Номер охранного документа: 0002721261
Дата охранного документа: 18.05.2020
27.06.2020
№220.018.2bca

Высокопрочная коррозионно-стойкая сталь

Изобретение относится к области металлургии, а именно к высокопрочным коррозионно-стойким сталям, выплавляемым в вакуумно-индукционной печи с последующим электрошлаковым переплавом для введения азота под давлением, используемым для изготовления подшипников качения. Сталь содержит компоненты в...
Тип: Изобретение
Номер охранного документа: 0002724766
Дата охранного документа: 25.06.2020
12.04.2023
№223.018.426b

Теплостойкий плёночный клей

Настоящее изобретение относится к теплостойкому пленочному клею. Теплостойкий пленочный клей содержит армирующий наполнитель с нанесенной на него полимерной основой. Полимерная основа представляет собой имидообразующую смесь, включающую по меньшей мере один диалкоксиэфир тетракарбоновой...
Тип: Изобретение
Номер охранного документа: 0002760127
Дата охранного документа: 22.11.2021
11.05.2023
№223.018.53e2

Способ получения высокочистого мелкодисперсного металлического композиционного порошка на основе алюминиевого сплава, армированного частицами карбида кремния

Изобретение относится к порошковой металлургии, а именно к получению металлического композиционного порошка на основе алюминиевого сплава, армированного частицами карбида кремния, предназначенного для изготовления деталей газотурбинных двигателей методом аддитивного производства. Способ...
Тип: Изобретение
Номер охранного документа: 0002795434
Дата охранного документа: 03.05.2023
15.05.2023
№223.018.57be

Сплав на основе кобальта

Изобретение относится к области порошковой металлургии, а именно к сплавам на основе кобальта, предназначенным для изготовления деталей ГТД с рабочими температурами не менее 1100°С методом аддитивного производства из металлического порошка. Сплав на основе кобальта для изготовления деталей...
Тип: Изобретение
Номер охранного документа: 0002767961
Дата охранного документа: 22.03.2022
15.05.2023
№223.018.57e7

Способ производства деталей малоразмерного газотурбинного двигателя с тягой до 150 кгс методом селективного лазерного сплавления

Изобретение относится к производству деталей малоразмерного газотурбинного двигателя (МГТД) с тягой до 150 кгс из металлопорошковых композиций сплавов марок никелевых ВЖ159, кобальтовых ВЛК1, алюминиевых АК9ч методом селективного лазерного сплавления. Способ включает создание электронной...
Тип: Изобретение
Номер охранного документа: 0002767968
Дата охранного документа: 22.03.2022
16.05.2023
№223.018.607b

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, а именно к жаропрочным литейным сплавам на основе никеля, и может быть использовано для литья деталей горячего тракта газотурбинных двигателей. Жаропрочный литейный сплав на основе никеля содержит, мас. %: углерод до 0,20; хром 5,0-11,0; кобальт 5,0-11,0;...
Тип: Изобретение
Номер охранного документа: 0002740929
Дата охранного документа: 21.01.2021
16.05.2023
№223.018.607c

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, а именно к жаропрочным литейным сплавам на основе никеля, и может быть использовано для литья деталей горячего тракта газотурбинных двигателей. Жаропрочный литейный сплав на основе никеля содержит, мас. %: углерод до 0,20; хром 5,0-11,0; кобальт 5,0-11,0;...
Тип: Изобретение
Номер охранного документа: 0002740929
Дата охранного документа: 21.01.2021
16.05.2023
№223.018.607d

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, а именно к жаропрочным литейным сплавам на основе никеля, и может быть использовано для литья деталей горячего тракта газотурбинных двигателей. Жаропрочный литейный сплав на основе никеля содержит, мас. %: углерод до 0,20; хром 5,0-11,0; кобальт 5,0-11,0;...
Тип: Изобретение
Номер охранного документа: 0002740929
Дата охранного документа: 21.01.2021
+ добавить свой РИД