×
19.04.2019
219.017.2c0a

СПОСОБ ПОЛУЧЕНИЯ ЩЕЛОЧНЫХ И ЩЕЛОЧНО-ЗЕМЕЛЬНЫХ МЕТАЛЛОВ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002283371
Дата охранного документа
10.09.2006
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к способу получения щелочных и щелочноземельных металлов. Способ включает электролиз растворов солей в органическом растворителе с использованием водного раствора гетерополикислоты 2-18 ряда. После восстановления кислоту нейтрализуют карбонатом или гидроксидом щелочного или щелочно-земельного металла, затем обезвоживают, выпаривают, растворяют и проводят электролиз при определенных условиях, обеспечивается существенное снижение энергозатрат.
Реферат Свернуть Развернуть

Изобретение относится к способу получения щелочных и щелочно-земельных металлов в органических растворах путем электролиза.

Изобретение может быть использовано для получения щелочных и щелочно-земельных металлов энергетически выгодным методом.

Известен способ [заявка на изобретение №99105639/02 от 22.03.1999 «Способ получения магния и хлора и поточная линия для его осуществления»]. Способ получения магния и хлора путем электролиза магния в расплаве хлоридов включает приготовление электролита из хлормагниевого сырья или его смеси с хлоридами щелочных и щелочно-земельных металлов в электролизерах, соединенных с помощью транспортных каналов в замкнутый гидродинамический контур - поточную линию, в которой осуществляют принудительное движение электролита с магнием, накапливание магния в разделительном агрегате, периодическое удаление магния и удаление отработанного электролита из разделительного агрегата, в котором хлормагниевое сырье и/или его смесь с хлоридами щелочных и щелочно-земельных металлов загружают в электролизеры в твердом виде и поддерживают содержание MgCl2 в электролите в интервале 7-11%, при этом за счет изменения величины загрузки в 30-50% электролизеров, размещенных после разделительного агрегата по ходу движения электролита, содержание MgCl2 увеличивают от минимального до максимального значения, а в 30-50% электролизеров, размещенных перед разделительным агрегатом, содержание MgCl2 снижают от максимального до минимального значения.

Несмотря на то, что достоинством данного способа является усовершенствованный метод получения хлора, он достаточно трудоемок, так как включает в себя большое количество технологических операций и сопровождается большими энергетическими затратами, связанными с поддержанием высокой температуры расплава, а также затратой электрической энергии на электролиз самого расплава.

Известен способ [патент №2037543, опубл. 19.06.1995 «Способ получения металлов и сплавов»]. Сущность способа заключается в растворении окислов в расплаве галогенидов щелочных и/или щелочно-земельных металлов и жидкофазное восстановление окислов из раствора их в расплаве-растворителе. Восстановление осуществляют твердым углеродом при температуре, соответствующей энергии образования окисла. После восстановления окислов расплав-растворитель отделяют от металла и повторно используют для растворения исходного продукта, при этом на электролиз самого расплава энергия не расходуется. Однако из-за необходимости поддержания температуры окисления твердого углерода энергетические затраты также велики.

Данный способ имеет большие энергетические затраты, как и способ 1, связанные с поддержанием высокой температуры расплава и поддержанием температуры окисления твердого углерода.

Достоинством данного способа является то, что на электролиз самого расплава энергия не расходуется.

Известен способ получения кальция в промышленности, который заключается в электролизе расплава CaCl2 (75-85%)+KCl [«Химическая энциклопедия», издательство «Советская энциклопедия». М., 1990 г., том 2, стр.579]. Необходимый для электролиза чистый безводный CaCl2 производят хлорированием СаО при нагревании в присутствии угля или обезвоживанием CaCl2×6Н2О, полученного действием соляной кислоты на известняк. По мере выделения кальция в электролит добавляют CaCl2. Электролиз ведут с графитовым анодом, катодом служит жидкий сплав Са (62-65%)+Cu. Содержание кальция в сплаве постоянно возрастает. Часть обогащенного сплава периодически извлекают и добавляют сплав, обедненный кальцием (30-35% Са). Температура процесса 680-720°С, при более низкой температуре обогащенный кальцием сплав всплывает на поверхность электролита, а при более высокой происходит растворение кальция в электролите с образованием CaCl2. На 1 кг Са расходуется энергия 40-50 кВт/ч. Из сплава Са+Cu кальций отгоняют в вакуумной реторте при 1000-1080°С и остаточном давлении 13-20 кПа. Для получения высокочистого кальция его перегоняют дважды.

Достоинством данного способа является возможность получения высокочистого металлического кальция, однако он является трудоемким и требует больших энергетических затрат при повышенной температуре.

Как правило, все щелочные и щелочно-земельные металлы, такие как натрий, калий, кальций, магний, ряд тугоплавких и редких металлов, а также фтор получают электролизом расплавленных сред, поскольку электролизом водных растворов их получить практически невозможно из-за высокой реакционной способности (фтор, щелочные металлы) и преимущественного протекания на электродах процессов выделения водорода (на катоде) или кислорода (на аноде) [«Электрохимическая технология неорганических веществ» В.Л.Кубасов, В.В.Банников, издательство «Химия». М., 1989, с.202]. Поэтому общим недостатком всех известных способов являются большие энергозатраты на поддержание температуры расплава.

Наиболее близким по своей сущности к изобретению является способ получения щелочных и щелочно-земельных металлов путем электролиза органических растворов соединений этих металлов. [«Электрохимическая технология неорганических веществ» В.Л.Кубасов, В.В.Банников, издательство «Химия». М., 1989, с.202]. Однако невысокая электропроводность органических растворов делает данный способ малоэффективным. Кроме того, затраты электрической энергии на проведение электролиза достаточно велики.

Техническая задача заключается в получении щелочных и щелочноземельных металлов экономически выгодным способом. Затраты электроэнергии должны быть не менее чем в 5000 раз меньше, чем при электролизе солей.

Технический результат достигается за счет использования в качестве солей щелочного и щелочно-земельного металла гетерополикислоты 2-18 ряда Н6[P2W18O62].

Существо заявленного технического решения заключается в том, что в известном способе получения щелочных и щелочно-земельных металлов, заключающемся в электролизе растворов солей в органическом растворителе, предварительно приготавливают 15-25% по массе водный раствор гетерополикислоты 2-18 ряда, имеющей вольфрамовый анионный комплекс [P2W18O62]6-, который восстанавливают до анионного комплекса [P2W18O62]24- путем пропускания постоянного электрического тока, сила которого составляет 30-100 мкА при напряжении 2-2,5 В, с последующем образованием восстановленной формы гетерополикислоты H24[P2W18O62]. После этого ее нейтрализуют карбонатом или гидроксидом щелочного или щелочно-земельного металла до образования гетерополисоединения, которое, в свою очередь, обезвоживают путем выпаривания и растворяют в органическом растворителе до насыщения при температуре 15-22°С. Затем в раствор опускают два графитовых электрода и электролизуют раствор соли в органическом растворителе постоянным электрическим током при напряжении между электродами 2,5-3,2 В и силе тока 90-200 мкА до образования на катоде щелочного или щелочно-земельного металла в виде чешуек.

Процесс происходит следующим образом: сначала приготавливают 15-25% по массе водный раствор гетерополикислоты 2-18 ряда с вольфрамовым анионным комплексом [P2W18O62]6. Раствор наливают в гальваническую ванну и опускают два графитовых электрода. Через раствор пропускают постоянный электрический ток при силе тока 30-100 мкА и напряжении 2-2,5 В. На катоде происходит восстановление анионного комплекса гетерополикислоты с последующим образованием восстановленной формы кислоты, которая насыщает раствор

H6[P2W18O62]+9Н2O=H24[P2W18O62]+4,5O2.

После того, как сила тока при указанном напряжении станет меньше 30 мкА, процесс прекращают. Далее полученную кислоту нейтрализуют карбонатом или гидроксидом щелочного или щелочноземельного металла, в результате чего получается гетерополисоединение 2-18 ряда. В виде химических уравнений реакции процесс можно записать в следующем виде:

1) H24[P2W18O62]+MeCO3=Men[P2W18O62]+CO2+H2O

2) H24[P2W18O62]+МеОН=Men[P2W18O62]+Н2O

Me - щелочной или щелочно-земельный металл, имеющий соответственно степень окисления +1 или +2.

После того как образовалась гетерополисоль щелочного или щелочно-земельного металла, из нее удаляют воду методом выпаривания раствора, после чего сухую соль растворяют в каком-либо полярном органическом растворителе, например γ-бутиролактоне или пиридине до насыщения при температуре 15-22°С, после чего в раствор опускают два графитовых электрода (анод и катод) и электролизуют раствор соли в органическом растворителе постоянным электрическим током при напряжении 2,5-3,2 В и силе тока 90-200 мкА. При этом на катоде происходит выделение и осаждение щелочного или щелочноземельного металла в виде чешуек. На аноде происходит окисление анионного комплекса

[P2W18O62]24-→[P2W18O62]6-+18е-.

Общий вид реакции можно записать в виде уравнения

Men[P2W18O62]+H2O=Me↓+H6[P2W18O62]+O2+H2.

Пример 1. Получение кальция.

Приготовили 17% (по массе) водный раствор гетерополикислоты 2-18 ряда, имеющей химическую формулу H6[P2W18O62]. Раствор налили в гальваническую ванну и опустили два графитовых электрода. Затем через раствор начали пропускать постоянный электрический ток. Напряжение между электродами составило 2,2 В. Начальная сила тока - 60 мкА. На катоде происходило восстановление анодного комплекса гетерополикислоты, а на аноде - выделение кислорода

H6[P2W18O62]+9H2O=H24[P2W18O62]+4,5O2.

После того как сила тока стала меньше 30 мкА, процесс остановили. Полученную кислоту нейтрализовали карбонатом кальция прямо в гальванической ванне с раствором. При этом наблюдалось выделение углекислого газа. Когда выделение углекислого газа прекратилось, порошок СаСО3 добавлять перестали.

Прекращение выделения углекислого газа означает, что кислота полностью нейтрализована. В виде химического уравнения реакции процесс можно записать следующим образом:

Н24[P2W18O62]+12СаСО3=Ca12[P2W18O62]+12СO2+12Н2O.

Полученную гетерополисоль выделили из раствора методом выпаривания и просушили. Сухие кристаллы Ca12[P2W18O62] растворили при температуре 18°С в γ-бутиролактоне, довели концентрацию до насыщения, после чего в раствор опустили два графитовых электрода (анод и катод) и электролизовали раствор постоянным электрическим током. Электролиз проводили при напряжении между анодом и катодом 2,9 В в течение 8 часов. Сила тока при этом составила 100 мкА. На катоде происходило окисление анодного комплекса

[P2W18O62]24-→[P2W18O62]6-+18е-

с образованием исходной кислоты. Остаточная вода, которая осталась в Ca12[P2Me18O62], разлагалась в ходе процесса и часть водорода связывалась анодным комплексом.

Затраты электрической энергии составили 8,35 Дж, что в 16667 раз меньше, чем при обычном электролизе солей в растворах. Масса полученного кальция составила 10 г. Процесс получения кальция можно представить следующим уравнением:

9Ca12[P2W18O62]+28Н2O=108Ca↓+9Н6[P2W18O62]+14O22.

Гетерополикислота не реагирует в неводных растворах с металлическим кальцием.

Пример 2. Получение лития.

Приготовили 20% (по массе) водный раствор гетерополикислоты 2-18 ряда, имеющей химическую формулу H6[P2W18O62]. Раствор налили в гальваническую ванну и опустили два графитовых электрода. Затем через раствор начали пропускать постоянный электрический ток. Напряжение между электродами составило 2,3 В. Начальная сила тока - 70 мкА. На катоде происходило восстановление анодного комплекса гетерополикислоты, а на аноде выделялся кислород

H6[P2W18O62]+9H2O=H24[P2W18O62]+4,5O2.

После того как сила тока стала меньше 30 мкА, процесс остановили. Полученную кислоту нейтрализовали гидроксидом лития прямо в гальванической ванне с раствором. С помощью лакмусовой бумажки контролировали рН раствора. После того как рН стал равным примерно семи, LiOH добавлять перестали. рН, равный семи означал, что кислота полностью нейтрализована. В виде химического уравнения реакции процесс можно записать следующим образом:

Н24[P2W18O62]+24LiOH=Li24[P2W18O62]+24Н2O.

Полученную гетерополисоль выделили из раствора методом выпаривания и просушили. Сухие кристаллы Li12[P2W18O62] растворили при температуре 22°С в пиридине, довели концентрацию до насыщения, после чего в раствор опустили два графитовых электрода (анод и катод) и электролизовали раствор постоянным электрическим током. Электролиз проводили при напряжении между анодом и катодом 3,1 В в течение 8 часов. Сила тока при этом составила 140 мкА. На катоде происходило окисление анодного комплекса

[P2W18O62]24-→[P2W18O62]6-+18е-

с образованием исходной кислоты. Остаточная вода, которая осталась в Li24[P2Me18O62], разлагалась в ходе процесса и часть водорода связывалась анодным комплексом.

Затраты электрической энергии составили 12,5 Дж, что в 5300 раз меньше, чем при обычном электролизе солей в растворах. Процесс получения лития можно представить следующим уравнением:

Li24[P2W18O62]+2Н2O=24Li↓+Н6[P2W18O62]+3O2+3Н2.

Масса полученного лития составила 1,59 г. Гетерополикислота не реагирует в неводных растворах с металлическим литием.

Эффект, который достигается в результате реализации заявленного способа, обусловлен тем, что дополнительная энергия, затрачиваемая на выделение щелочного или щелочно-земельного металла, накапливается в гетерополикомплексе в ядерной форме. За счет изменения степени окисления вольфрама происходит резкое изменение заряда всего комплекса, которое в конечном итоге приводит к возникновению частиц со сверхвысокими энергиями с последующими взаимопревращениями (RU №2168289, кл. Н 05 Н 1/00).

Резко снижаются затраты электроэнергии, что позволяет использовать способ для получения этих металлов в промышленных объемах, тем более что способ не требует специального высокотехнологичного оборудования.

В частности, полученный таким образом металлический кальций в дальнейшем может быть использован для получения водорода из воды.

Способполучениящелочныхищелочно-земельныхметаллов,включающийэлектролизрастворовсолейворганическомрастворителе,отличающийсятем,чтопредварительноприготавливают15-25%помассеводныйрастворгетерополикислоты2-18ряда,имеющейвольфрамовыйанионныйкомплекс[PWО],которыйвосстанавливаютдоанионногокомплекса[PWО]путемпропусканияпостоянногоэлектрическоготока,силакоторогосоставляет30-100мкА,принапряжении2-2,5ВспоследующимобразованиемгетерополикислотывосстановленнойформыН[РWO],послечегоеенейтрализуюткарбонатомилигидроксидомщелочногоилищелочно-земельногометалладообразованиягетерополисоли,которуюобезвоживаютвыпариваниемирастворяютворганическомрастворителедонасыщенияпритемпературе15-22°С,затемврастворопускаютдваграфитовыхэлектрода,анодикатод,иэлектролизуютрастворсоливорганическомрастворителепостояннымэлектрическимтокомпринапряжениимеждуэлектродами2,5-3,2Висилетока90-200мкАдообразованиянакатодещелочногоилищелочно-земельногометаллаввидечешуек.
Источник поступления информации: Роспатент

Показаны записи 1-10 из 11.
20.06.2014
№216.012.d396

Полимерный фотоэлетрический модуль и способ его изготовления

Изобретение относится к полимерному фотоэлектрическому модулю, выполненному на основе допированной пленки проводящего полимера полианилина. Модуль характеризуется тем, что полианилин допирован гетерополианионным комплексом 2-18 ряда, имеющим химическую формулу [PWO]. Допированная пленка...
Тип: Изобретение
Номер охранного документа: 0002519937
Дата охранного документа: 20.06.2014
27.06.2014
№216.012.d848

Способ изготовления термоэлектрического охлаждающего элемента

Изобретение относится к полупроводниковой технике, в частности к области создания охлаждающих элементов. Технический результат: повышение к.п.д. Сущность: в качестве материала для термоэлемента используют полимерный материал - полианилин, допированный различными химическими добавками....
Тип: Изобретение
Номер охранного документа: 0002521146
Дата охранного документа: 27.06.2014
10.08.2014
№216.012.e889

Способ изготовления термоэлектрического генератора

Изобретение относится к полупроводниковой технике, в частности к области создания термоэлектрических генераторов. Технический результат: повышение эффективности преобразования тепловой энергии в электрическую. Сущность: в качестве термоэлектрических материалов используют полианилин,...
Тип: Изобретение
Номер охранного документа: 0002525322
Дата охранного документа: 10.08.2014
20.04.2016
№216.015.3384

Способ получения жидких органических топлив из углекислого газа, окиси углерода и воды

Изобретение раскрывает способ получения жидких органических топлив из углекислого газа, окиси углерода и воды, включающий использование гетерополикислоты 2-18 ряда, имеющей химическую формулу H[PWO], где степень окисления вольфрама составляет +6, которую облучают в присутствии железных и...
Тип: Изобретение
Номер охранного документа: 0002582125
Дата охранного документа: 20.04.2016
09.08.2018
№218.016.78cd

Способ получения синтетической целлюлозы

Изобретение относится к способам получения синтетической целлюлозы путем полимеризации водного раствора глюкозы. Изобретение может быть использовано для получения целлюлозы высокой чистоты, и данный способ в перспективе может лечь в основу новой промышленной технологии получения синтетической...
Тип: Изобретение
Номер охранного документа: 0002663434
Дата охранного документа: 06.08.2018
10.04.2019
№219.017.05b9

Пространственный каркас с ячеистой структурой для армирования грунтов (варианты) и лента для его изготовления (варианты)

Изобретение относится к области строительства, а именно для армирования грунтов при строительстве дорог, в том числе и на основаниях, сложенных структурно-неустойчивыми грунтами, а также для укрепления откосов дорог, откосов береговых линий и русел водоемов, откосов карьеров горнорудной...
Тип: Изобретение
Номер охранного документа: 0002323301
Дата охранного документа: 27.04.2008
19.04.2019
№219.017.2c2a

Гальванический источник постоянного тока

Изобретение относится к области электротехники и может быть использовано при производстве гальванических источников постоянного тока. Техническим результатом изобретения является увеличение тока разряда и повышение электрической емкости. Согласно изобретению в источнике тока в качестве...
Тип: Изобретение
Номер охранного документа: 0002282917
Дата охранного документа: 27.08.2006
19.04.2019
№219.017.2ed3

Кремниево-полимерный фотоэлектрический модуль для низких широт и способ его изготовления

Изобретение относится к конструкции и способу изготовления фотоэлектрических элементов для получения электрической энергии, способных работать в низких широтах. Фотоэлектрический преобразователь на основе монокристаллического кремния изготавливают следующим образом: методом потенциостатического...
Тип: Изобретение
Номер охранного документа: 0002381595
Дата охранного документа: 10.02.2010
19.04.2019
№219.017.3068

Способ и устройство определения наличия и химического состава вещества

Изобретение относится к области аналитического приборостроения, а именно к средствам для определения месторасположения различных веществ. Способ определения наличия и химического состава вещества путем регистрации селективного изменения физико-химических параметров чувствительного элемента,...
Тип: Изобретение
Номер охранного документа: 0002362990
Дата охранного документа: 27.07.2009
14.05.2019
№219.017.519a

Способ создания направленного ионизирующего канала в воздушной среде

Изобретение относится к способам создания направленного ионизирующего канала в воздушной среде и может быть использовано для создания устройств для научных исследований в области электричества, в частности для получения газоразрядной плазмы в воздушной среде и исследования ее свойств. В...
Тип: Изобретение
Номер охранного документа: 0002687291
Дата охранного документа: 13.05.2019
+ добавить свой РИД