×
17.04.2019
219.017.1649

Результат интеллектуальной деятельности: ПЛАНАРНЫЙ ИЗЛУЧАТЕЛЬ

Вид РИД

Изобретение

Аннотация: Изобретение относится к антенной технике микроволнового диапазона и может быть использовано в зондирующих устройствах диагностического оборудования, в возбудителях квазиоптических линий передач миллиметрового диапазона и предназначено для формирования локализованного излучения в виде волновых пучков гауссова типа, сохраняющего пучковые свойства на расстояниях до десятков длин волн. Технический результат изобретения - возможность получения излучения одномерного гауссова пучка с требуемыми шириной пучка и фазовым распределением поля в пучке, сохраняющего пучковые свойства на расстояниях до десятков длин волн от апертуры излучателя. В планарном излучателе, состоящем из возбуждающего диэлектрического волновода и диэлектрического плоского клина, торец которого является апертурой излучателя, клин соединен со стороны его вершины с возбуждающим его одномодовым диэлектрическим волноводом с поляризацией электрического поля вдоль широкой стороны его прямоугольного сечения, причем угол при вершине клина должен быть не более пятнадцати градусов, толщина клина b равна узкой стороне сечения возбуждающего волновода, а формат поперечного сечения клина Ф на торце клина и минимальный формат сечения клина на торце излучателя выбирается из математических выражений. 2 з.п. ф-лы, 3 ил.

Изобретение относится к антенной технике микроволнового диапазона и может быть использовано в зондирующих устройствах диагностического оборудования, в возбудителях квазиоптических линий передач миллиметрового диапазона и предназначено для формирования локализованного излучения в виде волновых пучков гауссова типа, сохраняющего пучковые свойства на расстояниях до десятков длин волн.

Известны стержневые излучатели в виде торца регулярного или слабонерегулярного одномодового диэлектрического волновода (ДВ) [1].

Недостатком таких излучателей является формирование излучения в виде сильнорасходящегося пучка (пучковые свойства излучения сохраняются на расстояниях не более (2-3) длин волн от торца излучателя).

Наиболее близким к предлагаемому изобретению является планарный излучатель, выбранный за прототип, состоящий из возбуждающего диэлектрического планарного волновода и присоединенного к нему своим основанием плоского клина, вершина (торец) которого является апертурой излучателя [2].

Недостатками излучателя являются сохранение пучковых свойств одномерного расходящегося пучка на расстояниях в единицы длин волн от торца (вершины) клина и ограниченные возможности формирования пучка требуемой ширины, так же как и для случая торца регулярного ДВ, в связи с одномодовым режимом волн на торце клина.

Техническим результатом предложенного изобретения является возможность получения излучения одномерного гауссова пучка с требуемыми шириной пучка и фазовым распределением поля в пучке, сохраняющего пучковые свойства на расстояниях до десятков длин волн от апертуры излучателя.

Технический результат достигается тем, что в планарном излучателе, состоящем из возбуждающего диэлектрического волновода и диэлектрического плоского клина, торец которого является апертурой излучателя, клин соединен со стороны его вершины с возбуждающим его одномодовым диэлектрическим волноводом с поляризацией электрического поля вдоль широкой стороны его прямоугольного сечения, причем угол при вершине клина должен быть не более пятнадцати градусов, толщина клина b равна узкой стороне сечения возбуждающего волновода, а формат поперечного сечения клина Ф на торце клина выбирается в зависимости от требуемой ширины d0 излучаемого волнового пучка на торце клина из соотношения

где λ - длина волны излучения и ε - относительная диэлектрическая проницаемость клина, которая должна быть в пределах от 2,0 до 2,5, при этом минимальный формат сечения клина на торце излучателя выбирается из условия

а профиль формата клина от вершины до торца выполнен линейным.

Клин от его торца продолжен пластиной с постоянным форматом сечения, равным формату сечения клина на его торце, выполненной из того же материала, что и клин, а длина пластины выбирается из условия обеспечения сдвига фаз возбужденных в клине и распространяющихся в пластине волн высшего типа Н30 относительно волны основного типа Н10, кратного четверти длины волны биений между указанными типами волн.

На торце пластины находится планарная линза с форматом основания линзы, равным формату пластины, и выполненная из того же материала, что и пластина.

На фиг.1 представлен планарный излучатель.

На фиг.2 представлен планарный излучатель, клин которого продолжает пластина.

На фиг.3 представлен планарный излучатель, на торце пластины которого находится планарная линза.

На фиг.1 показан планарный излучатель, состоящий из возбуждающего одномодового диэлектрического волновода 1 прямоугольного сечения (а×b), плавно переходящий в сечении I в клин 2 с углом при вершине α≤15°, торец которого является апертурой излучателя. Поляризация электрического поля Е основного типа волн волновода 1 направлена вдоль широкой стороны а сечения волновода 1 и сохраняется в клине 2 вдоль широкой стороны a(z) сечения клина. Толщина клина 2 постоянна и равна узкой стороне b поперечного сечения волновода 1. Широкая сторона a(z) поперечного сечения клина 2 увеличивается по линейному закону.

Формат поперечного сечения клина на его торце Ф=a1/b (сечение II), а следовательно, и длина клина L1 выбирается в зависимости от требуемой ширины волнового пучка d0 на торце клина по соотношению:

Клин 2 выполнен из того же материала, что и волновод 1 с относительной диэлектрической проницаемостью ε в пределах от 2,0 до 2,5.

На фиг.2 изображен планарный излучатель, содержащий, наряду с возбуждающим волноводом 1 и клином 2, присоединенную к торцу клина в сечении II пластину 3 с форматом поперечного сечения, равным формату сечения клина на торце Ф=а1/b, и длиной L2, выбираемой из приведенного выше условия обеспечения необходимого сдвига фаз возбужденных в клине 2 типов волн. Пластина 3 выполнена из того же материала, что и клин 2.

На фиг.3 изображен планарный излучатель, содержащий возбуждающий волновод 1, клин 2, пластину 3 и присоединенную к торцу пластины в сечении III планарную линзу 4 с форматом поперечного сечения основания линзы (сечение III), равным формату поперечного сечения пластины Ф-a1/b. Линза 4 выполнена из того же материала, что и пластина 3.

Планарный излучатель работает следующим образом:

Основная волна НЕ11 диэлектрического волновода 1 (фиг.1) возбуждает в клине 2 основную волну Н10 планарного волновода с компонентами поля: Ey, Hx, Hz. Эффективность возбуждения волн Н10 определяется близостью распределения поля Ey основной волны НЕ11 возбуждающего волновода 1 полю волны Н10 в клиновидном участке излучателя.

Потери энергии, связанные с излучением на нерегулярности волноведущей структуры (сечение I), экспериментально минимизированы за счет выбора угла α, который не должен превышать 15°.

По мере распространения волны Н10 вдоль клина при превышении формата поперечного сечения клина критических значений, соответствующих условию возбуждения высших типов волн Hn0 (n=3, 5, 7, …), волна Н10 частично трансформируется в указанные волны.

В соответствии с теорией нерегулярных открытых волноводов с медленно меняющимися параметрами и методом поперечных сечений [3], поле в произвольном сечении неоднородного участка волноведущей структуры можно представлять в виде поля волновода сравнения - однородного волновода с постоянными параметрами, равными параметрам неоднородного участка в данном сечении. Вычисление дисперсионных зависимостей замедления волн типа Hn0 от формата сечения волновода позволяет определять критические форматы Фкр для высших типов волн Hn0.

Так, при λ=3 мм, ε=2,25, b=1 мм критические форматы волн Н30 и Н50 ФкрН30=4,3 и ФкрН50=7,9.

Таким образом, при форматах сечения Ф от 4,3 до 7,9 в клине распространяются волны Н10 и Н30, при Ф>7,9 - волны Н10, Н30, Н50 и т.д. Расчеты показывают, что амплитудное распределение даже двух волн Н10 и Н30 практически совпадает с гауссовым.

А высшие типы волн Н50, Н70 и т.д. можно не учитывать в силу малости их амплитуд.

Экспериментально определена зависимость ширины излучаемого волнового пучка d0 (по уровню 1/е, где е=2,71828..) на торце клина от его формата, что позволило получить расчетное соотношение для выбора формата торца клина Ф=а1/b в зависимости от требуемой ширины пучка d0

для ε в пределах от 2,0 до 2,5.

При этом определено условие минимально возможного формата, при котором формируется практически гауссов пучок за счет интерференции волн Н10 и Н30 в клине.

Распределение поля по другой координате (координате х) при всех форматах соответствует полю одноволнового режима Н10 в связи с выбором толщины клина, равной толщине одномодового возбуждающего волновода, поэтому излучаемый пучок имеет амплитудное гауссово распределение по координате у и амплитудное распределение по координате х, близкое к распределению волн Н10.

При введении на торец клина пластины 3 постоянного формата (фиг.2), равного формату торца клина, суммарные амплитуда и фаза сформированных на торце клина волн Н10 и Н30 по мере движения вдоль пластины будут изменяться за счет их связи и интерференции. Фазовый набег Δφ интерферирующих мод на участке пластины длиной L2 определяется по соотношению

где ΔU - разность коэффициентов замедления возбужденных в клине волн.

Выбор длины L2 производится по соотношению (1) при условии обеспечения , где n=0, 1, 2, …

При n=0, 2, 4,.. обеспечивается излучение синфазного гауссова пучка, при n=1, 5,.. - расходящегося пучка, при n=3, 7,.. - сходящегося пучка.

Введение пластины, кроме того, привносит дополнительное качество - рассеянное дифракционное излучение на кромках торца клина сечения II и на кромках торца пластины сечения III (фиг.2) меньше, чем дифракционное рассеяние на кромках торца клина сечения II (фиг.1).

Введение на торец пластины планарной линзы 4 (фиг.3) обеспечивает дополнительную коррекцию ширины и фазового распределения излучаемого пучка.

Были изготовлены и экспериментально проверены образцы планарного излучателя нескольких типоразмеров в виде клина с углом при вершине α=12° с форматом сечения на торце клина Ф1=5, Ф2=7 и Ф3=20 и образец излучателя с пластиной форматом Ф=20 и длиной L2=18,7 мм. Образцы излучателя изготовлены из полиэтилена (ε=2,25), длина волны равна 3 мм, сечение возбуждающего волновода а=2,0 мм, b=1,0 мм.

Для всех рассмотренных образцов амплитудное распределение излучения практически совпадает с гауссовым в пределах ширины пучка.

Экспериментальные значения ширины пучка отличаются от расчетных не более чем на 5%.

Излучатель в виде клина с форматом меньше допустимого (Ф1=5) формирует на апертуре расходящийся пучок, сохраняющий пучковые свойства на расстояниях от апертуры менее 10λ, излучатель с форматом Ф2=7 формирует синфазный пучок и сохраняет свойства на расстояниях больше 10λ, излучатель с Ф3=20 формирует слаборасходящийся пучок, введение пластины выбранной длины обеспечивает сходящийся пучок, сохраняющий свои свойства на расстояниях от апертуры до 30λ.

Литература

1. Орехов Ю.И. Открытые волноводные и резонансные КВЧ устройства бесконтактной диагностики быстропротекающих процессов в многокомпонентных средах: автореферат дисс. докт. техн. наук: 05.12.04 - М.; МЭИ, 2007, 40 с.

2. Whitman Gerald M., Pinthong Chairat, Triolo Anthony A., Schwering Felix K. An approximate but accurate analysis of the dielectric wedge antenna fed by a slab waveguide using the local mode theory and schelkunoff equivalence principle. IEEE Trans. Antennas and Propag. 2006. 54, №4, p.1111-1121.

3. Каценеленбаум Б.З. Теория нерегулярных волноводов с медленно меняющимися параметрами. - М.: Изд. АИ СССР, 1961.

Источник поступления информации: Роспатент

Показаны записи 71-80 из 120.
29.12.2017
№217.015.f36b

Способ определения дальности до поверхности земли

Изобретение относится к области радиолокационной техники и может быть использовано при построении различных радиолокационных систем, предназначенных для определения дальности от движущегося объекта до поверхности земли, использующих принцип отражения радиоволн. Достигаемый технический результат...
Тип: Изобретение
Номер охранного документа: 0002637817
Дата охранного документа: 07.12.2017
20.01.2018
№218.016.1227

Многоканальная самодиагностируемая вычислительная система с резервированием замещением и способ повышения ее отказоустойчивости (варианты)

Изобретение относится к вычислительной технике и может быть использовано в ракетно-космической и авиационной технике. Технический результатом заключается в повышении надежности и отказоустойчивости многоканальной вычислительной системы. Технический результат достигается за счет диагностирования...
Тип: Изобретение
Номер охранного документа: 0002634189
Дата охранного документа: 24.10.2017
20.01.2018
№218.016.148a

Устройство для нанесения покрытий на подложки в вакууме

Изобретение относится к технологии нанесения нанопленок в вакууме и может быть использовано в производстве изделий микроэлектроники. Устройство содержит вакуумную камеру, магнетрон с кольцевой зоной эрозии мишени и связанные кинематически с реверсивным электроприводом вакуумный ввод с...
Тип: Изобретение
Номер охранного документа: 0002634833
Дата охранного документа: 03.11.2017
20.02.2019
№219.016.c2c0

Устройство для измерения времени жизни нейтрона

Изобретение относится к области экспериментальной ядерной физики, в частности к устройствам для изучения бета-распада, включая измерения времени жизни нейтрона в бета-распаде. Технический результат - повышение точности времени жизни нейтрона и упрощение измерительной процедуры. Устройство для...
Тип: Изобретение
Номер охранного документа: 0002408904
Дата охранного документа: 10.01.2011
20.02.2019
№219.016.c2e3

Гравитационный гамма-спектрометр

Изобретение относится к ядерной физике, а более конкретно - к гамма-резонансной спектрометрии с предельно высокой разрешающей способностью. Технический результат - создание компактного гамма-спектрометра с наивысшей достигаемой разрешающей способностью, работающего при комнатной температуре....
Тип: Изобретение
Номер охранного документа: 0002404441
Дата охранного документа: 20.11.2010
01.03.2019
№219.016.cb43

Способ изготовления микроплат с многоуровневой тонкопленочной коммутацией

Изобретение относится к области гибридной микроэлектроники и может быть использовано для создания микроплат с многоуровневой тонкопленочной коммутацией. Технический результат - расширение технологических возможностей и увеличение коммутационной способности микроплат с многоуровневой...
Тип: Изобретение
Номер охранного документа: 0002398369
Дата охранного документа: 27.08.2010
11.03.2019
№219.016.d93b

Способ навигации движущихся объектов

Изобретение относится к области навигации и может быть использовано при построении различных систем локации, предназначенных для навигации движущихся объектов с использованием волн, являющихся электромагнитными и иными видами волн, включая радио-, акустические волны и оптическое излучение,...
Тип: Изобретение
Номер охранного документа: 0002385468
Дата охранного документа: 27.03.2010
11.03.2019
№219.016.dcb9

Способ регистрации быстропротекающих процессов и устройство для его реализации

Использование: для регистрации быстропротекающих процессов. Сущность: заключается в том, что выполняют съемку в однокадровом режиме с требуемым для данного процесса исследования временем экспозиций выбранного участка области исследования путем применения электронно-оптической видеокамеры с...
Тип: Изобретение
Номер охранного документа: 0002438119
Дата охранного документа: 27.12.2011
11.03.2019
№219.016.ddd2

Резервированная двухпроцессорная вычислительная система

Изобретение относится к вычислительной технике и может быть использовано при построении надежных вычислительно-управляющих систем. Техническим результатом является уменьшение времени переключения на резервный канал и повышение надежности системы за счет введения дополнительных устройств и...
Тип: Изобретение
Номер охранного документа: 0002460121
Дата охранного документа: 27.08.2012
10.04.2019
№219.017.07da

Стенд для ударных испытаний

Изобретение относится к испытательной технике. Преимущественная область использования - исследования высокоскоростных ударных явлений. Технический результат заключается в обеспечении с высокой точностью требуемой взаимной ориентации ударника и мишени в момент их соударения, исключении...
Тип: Изобретение
Номер охранного документа: 0002402004
Дата охранного документа: 20.10.2010
Показаны записи 11-13 из 13.
31.07.2019
№219.017.ba51

Металлический волноводный облучатель с диэлектрической вставкой

Изобретение относится к антенной технике миллиметрового диапазона длин волн и может быть использовано в зондирующих устройствах радиоинтерферометров для измерения кинематических параметров движения поверхностей в замкнутых объемах при ударных нагрузках, а также в качестве облучателей...
Тип: Изобретение
Номер охранного документа: 0002695946
Дата охранного документа: 29.07.2019
12.08.2019
№219.017.bf09

Диэлектрический стержневой излучатель

Изобретение относится к антенной технике миллиметрового диапазона длин волн и может быть использовано в зондирующих устройствах радиоинтерферометров для измерения кинематических параметров движения поверхностей в диагностируемых замкнутых объемах, а также в качестве облучателей длиннофокусных...
Тип: Изобретение
Номер охранного документа: 0002696661
Дата охранного документа: 05.08.2019
01.09.2019
№219.017.c5b2

Способ дистанционного определения термодинамической температуры быстропротекающего процесса, развивающегося в радиопрозрачном объекте, устройство для его осуществления, способы калибровки устройства и генератора шума в составе этого устройства

Изобретение относится к технике радиофизических измерений и может быть использовано для измерения в миллиметровом участке спектра собственного теплового излучения разнообразных быстропротекающих газодинамических процессов, развивающихся в радиопрозрачных объектах. Заявлен способ...
Тип: Изобретение
Номер охранного документа: 0002698523
Дата охранного документа: 28.08.2019
+ добавить свой РИД