×
12.04.2019
219.017.0c0b

Результат интеллектуальной деятельности: Дифференциальный каскад на комплементарных полевых транзисторах

Вид РИД

Изобретение

Аннотация: Изобретение относится к области радиотехники и связи и может быть использовано в качестве устройства усиления аналоговых сигналов, в структуре аналоговых микросхем различного функционального назначения, например, операционных усилителях (ОУ), компараторах, мостовых усилителях мощности и т.п., в т.ч. работающих при низких температурах и воздействии радиации. Технический результат заключается в создании условий, при которых в заявляемом дифференциальном усилителе (ДУ) обеспечивается, более высокая стабильность статического режима ДУ при отрицательных температурах и изменении напряжений питания, возможность изменения напряжения ограничения проходной характеристики (U) по усмотрению разработчика (в зависимости от заданных значений SR) при фиксированном статическом токопотреблении. За счет выбора дополнительных резисторов обеспечивается заданный статистический режим по току во всех полевых транзисторах, что позволяет исключить из схемы ДК традиционные источники опорного тока, отрицательно влияющие на данные параметры при их построении. 1 з.п. ф-лы, 13 ил.

Изобретение относится к области радиотехники и связи и может быть использовано в качестве устройства усиления аналоговых сигналов, в структуре аналоговых микросхем различного функционального назначения, например, операционных усилителях (ОУ), компараторах, мостовых усилителях мощности и т.п., в т.ч. работающих при низких температурах и воздействии радиации [1].

Известны схемы классических дифференциальных усилителей (ДУ) на комплементарных транзисторах [2-28], в т.ч. на комплементарных КМОП полевых транзисторах [3-28] и комплементарных полевых транзисторах с управляющим p-n переходом (JFet) [2], которые стали основой многих серийных аналоговых микросхем. В литературе по аналоговой микроэлектронике этот класс ДК имеет специальное обозначение – dual-input-stage [29].

Для работы при низких температурах при жестких ограничениях на уровень шумов перспективно использование JFet полевых транзисторов [30-32]. ДК данного класса активно применяются в структуре малошумящих аналоговых интерфейсов для обработки сигналов датчиков [33-35].

Ближайшим прототипом (фиг. 1) заявляемого устройства является дифференциальный каскад, описанный в патенте US 5.291.149, fig.4, 1994г., который содержит первый 1 вход, соединенный с затвором первого 2 входного полевого транзистора, второй 3 вход, соединенный с затвором второго 4 входного полевого транзистора, первый 5 токовый выход, соединенный со стоком первого 2 входного полевого транзистора и согласованный с первой 6 шиной источника питания, второй 7 токовый выход, соединенный со стоком второго 4 входного полевого транзистора и согласованный с первой 6 шиной источника питания, третий 8 входной полевой транзистор, сток которого соединен с третьим 9 токовым выходом и согласован со второй 10 шиной источника питания, четвертый 11 входной полевой транзистор, сток которого соединен с четвертым 12 токовым выходом и согласован со второй 10 шиной источника питания, причем каналы первого 2 и второго 4 входных полевых транзисторов имеют первый тип проводимости, а каналы третьего 8 и четвертого 11 входных полевых транзисторов имеют другой тип проводимости.

Первый существенный недостаток известного ДК фиг. 1 состоит в том, что статический режим его входных транзисторов определяется двумя источниками опорного тока I1 (I2), которые, как правило, неидентичны. Это становится источником дополнительных погрешностей при усилении малых сигналов. Во-вторых, в известном ДК при фиксированном токе потребления затруднено изменение напряжения ограничения Uгр проходной характеристики iвых=f(uвх), которое оказывает существенное влияние на максимальную скорость нарастания выходного напряжения (SR) операционного усилителя с входным ДК фиг. 1 [36, 37]

, (1)

где f1 – частота единичного усиления скорректированного ОУ с входным ДУ фиг. 1, как правило, слабо зависящая от Uгр.

Это не позволяет управлять численными значениями SR в конкретных схемах ОУ при заданных ограничениях на токопотребление, запас устойчивости по фазе, коэффициент усиления по напряжению и т.п.

Основная задача предполагаемого изобретения состоит в создании условий, при которых в ДУ фиг. 1 обеспечивается:

- более высокая стабильность статического режима ДУ при отрицательных температурах (до -197̊С) и изменении напряжений питания (в сравнении с ДУ фиг. 1 на основе классических источников опорного тока I1, I2);

- возможность изменения напряжения ограничения проходной характеристики (Uгр) по усмотрению разработчика (в зависимости от заданных значений SR) при фиксированном статическом токопотреблении.

Поставленная задача решается тем, что в дифференциальном каскаде фиг. 1, содержащем первый 1 вход, соединенный с затвором первого 2 входного полевого транзистора, второй 3 вход, соединенный с затвором второго 4 входного полевого транзистора, первый 5 токовый выход, соединенный со стоком первого 2 входного полевого транзистора и согласованный с первой 6 шиной источника питания, второй 7 токовый выход, соединенный со стоком второго 4 входного полевого транзистора и согласованный с первой 6 шиной источника питания, третий 8 входной полевой транзистор, сток которого соединен с третьим 9 токовым выходом и согласован со второй 10 шиной источника питания, четвертый 11 входной полевой транзистор, сток которого соединен с четвертым 12 токовым выходом и согласован со второй 10 шиной источника питания, причем каналы первого 2 и второго 4 входных полевых транзисторов имеют первый тип проводимости, а каналы третьего 8 и четвертого 11 входных полевых транзисторов имеют другой тип проводимости, предусмотрены новые элементы и связи – между истоками третьего 8 и четвертого 11 входных полевых транзисторов включен первый 13 дополнительный резистор, между истоком третьего 8 входного полевого транзистора и истоком первого 2 входного полевого транзистора включен второй 14 дополнительный резистор, между истоком четвертого 11 входного полевого транзистора и истоком второго 4 входного полевого транзистора включен третий 15 дополнительный резистор, причем исток первого 2 входного полевого транзистора соединен с затвором четвертого 11 входного полевого транзистора, а исток второго 4 входного полевого транзистора соединен с затвором третьего 8 входного полевого транзистора.

На чертеже фиг. 1 представлена схема ДК-прототипа, а на чертеже фиг. 2 – схема заявляемого дифференциального каскада на комплементарных полевых транзисторах CJFET (ОАО «Интеграл», г. Минск) в соответствии с п.1 формулы изобретения.

На чертеже фиг. 3 показан статический режим ДК фиг. 2 при t=27ᵒC в среде LTSpice на моделях CJFet транзисторов ОАО «Интеграл» (г. Минск).

На чертеже фиг. 4 представлен статический режим ДК фиг. 2 при
t=-197ᵒC в среде LTSpice на моделях CJFet транзисторов ОАО «Интеграл» (г. Минск).

На чертеже фиг. 5 приведены проходные характеристики ДК фиг. 3 при температуре 27ᵒС и разных сопротивлениях резистора R3*=10/100/1к/100к/1МОм для токовых выходов Iout1, Iout2, Iout3, Iout4 при входном напряжении V3=Vin, изменяющимся в пределах -5÷5В.

На чертеже фиг. 6 показаны проходные характеристики ДК фиг. 3 при температуре -197ᵒС и разных сопротивлениях резистора R3*=10/100/1к/100к/1МОм для токовых выходов Iout1, Iout2, Iout3, Iout4 при входном напряжении V3=Vin, изменяющимся в пределах -5÷5В.

На чертеже фиг. 7 представлена крутизна проходной характеристики Gm для токовых выходов в цепи стока полевых транзисторов J1, J2, J3, J4 ДК рис. 2 при разных температурах t= -197/-150/-125/-100/-75/-50/-30/0/27/30°С.

На чертеже фиг. 8 приведена схема заявляемого дифференциального каскада на комплементарных полевых транзисторах в соответствии с п. 2 формулы изобретения.

На чертеже фиг. 9 показан статический режим ДК фиг. 8 при t=27ᵒC в среде LTSpice на моделях CJFet транзисторов ОАО «Интеграл» (г. Минск) при сопротивлении резистора R20>>R13 (фиг. 8).

На чертеже фиг. 10 представлен статический режим ДК фиг. 8 при t=-197ᵒC в среде LTSpice на моделях CJFet транзисторов ОАО «Интеграл» (г. Минск) при сопротивлении резистора R20>>R13 (фиг. 8).

На чертеже фиг. 11 приведены проходные характеристики ДК фиг. 9 при температуре 27ᵒС и разных сопротивлениях резистора R3*=100/1к/100к/1МОм для токовых выходов Iout1, Iout2, Iout3, Iout4 при входном напряжении V3=Vin, изменяющимся в пределах -5÷5В и сопротивлении резистора R20>>R13 (фиг. 8).

На чертеже фиг. 12 показаны проходные характеристики ДК фиг. 8 при температуре -197ᵒС и разных сопротивлениях резистора R3*=100/1к/100к/1МОм для токовых выходов Iout1, Iout2, Iout3, Iout4 при входном напряжении V3=Vin, изменяющимся в пределах -5÷5В и сопротивлении резистора R20>>R13 (фиг. 8)

На чертеже фиг. 13 представлена крутизна проходной характеристики Gm для токовых выходов в цепи стока полевых транзисторов J1, J2 и J3, J4 ДК фиг. 9 при разных температурах t= -197/-150/-125/-100/-75/-50/-30/0/27/30°С.

Дифференциальный каскад на комплементарных полевых транзисторах фиг. 2 содержит первый 1 вход, соединенный с затвором первого 2 входного полевого транзистора, второй 3 вход, соединенный с затвором второго 4 входного полевого транзистора, первый 5 токовый выход, соединенный со стоком первого 2 входного полевого транзистора и согласованный с первой 6 шиной источника питания, второй 7 токовый выход, соединенный со стоком второго 4 входного полевого транзистора и согласованный с первой 6 шиной источника питания, третий 8 входной полевой транзистор, сток которого соединен с третьим 9 токовым выходом и согласован со второй 10 шиной источника питания, четвертый 11 входной полевой транзистор, сток которого соединен с четвертым 12 токовым выходом и согласован со второй 10 шиной источника питания, причем каналы первого 2 и второго 4 входных полевых транзисторов имеют первый тип проводимости, а каналы третьего 8 и четвертого 11 входных полевых транзисторов имеют другой тип проводимости. Между истоками третьего 8 и четвертого 11 входных полевых транзисторов включен первый 13 дополнительный резистор, между истоком третьего 8 входного полевого транзистора и истоком первого 2 входного полевого транзистора включен второй 14 дополнительный резистор, между истоком четвертого 11 входного полевого транзистора и истоком второго 4 входного полевого транзистора включен третий 15 дополнительный резистор, причем исток первого 2 входного полевого транзистора соединен с затвором четвертого 11 входного полевого транзистора, а исток второго 4 входного полевого транзистора соединен с затвором третьего 8 входного полевого транзистора.

На чертеже фиг. 2 в качестве элементов нагрузки первого 5, второго 7, третьего 9 и четвертого 12 токовых выходов ДК показаны соответствующие двухполюсники 16, 17, 18, 19. В частном случае, например, в операционном усилителе на основе заявляемого ДК, это могут быть входные сопротивления классических токовых зеркал.

На чертеже фиг. 8, в соответствии с п. 2 формулы изобретения, между затворами третьего 8 и четвертого 11 входных полевых транзисторов включен четвертый 20 дополнительный резистор.

Рассмотрим работу ДУ фиг. 2.

В статическом режиме, например, при подключении первого 1 и второго 3 входов ДК фиг. 2 к общей шине источников питания (6 и 10), первый 13 дополнительный резистор не влияет на статические токи истока всех полевых транзисторов схемы из-за ее симметрии. При этом

, (2)

, (3)

, (4)

, (5)

где Iиi – ток стока i-го полевого транзистора;

Uзи.8, Uзи.11 – напряжение затвор-исток соответствующих третьего 8 и четвертого 11 входных полевых транзисторов в рабочей точке при токе истока, равном I0;

UR14=UR15 – падение напряжения на втором 14 и третьем 15 дополнительных резисторах от тока I0.

Таким образом, за счет выбора второго 14 и третьего 15 дополнительных резисторов обеспечивается идентичный заданный статический режим по току всех полевых транзисторов 2, 4, 8, 11 ДК фиг. 2:

. (6)

Следует заметить, что статический режим ДК фиг. 2 практически не зависит от величины входного синфазного сигнала и изменений напряжений питания на первой 6 и второй 10 шинах. Это позволяет исключить из схемы ДК фиг. 2 традиционные источники опорного тока (I1, I2, фиг. 1), отрицательно влияющие на данные параметры при их простейшем построении.

Если на вход 1 подается положительное входное напряжение uвх относительно входа 3, то это вызывает увеличение тока через первый дополнительный резистор и уменьшение тока истока второго 4 и четвертого 11 входных полевых транзисторов. В пределе ток истока первого 2 входного полевого транзистора может принимать удвоенное значение относительно своего статического уровня при uвх=0. Численные значения сопротивлений второго 14 и третьего 15 дополнительных резисторов определяют напряжение ограничения проходной характеристики ДК фиг. 2: чем больше сопротивления дополнительных резисторов R14=R15, тем при большем входном напряжении uвх=Uгр произойдет ограничение выходного тока ДК для первого 5 токового выхода. Об этом свидетельствуют графики фиг. 4, фиг. 5, фиг. 6, полученные для схемы фиг. 2.

Аналогичным образом на напряжение ограничения Uгр ДК фиг. 8 влияет четвертый 20 дополнительный резистор. Чем меньше его сопротивление, тем при меньших значениях входного напряжения uвх=Uгр произойдет ограничение выходного тока ДК фиг. 8 для первого 5 токового выхода (фиг. 11, фиг. 12), а также других токовых выходов (7, 9, 12).

Таким образом, первый 13 и четвертый 20 дополнительные резисторы определяют численные значения напряжения ограничения Uгр предлагаемого дифференциального усилителя для всех его токовых выходов 5, 7, 9, 12.

Графики, представленные на чертежах фиг. 5, фиг. 6, фиг. 11, фиг. 12, снятые при разных температурах и численных значениях сопротивлений первого 13 и четвертого 20 дополнительных резисторов подтверждают сделанные выше качественные выводы.

Результаты компьютерного моделирования в среде LTspice схем ДК фиг. 3 и фиг. 8 показывают, что на основе предлагаемого ДК реализуется широкий спектр проходных характеристик с разными численными значениями напряжения ограничения Uгр для первого 5 и второго 7 токовых выходов, согласованных с первой 6 шиной источника питания, и третьего 9 и четвертого 12 токовых выходов, согласованных со второй 10 шиной источника питания. В итоге, это позволяет проектировать дифференциальные и мультидифференциальные операционные усилители с заданным (см. формулу (1)) быстродействием.

Графики фиг. 7 и фиг. 13 характеризуют температурную зависимость крутизны проходной характеристики ДК фиг. 3 и ДК фиг. 8, определяющей дифференциальный коэффициент усиления по напряжению в практических схемах ОУ на основе предлагаемых ДК.

Таким образом, заявляемое устройство имеет существенные преимущества в сравнении с известными схемотехническими решениями ДК класса dual-input-stage [2-28], что позволяет рекомендовать его для практического использования в различных ОУ и построения низкотемпературных и радиационно-стойких аналоговых микросхем по техпроцессу CJFet ОАО «Интеграл» (г. Минск), а также комплементарному полевому технологическому процессу АО «НПП «Пульсар» (г. Москва).

Библиографический список

1. O. V. Dvornikov, V. L. Dziatlau, N. N. Prokopenko, K. O. Petrosiants, N. V. Kozhukhov and V. A. Tchekhovski, "The accounting of the simultaneous exposure of the low temperatures and the penetrating radiation at the circuit simulation of the BiJFET analog interfaces of the sensors," 2017 International Siberian Conference on Control and Communications (SIBCON), Astana, 2017, pp. 1-6. DOI: 10.1109/SIBCON.2017.7998507

2. Патент US 5.291.149 fig. 4, 1994 г.

1. Патент US 4.377.789, fig. 1, 1983 г.

2. Патентная заявка US 2006/0125522, 2006 г.

3. Патент US 7.907.011, 2011

4. US 2008/0024217, fig. 1, 2008 г.

5. Патент EP 0318263,1989 г.

6. Патент US 5.907.259, fig. 1, 1999 г.

7. Патент US 7.408.410, 2008 г.

8. Патент US 6.628.168, fig.2, 2003 г.

9. Патентная заявка US 2009/0302895, 2009 г.

10. Патент US 5.714.906, fig. 4, 1998 г.

11. Патент US 2005/0285677, 2005 г.

12. Патент US 5.070.306, fig. 3, 1991 г.

13. Патент US 2010/001797, 2010 г.

14. Патент US 6.972.623, fig. 4, fig. 6, 2005 г.

15. Патент US 2008/0252374, 2008 г.

16. Патент US 7.586.373, 2009 г.

17. Патент US 2006/0215787, 2006 г.

18. Патент US 7.453.319, 2008 г.

19. Патент US 2004/0174216, fig. 2, 2004 г.

20. Патент US 7.215.200, fig. 6, 2007 г.

21. Патент US № 6.433.637, fig. 2, 2002 г.

22. Патент US № 6.392.485, 2002 г.

23. Патент US 5.963.085, fig. 3, 1999 г.

24. Патент US 6.788.143, 2004 г.

25. Патент US 4.390.850, 1983 г.

26. Патент US 6.696.894, fig. 1, 2004 г.

29. N. N. Prokopenko, N. V. Butyrlagin, A. V. Bugakova and A. A. Ignashin, "Method for speeding the micropower CMOS operational amplifiers with dual-input-stages," 2017 24th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Batumi, 2017, pp. 78-81.

30. K. O. Petrosyants, M. R. Ismail-zade, L. M. Sambursky, O. V. Dvornikov, B. G. Lvov and I. A. Kharitonov, "Automation of parameter extraction procedure for Si JFET SPICE model in the −200…+110°C temperature range," 2018 Moscow Workshop on Electronic and Networking Technologies (MWENT), Moscow, 2018, pp. 1-5. DOI: 10.1109/MWENT.2018.8337212

31. Создание низкотемпературных аналоговых ИС для обработки импульсных сигналов датчиков. Часть 2 / О. Дворников, В. Чеховский, В. Дятлов, Н. Прокопенко // Современная электроника, 2015, № 5. С. 24-28

32. O. V. Dvornikov, N. N. Prokopenko, N. V. Butyrlagin and I. V. Pakhomov, "The differential and differential difference operational amplifiers of sensor systems based on bipolar-field technological process AGAMC," 2016 International Siberian Conference on Control and Communications (SIBCON), Moscow, 2016, pp. 1-6. DOI: 10.1109/SIBCON.2016.7491792

33. Дворников О.В., Чеховский В.А., Дятлов В.Л., Прокопенко Н.Н. "Малошумящий электронный модуль обработки сигналов лавинных фотодиодов" Приборы и методы измерений, no. 2 (7), 2013, pp. 42-46.

34. Дворников О. Чеховский В., Дятлов В., Прокопенко Н. Применение структурных кристаллов для создания интерфейсов датчиков //Современная электроника. – 2014. – №. 1. – С. 32-37.

35. O. V. Dvornikov, A. V. Bugakova, N. N. Prokopenko, V. L. Dziatlau and I. V. Pakhomov, "The microcircuits MH2XA010-02/03 for signal processing of optoelectronic sensors," 2017 18th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM), Erlagol, 2017, pp. 396-402. DOI: 10.1109/EDM.2017.7981781

36. Прокопенко Н.Н. Нелинейная активная коррекция в прецизионных аналоговых микросхемах (монография) // Ростов-на-Дону: Изд-во Северо-Кавказского научного центра высшей школы, 2000. 222с.

37. Операционные усилители с непосредственной связью каскадов: монография / Анисимов В.И., Капитонов М.В., Прокопенко Н.Н., Соколов Ю.М. - Л.: «Энергия», 1979. - 148 с.


Дифференциальный каскад на комплементарных полевых транзисторах
Дифференциальный каскад на комплементарных полевых транзисторах
Дифференциальный каскад на комплементарных полевых транзисторах
Дифференциальный каскад на комплементарных полевых транзисторах
Дифференциальный каскад на комплементарных полевых транзисторах
Дифференциальный каскад на комплементарных полевых транзисторах
Дифференциальный каскад на комплементарных полевых транзисторах
Дифференциальный каскад на комплементарных полевых транзисторах
Дифференциальный каскад на комплементарных полевых транзисторах
Дифференциальный каскад на комплементарных полевых транзисторах
Источник поступления информации: Роспатент

Показаны записи 171-180 из 186.
19.06.2020
№220.018.2808

Токовый пороговый параллельный троичный компаратор

Изобретение относится к радиотехнике. Технический результат: создание токового порогового компаратора, в котором внутреннее преобразование производится в токовой форме и повышение быстродействия. Для этого предложен токовый пороговый параллельный троичный компаратор, в котором по сравнению с...
Тип: Изобретение
Номер охранного документа: 0002723672
Дата охранного документа: 17.06.2020
29.06.2020
№220.018.2ca7

Универсальный активный rc-фильтр второго порядка на мультидифференциальных операционных усилителях с минимальным количеством пассивных и активных элементов

Изобретение относится к радиотехнике. Технический результат: создание универсального фильтра, обеспечивающего реализацию фильтра высоких и низких частот и полосового фильтра. Для этого предложен активный RC-фильтр, у которого по сравнению с прототипом вход (1) соединён с неинвертирующим входом...
Тип: Изобретение
Номер охранного документа: 0002724917
Дата охранного документа: 26.06.2020
29.06.2020
№220.018.2ccb

Операционный усилитель с парафазным выходом для активных rc-фильтров, работающих в условиях воздействия потока нейтронов и низких температур

Изобретение относится к области радиотехники и микроэлектроники. Технический результат заключается в создании операционного усилителя с парафазным выходом только на полевых транзисторах с управляющим p-n переходом, обеспечивая высокую радиационную стойкость и устойчивую работу при криогенных...
Тип: Изобретение
Номер охранного документа: 0002724921
Дата охранного документа: 26.06.2020
01.07.2020
№220.018.2d80

Преобразователь дифференциального входного напряжения с парафазными токовыми выходами на основе комплементарных полевых транзисторов с управляющим p-n переходом

Изобретение относится к области электроники и радиотехники. Технический результат: уменьшение входной емкости устройства по первому и второму входам, а также повышение крутизны преобразования входного дифференциального напряжения в выходные токи устройства. Для этого предложен преобразователь...
Тип: Изобретение
Номер охранного документа: 0002724975
Дата охранного документа: 29.06.2020
03.07.2020
№220.018.2e04

Токовый пороговый элемент "сумматор по модулю три"

Изобретение относится к области радиотехники и аналоговой микроэлектроники и может быть использовано в быстродействующих аналоговых и аналого-цифровых интерфейсах для обработки сигналов датчиков. Технический результат заключается в создании токового порогового элемента «сумматор по модулю три»,...
Тип: Изобретение
Номер охранного документа: 0002725165
Дата охранного документа: 30.06.2020
03.07.2020
№220.018.2e33

Токовый пороговый элемент правого циклического сдвига

Изобретение относится к области радиотехники и аналоговой микроэлектроники и может быть использовано в быстродействующих аналоговых и аналого-цифровых интерфейсах для обработки сигналов датчиков. Технический результат заключается в создании токового порогового элемента правого циклического...
Тип: Изобретение
Номер охранного документа: 0002725149
Дата охранного документа: 30.06.2020
24.07.2020
№220.018.363d

Токовый пороговый троичный элемент "минимум"

Изобретение относится к области радиотехники. Технический результат: создание токового порогового троичного элемента «Минимум», в котором внутреннее преобразование информации производится в токовой форме сигналов, что позволяет повысить быстродействие. Для этого предложен токовый пороговый...
Тип: Изобретение
Номер охранного документа: 0002727145
Дата охранного документа: 21.07.2020
24.07.2020
№220.018.37e9

Составной транзистор на основе комплементарных полевых транзисторов с управляющим p-n переходом

Изобретение относится к области микроэлектроники и может быть использовано в качестве активного (усилительного) элемента (трёхполюсника) в различных аналоговых и аналого-цифровых устройствах (активных RC-фильтрах, операционных усилителях, стабилизаторах напряжения, электронных ключах и т.п.)....
Тип: Изобретение
Номер охранного документа: 0002727704
Дата охранного документа: 23.07.2020
24.07.2020
№220.018.3804

Графический эквалайзер на основе мультидифференциальных операционных усилителей

Изобретение относится к радиотехнике. Технический результат: создание схемы графического эквалайзера, имеющего возможность регулировки амплитудно-частотных и фазочастотных характеристик. Для этого предложен графический эквалайзер на основе мультидифференциальных операционных усилителей (ОУ), у...
Тип: Изобретение
Номер охранного документа: 0002727702
Дата охранного документа: 23.07.2020
31.07.2020
№220.018.3a49

Низкотемпературный усилитель тока для задач проектирования активных rc-фильтров

Изобретение относится к области радиотехники. Технический результат: создание как инвертирующего, так и неинвертирующего широкополосного усилителя тока на комплементарных полевых транзисторах с управляющим p-n переходом для работы при низких температурах, обеспечивающего для разных выходов...
Тип: Изобретение
Номер охранного документа: 0002727965
Дата охранного документа: 28.07.2020
Показаны записи 171-180 из 217.
16.01.2020
№220.017.f5c9

Дифференциальный каскад класса ав на комплементарных полевых транзисторах с управляющим p-n переходом для работы в условиях низких температур

Изобретение относится к области радиотехники и может быть использовано в качестве устройства усиления аналоговых сигналов. Технический результат заключается в создании условий, которые позволяют дифференциальным каскадам работать в режиме класса «АВ» при малом статическом токопотреблении....
Тип: Изобретение
Номер охранного документа: 0002710847
Дата охранного документа: 14.01.2020
16.01.2020
№220.017.f5d1

Составной транзистор на основе комплементарных полевых транзисторов с управляющим p-n переходом

Изобретение относится к области микроэлектроники. Технический результат: создание составного транзистора на комплементарных транзисторах, который по своим стоко-затворным характеристикам подобен КМОП полевому транзистору, т.е. имеет характерную зону закрытого состояния при напряжении...
Тип: Изобретение
Номер охранного документа: 0002710846
Дата охранного документа: 14.01.2020
16.01.2020
№220.017.f5f1

Дифференциальный усилитель на комплементарных полевых транзисторах с повышенной стабильностью статического режима

Изобретение относится к радиотехнике и связи. Технический результат заключается в создании условий, при которых в заявляемом дифференциальном усилителе (ДУ) обеспечивается более высокая стабильность статического режима при отрицательных температурах, а также повышение коэффициента ослабления...
Тип: Изобретение
Номер охранного документа: 0002710930
Дата охранного документа: 14.01.2020
21.01.2020
№220.017.f7a1

Источник опорного тока для задач стабилизации статического режима операционных усилителей при низких температурах

Изобретение относится к области радиотехники и микроэлектроники и может быть использовано в аналоговых микросхемах и аналого-цифровых интерфейсах датчиков, работающих в тяжелых условиях эксплуатации (низкие температуры, проникающая радиация). Технический результат: повышение стабильности...
Тип: Изобретение
Номер охранного документа: 0002711350
Дата охранного документа: 16.01.2020
24.01.2020
№220.017.f97c

Быстродействующий выходной каскад аналоговых микросхем на комплементарных полевых транзисторах с управляющим p-n переходом для работы при низких температурах

Изобретение относится к области аналоговой микроэлектроники и может быть использовано в качестве двухтактных буферных усилителей и выходных каскадов. Технический результат заключается в обеспечении при высокой линейности амплитудной характеристики повышенной стабильности статического режима...
Тип: Изобретение
Номер охранного документа: 0002711725
Дата охранного документа: 21.01.2020
31.01.2020
№220.017.fb65

Входной дифференциальный каскад на комплементарных полевых транзисторах для работы при низких температурах

Изобретение относится к области радиотехники и связи и может быть использовано в качестве устройства усиления аналоговых сигналов. Технический результат заключается в обеспечении более высокой стабильности статического режима при отрицательных температурах (до -197°С) и изменении напряжений...
Тип: Изобретение
Номер охранного документа: 0002712416
Дата охранного документа: 28.01.2020
31.01.2020
№220.017.fb71

Дифференциальный каскад на комплементарных полевых транзисторах с управляющим p-n переходом класса ав с изменяемым напряжением ограничения проходной характеристики

Изобретение относится к области радиотехники. Технический результат заключается в создании условий, при которых обеспечивается возможность изменения напряжения ограничения проходной характеристики U в зависимости от заданных значений SR при фиксированном токопотреблении. Дифференциальный каскад...
Тип: Изобретение
Номер охранного документа: 0002712414
Дата охранного документа: 28.01.2020
31.01.2020
№220.017.fba4

Токовый пороговый логический элемент "равнозначность"

Изобретение относится к области радиотехники и аналоговой микроэлектроники и может быть использовано в быстродействующих аналоговых и аналого-цифровых интерфейсах для обработки сигналов датчиков. Технический результат заключается в повышении быстродействия устройств преобразования информации....
Тип: Изобретение
Номер охранного документа: 0002712412
Дата охранного документа: 28.01.2020
31.01.2020
№220.017.fba7

Буферный усилитель с малым напряжением смещения нуля на комплементарных полевых транзисторах с управляющим p-n переходом

Изобретение относится к аналоговой микроэлектронике. Технический результат заключается в создании радиационно-стойкого и низкотемпературного схемотехнического решения буферного усилителя (БУ) на комплементарных полевых транзисторах, обеспечивающего малые значения напряжения смещения нуля....
Тип: Изобретение
Номер охранного документа: 0002712410
Дата охранного документа: 28.01.2020
31.01.2020
№220.017.fbbc

Промежуточный каскад cjfet операционного усилителя с парафазным токовым выходом

Изобретение относится к области радиотехники и микроэлектроники и может быть использовано в аналоговых микросхемах (АМ) и аналого-цифровых интерфейсах датчиков. Технический результат заключается в повышении крутизны преобразования входного дифференциального напряжения в токи первого и второго...
Тип: Изобретение
Номер охранного документа: 0002712411
Дата охранного документа: 28.01.2020
+ добавить свой РИД