×
12.04.2019
219.017.0bb7

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ОСТАТОЧНОЙ ПРОЧНОСТИ ГОРНЫХ ПОРОД

Вид РИД

Изобретение

Аннотация: Изобретение относится к физико-механическим испытаниям скальных и полускальных горных пород, имеющих хрупкий характер разрушения, и может быть использовано при инженерно-геологических изысканиях. Согласно способу проводят испытания монолитных образцов на растяжение и сжатие при различных видах напряженного состояния, определение показателей прочности на отрыв и на сдвиг и максимального напряжения, соответствующего равенству максимальной и остаточной прочности при высоких давлениях. Определяют в качестве механических свойств показателей остаточной прочности при различных видах напряженного состояния в зависимости от остаточной прочности при одноосном сжатии с учетом соотношения прочности монолитной породы на сдвиг и отрыв и напряжения, соответствующего равенству максимальной и остаточной прочности при высоких давлениях. Производят сжатие монолитного образца двумя встречно направленными сферическими инденторами до его раскалывания, определяют среднее растягивающее напряжение σ разрыва образца, и среднее сжимающее напряжение, соответствующее предельному сопротивлению сдвигу вдоль поверхности большей из зон разрушенной породы вблизи инденторов. В качестве механических свойств определяют параметры билинейной аппроксимации зависимости остаточной прочности от величины минимального главного напряжения, предел остаточной прочности при одноосном сжатии, остаточное сцепление при объемном нагружении и углы внутреннего трения, соответствующие различным видам напряженного состояния, по формуле σ=σ, где предел остаточной прочности σ, среднее растягивающее напряжение σ. 2 ил., 2 табл.

Изобретение относится к физико-механическим испытаниям скальных и полускальных горных пород, имеющим хрупкий характер разрушения, и может быть использовано при инженерно-геологических изысканиях.

Известен способ определения полной кривой деформирования ненарушенной горной породы при одноосном сжатии (статья «С.Е. Fairhurst, J.A. Hudson. Draft ISRM suggested method for the complete stress-strain curve for intact rock in uniaxial compression. International J. of Rock Mechanics and Mining Sciences. No 36, 1999, pp 279-289»), включающий нагружение образца в режиме регулируемой осевой деформации с постоянной скоростью осевой деформации (около 0,0001 мм/мм/с) при достижении сжимающей силой приблизительно 70% от величины ожидаемого предела прочности до снижения несущей способности образца в запредельной области приблизительно до 50% от предела прочности, а затем разрушение образца до уровня остаточной прочности при увеличении скорости осевой деформации (примерно до 0,001 мм/мм/с).

Недостатком способа является техническая сложность реализации режима регулируемой осевой деформации с использованием нагрузочных устройств повышенной жесткости или серво управляемых машин. Другим недостатком способа является его низкая информативность, так как он позволяет определять запредельные характеристики (в том числе остаточную прочность) только для условий одноосного сжатия.

Известен способ определения запредельных характеристик при трехосном сжатии горной породы при последовательном испытании серии образцов в режиме задаваемых нарастающих осевых (по направлению максимального главного напряжения) деформаций образца при заданных постоянных по величине нагрузках по остальным направлениям (монография «Рекомендации по определению полного паспорта прочности и деформируемости горных пород. Л.: М-во угольной пром-сти СССР, ВНИМИ, 1988. - 52 с.»), включающий нагружение цилиндрических образцов осесимметричным равномерным давлением на плоские торцы и постоянным по величине гидростатическим давлением на боковую поверхность.

Недостатками способа являются техническая сложность испытаний в режиме задаваемых нарастающих осевых деформаций образца и длительность определения остаточной прочности породы, связанная с проведением многочисленных опытов над образцами при различных значениях бокового давления. Недостатком способа также является необходимость значительного объема пробы для изготовления образцов правильной формы.

Известен способ определения паспорта деформируемости горных пород (патент РФ №1201506, опубл. 30.12.1985), включающий нагружение образца горной породы в режиме регулируемой осевой деформации ступенчато изменяющимися осевым и боковым гидростатическим давлениями до значений, соответствующих предельной кратковременной, длительной и остаточной прочности, при этом при уровнях напряженного состояния, соответствующих остаточной прочности, значения бокового давления уменьшаются. Способ позволяет по результатам объемных испытаний одного образца определять несколько значений остаточной прочности (обычно не более трех-четырех), соответствующих заданным уровням бокового давления, что уменьшает необходимый объем испытаний. Кроме того способ исключает погрешность корреляции значений прочностных и деформационных показателей при разных величинах бокового давления, поскольку они определяются на одном и том же образце.

Недостатком способа является высокая техническая сложность проведения испытаний в режиме ступенчатого изменения бокового давления на образец в сочетании с его регулируемой осевой деформацией.

Известен способ определения предела прочности породных материалов при трехосном сжатии на жестких испытательных машинах (статья «ISRM: Suggested methods for determining the strength of rock materials in triaxial compression: revised version. 1983 vol. 20, No. 6, 283-290»), включающий обжатие образца до первоначальной величины бокового давления, затем нагружение образца монотонно увеличивающимся осевым давлением и пошагово увеличивающимся боковым давлением в моменты достижения состояния предельной прочности; далее деформирование образца сначала при наибольшем заданном значении бокового давления до степени разрушения, соответствующей остаточной прочности, а затем деформирование образца при монотонном уменьшении бокового давления вплоть до полной разгрузки для достижения состояний остаточной прочности при меньших значениях бокового давления; в качестве механических свойств горной породы определяют обобщающие параметры огибающих предельной и остаточной прочности - условное сцепление при объемном нагружении и углы внутреннего трения при помощи билинейной математической аппроксимации экспериментальной кривой зависимости предельной и остаточной прочности от бокового давления по формулам.

Недостатком способа является высокая техническая сложность проведения испытаний при трехосном сжатии на жестких испытательных машинах в режиме регулируемого изменения боковым давлением.

Известен способ испытания образцов горных пород (а.с. СССР №1352056, опубл. 15.11.1987), включающий создание в образце кубической формы заданного напряженного состояния, измерение напряжений и деформаций образца и оценку прочности на основании измеренных величин, при этом в образце производят предварительное нагружение, имитирующее переход образца к состоянию нетронутого массива, а затем обеспечивают на все время испытания отсутствие деформации по одной из горизонтальных осей образца, поддерживают постоянное напряжение по другой горизонтальной оси образца и постепенно увеличивают напряжение по вертикальной оси до запредельной области деформирования.

Недостатком способа является техническая сложность проведения испытаний при трехосном сжатии в режиме независимого регулирования деформациями образца по трем взаимно перпендикулярным направлениям.

Известен способ определения паспорта остаточной прочности горной породы (монография «Тарасов Б.Г. Закономерности деформирования и разрушения горных пород при высоких давлениях. Автореферат диссертации на соискание ученой степени доктора технических наук. Санкт-Петербург. ЛГИ им. Г.В. Плеханова, 1991 - 46 с.»), принятый за прототип, заключающийся в том, что проводят испытания монолитных образцов на сжатие и растяжение при различных видах напряженного состояния (характеризуемых отношением бокового и осевого давления), определяют показатели прочности на сдвиг и отрыв и напряжение (максимальное касательное напряжение), соответствующее равенству максимальной и остаточной прочности при высоких давлениях; определяют в качестве механических свойств показатели остаточной прочности (максимальное касательное напряжение) при различных видах напряженного состояния в зависимости (экспоненциальной) от остаточной прочности при одноосном сжатии с учетом соотношения прочности монолитной породы на сдвиг и отрыв и напряжения (максимального касательного напряжения), соответствующего равенству максимальной и остаточной прочности при высоких давлениях.

Недостатками способа являются техническая сложность, связанная с проведением испытаний в запредельной области деформирования образцов и невысокая точность определения параметров остаточной прочности из-за использования эмпирических коэффициентов.

Техническим результатом изобретения является упрощение испытаний за счет определения комплекса показателей прочности на растяжение и сжатие при различных видах напряженного состояния для каждого испытанного образца, а также вследствие технической простоты используемой схемы нагружения инденторами, и повышение точности определения прочностных свойств благодаря учету особенностей механизма разрушения образцов горных пород (отрывом или сдвигом) при запредельном деформировании.

Технический результат достигается тем, что производят сжатие монолитного образца двумя встречно направленными сферическими инденторами до его раскалывания, определяют среднее растягивающее напряжение σt разрыва образца, и среднее сжимающее напряжение, соответствующее предельному сопротивлению сдвигу вдоль поверхности большей из зон разрушенной породы вблизи инденторов, а в качестве механических свойств определяют параметры билинейной аппроксимации зависимости остаточной прочности от величины минимального главного напряжения, предел остаточной прочности при одноосном сжатии, остаточное сцепление при объемном нагружении и углы внутреннего трения, соответствующие различным видам напряженного состояния, по формуле

σRt, где

предел остаточной прочности σR,

среднее растягивающее напряжение σt.

Способ поясняется следующими фигурами:

фиг. 1 - схема нагружения образца сферическими инденторами;

фиг. 2 - график построение паспорта остаточной прочности горной породы в системе координат главных нормальных напряжений σ13, где:

1 - образец;

2 - сферические инденторы;

3 - зоны разрушенной породы;

4 - паспорт максимальной прочности горной породы;

5 - паспорт остаточной прочности горной породы.

Способ осуществляют следующим образом. Монолитный образец 1 устанавливают между двумя встречно направленными сферическими инденторами (стальными шариками) 2 и сжимают его, прикладывая равномерную нагрузку с постоянной скоростью нагружения (фиг. 1). При этом в образце создается сложное неоднородное напряженное состояние и реализуются три различных вида разрушения: отрыв в плоскости нагружения, пластичное поведение при высоких давлениях разрушенной уплотненной породы на контакте с инденторами и разрушение сдвигом вдоль поверхностей зон разрушенной породы 3 вблизи инденторов. Фиксируют максимальную (разрушающую) силу P и измеряют в расколотом образце площадь поверхности отрыва S и площадь поверхностей зон разрушенной породы на контакте с инденторами F1 и F2, выбирая для большую из них - F.

Определяют среднее растягивающее напряжение σt разрыва образца и среднее сжимающее напряжение p, соответствующее предельному сопротивлению сдвигу вдоль поверхности большей из зон разрушенной породы и оценивают показатель, характеризующий их соотношение K по формулам:

,

,

.

Определяют предел прочности при одноосном растяжении σT, максимальное и минимальное сжимающее напряжение в разрушенной породе на контакте с инденторами, соответствующее равенству максимальной и остаточной прочности при высоких давлениях по формулам:

,

,

.

Осуществляют построение паспорта максимальной прочности породы в виде кусочно-линейной аппроксимации огибающей кривой предельных состояний монолитной породы (линия 4 на фиг. 2, проходящая через точки F, D и Е, соответствующие характерным напряженным состояниям - пределу прочности при растяжении σT, предельному сопротивлению сдвигу {-σt; p} и состоянию равенства максимальной и остаточной прочности при высоких давлениях ).

Далее определяют механические свойства разрушенной горной породы (остаточную прочность) при различных видах напряженного состояния в зависимости от величины остаточной прочности при одноосном сжатии σR с учетом соотношения прочности на сдвиг и на отрыв K и максимального напряжения , соответствующего равенству максимальной и остаточной прочности при высоких давлениях.

Для этого производят построение паспорта остаточной прочности породы путем билинейной аппроксимации зависимости остаточной прочности от величины минимального главного напряжения σ3 прямолинейными отрезками, соответствующими разрушению отрывом и сдвигом (отрезки σtB и BE линии 5 на фиг. 2).

Участок огибающей остаточной прочности, для которого характерно разрушение сдвигом, аппроксимирует отрезок прямой, проходящий через точки А и Е на паспорте, соответствующие чистому сдвигу при уровне напряжений {-σt; σt,)} и максимальному напряжению , соответствующему равенству максимальной и остаточной прочности при высоких давлениях.

Участок огибающей остаточной прочности, для которого характерно разрушение отрывом, аппроксимирует отрезок прямой, параллельный отрезку огибающей максимальной прочности FD, который проходит через точки, соответствующие предельному сопротивлению сдвигу {σt; p} и чистому сдвигу {-σT; σT}.

Точка В перелома огибающей остаточной прочности на фиг. 2 соответствует напряженному состоянию с вероятностным характером разрушения (отрывом или сдвигом) и характеризуется значением минимального главного напряжения :

.

В качестве предела остаточной прочности σR при одноосном сжатии принимается величина среднего растягивающего напряжения σt при раскалывании образца инденторами:

σRt.

Далее определяют параметры билинейной аппроксимации зависимости остаточной прочности горной породы от величины минимального главного напряжения σ3 в системе координат Мора - остаточное сцепление при объемном нагружении CR1 и CR2 и углы внутреннего трения ϕR1 и ϕR2, соответствующие различным видам предельного напряженного состояния, при которых имеет место разрушение путем отрыва или сдвига, по формулам:

для интервала напряжений :

,

,

для интервала напряжений :

,

.

Экспериментальным обоснованием принятия в качестве предела остаточной прочности σR при одноосном сжатии величины среднего растягивающего напряжения σt при раскалывании инденторами служат результаты сопоставления значений прочности шести проб горных пород, определенных предлагаемым способом и по результатам испытаний на одноосное сжатие в режиме регулируемой осевой деформации цилиндрических образцов в камере запредельного деформирования БВ21 по методике, изложенной в монографии «Рекомендации по определению полного паспорта прочности и деформируемости горных пород. Л.: М-во угольной пром-сти СССР, ВНИМИ, 1988. - 52 с.». Количество образцов в сериях составляло от 4 до 7.

Отклонение средних результатов определений сравниваемыми способами составило, в среднем, менее 10%, что свидетельствует об их вполне приемлемой сходимости.

Экспериментальным обоснованием определения показателей остаточной прочности при объемном сжатии предлагаемым способом служит сопоставление его результатов с аналогичными данными, полученными при объемном сжатии образцов пяти проб горных пород в камере запредельного деформирования БВ21, укомплектованной насосной станцией, рассчитанной на давление рабочей жидкости до 60МПа, в соответствии с международным договорным стандартным методом испытаний (статья «ISRM: Suggested methods for determining the strength of rock materials in triaxial compression: revised version. 1983 vol. 20, No. 6, 283-290»), который также предусматривает определение параметров огибающей остаточной прочности при помощи билинейной математической аппроксимации экспериментальной кривой зависимости остаточной прочности от бокового давления.

Отклонение значений аналогичных показателей паспорта остаточной прочности горных пород сравниваемыми способами составило от 4 до 14%, что, следует признать удовлетворительным результатом.

Реализация способа позволяет существенно упростить испытания и повысить точность определения механических свойств горных пород доступным и производительным методом нагружения образцов, в том числе неправильной формы, сферическими инденторами.


СПОСОБ ОПРЕДЕЛЕНИЯ ОСТАТОЧНОЙ ПРОЧНОСТИ ГОРНЫХ ПОРОД
СПОСОБ ОПРЕДЕЛЕНИЯ ОСТАТОЧНОЙ ПРОЧНОСТИ ГОРНЫХ ПОРОД
Источник поступления информации: Роспатент

Показаны записи 151-160 из 204.
14.08.2019
№219.017.bf66

Способ получения лигатуры магний-неодим

Изобретение относится к области металлургии цветных металлов, в частности к получению магниевых лигатур с неодимом, которые могут быть использованы в качестве легирующих и модифицирующих добавок в производстве сплавов на основе магния и алюминия, а также в качестве легирующих добавок при...
Тип: Изобретение
Номер охранного документа: 0002697127
Дата охранного документа: 12.08.2019
14.08.2019
№219.017.bf8b

Способ разделения редкоземельных металлов иттрия и иттербия от примесей железа (3+)

Изобретение относится к области гидрометаллургии редких и редкоземельных металлов, а именно к способам очистки кислых фосфорорганических экстрагентов от примесей ионов железа (3+). В качестве реэкстрагента используют водный раствор щавелевой кислоты концентрацией от 0,25 до 1 М при соотношении...
Тип: Изобретение
Номер охранного документа: 0002697128
Дата охранного документа: 12.08.2019
07.09.2019
№219.017.c879

Способ механической обработки стальной заготовки с дроблением стружки

Способ включает линейное перемещение лазера с постоянной мощностью, а также длиной волны под углом наклона к обрабатываемой поверхности заготовки в пределах от 75 до 80° в виде сфокусированного светового пятна. Диаметр пятна выбирают из условия обеспечения плотности мощности, достаточной для...
Тип: Изобретение
Номер охранного документа: 0002699469
Дата охранного документа: 05.09.2019
12.09.2019
№219.017.ca6f

Устройство для определения статического и динамического трений сыпучих материалов

Изобретение относится к устройствам для измерения статического (трения покоя) и динамического трений сыпучих материалов и может быть использовано в химической, горнорудной, фармацевтической, пищевой, металлургической и других отраслях промышленности. Устройство для определения статического и...
Тип: Изобретение
Номер охранного документа: 0002699954
Дата охранного документа: 11.09.2019
02.10.2019
№219.017.cb15

Состав для защиты внутренних стенок насосно-компрессорных труб

Изобретение относится к составам для защиты внутренней стенки насосно-компрессорных труб (НКТ) и труб первичного сбора нефти от абразивного воздействия, коррозии и отложения парафина. Состав включает неэластомерный полиэтилен и эластомер, при этом дополнительно содержит магнитожесткий...
Тип: Изобретение
Номер охранного документа: 0002701033
Дата охранного документа: 24.09.2019
02.10.2019
№219.017.cf78

Тепловой снаряд для бурения плавлением

Изобретение относится к технике бурения залитых низкотемпературной жидкостью скважин сплошным забоем в мощных ледовых массивах Арктики и Антарктики и может быть использовано для бурения плавлением с одновременным или последовательным расширением скважин во льду. Тепловой снаряд для бурения...
Тип: Изобретение
Номер охранного документа: 0002700143
Дата охранного документа: 12.09.2019
03.10.2019
№219.017.d18a

Виброактивный исполнительный орган

Изобретение относится к горному делу и может быть использовано при проходке тоннелей проходческими щитами с роторными исполнительными органами в условиях кембрийских глин с включениями известняков и песчаников. Технический результат – повышение разрушающей способности исполнительного органа....
Тип: Изобретение
Номер охранного документа: 0002701764
Дата охранного документа: 01.10.2019
12.10.2019
№219.017.d547

Устройство для измерения эксергии рабочей среды

Изобретение относится к области теплоэнергетики, а именно к устройствам измерения эксергии тепловой энергии конвективным теплообменом. Модель может быть использована в контрольно-измерительных приборах для систем отопления и позволяет вести учет эксергии тепловой энергии. Предложено устройство...
Тип: Изобретение
Номер охранного документа: 0002702701
Дата охранного документа: 09.10.2019
17.10.2019
№219.017.d716

Автономный гибридный комплекс для борьбы с асфальто-смоло-парафиновыми отложениями в нефтяной скважине

Изобретение относится к нефтедобывающей промышленности и предназначено для ликвидации асфальто-смоло-парафиновых отложений (АСПО) на стенках насосно-компрессорных труб (НКТ) нефтяных скважин. Техническим результатом является ввод в работу комплекса фотоэлектрической системы в качестве...
Тип: Изобретение
Номер охранного документа: 0002703040
Дата охранного документа: 15.10.2019
16.11.2019
№219.017.e34f

Способ получения гранулированного шлака

Изобретение относится к области металлургии и может быть использовано при переработке жидких металлургических шлаков для получения строительных материалов различного назначения. Для получения гранулированного шлака осуществляют грануляцию в водной среде в присутствии сорбента, представляющего...
Тип: Изобретение
Номер охранного документа: 0002706273
Дата охранного документа: 15.11.2019
Показаны записи 11-12 из 12.
26.12.2018
№218.016.ab06

Способ определения прочности горных пород в водонасыщенном состоянии

Изобретение относится к физико-механическим испытаниям скальных и полускальных горных пород, имеющих хрупкий характер разрушения, и может быть использовано для оценки их водопрочности при инженерно-геологических изысканиях. Сущность изобретения заключается в следующем. Нагружают высушенные до...
Тип: Изобретение
Номер охранного документа: 0002676046
Дата охранного документа: 25.12.2018
29.03.2019
№219.016.ee85

Маятниковый копер для испытания образцов материалов при ударном нагружении

Изобретение относится к испытательной технике, в частности к маятниковым копрам. Маятниковый копер содержит станину, размещенные на ней маятник в виде жесткой штанги, один конец которой шарнирно соединен поворотной платформой со станиной, упругий элемент, консольно закрепленный на другом конце...
Тип: Изобретение
Номер охранного документа: 0002682845
Дата охранного документа: 21.03.2019
+ добавить свой РИД