11.04.2019
219.017.0b45

НОВЫЕ КОНЪЮГАТЫ АНТИТЕЛ И ИХ ПРИМЕНЕНИЯ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002684468
Дата охранного документа
09.04.2019
Краткое описание РИД Свернуть Развернуть
Аннотация: Настоящее изобретение относится к области биотехнологии. Предложены конъюгаты - антитела с лекарственным средством (ADC), в котором антитело представляет собой антитело, специфичное в отношении Дельта-подобного лиганда 3 (DLL3), и ковалентно связано через линкер с одним или более пирролобензодиазепинами (ПБД, PBD). Также представлены: фармацевтическая композиция, наборы, способ лечения DLL3-ассоциированного рака, способ снижения частоты клеток, инициирующих опухоли, и способ доставки PBD DLL3-ассоциированной раковой клетке. Данное изобретение может найти дальнейшее применение в терапии. 9 н. и 25 з.п. ф-лы, 6 ил., 5 табл., 10 пр.
Реферат Свернуть Развернуть

ЗАЯВКИ ПО ПЕРЕКРЕСТНЫМ ССЫЛКАМ

По данной заявке испрашивается приоритет по Предварительной Заявке США № 61/768368, поданной 22 февраля 2013 года, которая полностью включена в данный документ посредством ссылки.

СПИСОК ПОСЛЕДОВАТЕЛЬНОСТЕЙ

Рассматриваемая заявка содержит список последовательностей, который был представлен в формате ASCII через EFS-Web, и, таким образом, полностью включен в данный документ посредством ссылки. Указанная ASCII копия, созданная 15 Февраля 2014 г, имеет название S69697_1110WO_ST25.txt и имеет размер 582 Кб (596345 байт).

ОБЛАСТЬ ТЕХНИКИ ИЗОБРЕТЕНИЯ

Данная заявка, в целом, относится к новым соединениям, содержащим анти-DLL3 антитела или их иммунореактивные фрагменты, конъюгированные с пирролобензодиазепинами (ПБД), и применению таких новых соединений для лечения или профилактики злокачественного новообразования и любого его повторного проявления или метастазирования.

УРОВЕНЬ ТЕХНИКИ ИЗОБРЕТЕНИЯ

Дифференциация и пролиферация стволовых клеток и клеток-предшественников представляют собой нормальные перманентные процессы, которые действуют согласованно, чтобы поддержать тканевой рост во время органогенеза, восстановления клеток и замены клеток. Система является строго регулируемой, чтобы гарантировать то, что гененрируются только соответствующие сигналы на основании потребностей организма. Пролиферация и дифференциация клеток происходят нормально, только в объеме, необходимом для замены поврежденных или умирающих клеток или для роста. Однако, дестабилизация этих процессов может инициироваться множеством факторов, включающих недо- или сверхраспространенность различных сигнальных химических веществ, присутствие измененных микроокружений, генетические мутации или их комбинацию. Дестабилизация нормальной клеточной пролиферации и/или дифференциации может приводить к различным нарушениям, включающим пролиферативные заболевания, такие как злокачественное новообразование.

Общепринятые терапии злокачественного новообразования включают химиотерапию, лучевую терапию и иммунотерапию. Часто эти терапии являются неэффективными, а хирургическая резекция могут не обеспечивать жизнеспособную клиническую альтернативу. Ограничения современного стандарта клинической практики являются особенно очевидными в тех случаях, где пациенты проходят через терапию певой линии и в последующем рецидивируют. В таких случаях часто возникают рефрактерные опухоли, часто агрессивные и неизлечимые. Показатели общей выживаемости для многих солидных опухолей остаются в значительной степени неизменными в течение многих лет вследствие, по меньшей мере частично, невозможности существующих терапий предотвратить рецидив, повторное проявление опухоли и метастазирование. Терапевтические ограничения принятых в настоящее время доступных способов лечения выдвинули на первый план необходимость разрабатывать новые средства, которые эффективно целенаправленно действуют на онкогенные клетки и устраняют их с поддающимся коррекции побочным эффектом.

Одна перспективная область для разработки таких средств и относящихся к ним способам лечения включает в себя прицельные терапии с использованием антител. В данной связи терапия антителами была установлена для целенаправленного лечения пациентов со злокачественным новообразованием, иммунологическими и ангиогенными нарушениями (Carter, P. (2006) Nature Reviews Immunology 6:343-357). Более конкретно, было показано, что применение конъюгатов антитела с лекарственным средством (т.е., ADC или иммуноконъюгатов), содержащих компонент целенаправленного средства связывания с клеткой и компонент полезной нагрузки лекарственным средством для локализированной доставки цитотоксических или цитостатических средств, инициирует внутриклеточное накопление лекарственного внутри опухолевых клеток. Такая локализация обеспечивает относительно высокие концентрации лекарственного средства внутри опухоли, в то время как системное введение неконъюгированного (т.е., нецеленаправленного) лекарственного средства для достижения такой же концентрации в опухоли может приводить к неприемлемым уровням токсичности для нормальных клеток (Xie et al (2006) Expert. Opin. Biol. Ther. 6(3):281-291; Kovtun et al (2006) Cancer Res. 66(6):3214-3121; Law et al (2006) Cancer Res. 66(4):2328-2337; Wu et al (2005) Nature Biotech. 23(9):1137-1145; Lambert J. (2005) Current Opin. in Pharmacol. 5:543-549; Hamann P. (2005) Expert Opin. Ther. Patents 15(9):1087-1103; Payne, G. (2003) Cancer Cell 3:207-212; Trail et al (2003) Cancer Immunol. Immunother. 52:328-337; Syrigos and Epenetos (1999) Anticancer Research 19:605-614).

С клинической точки зрения такие конъюгаты антитела с лекарственным средством могут, таким образом, обеспечивать увеличенную эффективность действия вместе с соответствующим снижением токичности. Усилия по конструированию и очистке ADC были сконцентрированы на селективности моноклональных антитела (mAbs), а также на выяснении механизма действия лекарственных средств, технологиях конъюгирования и линкерах, отношении лекарственное средство/антитело (загрузке) и свойствах высвобождения лекарственного средства (Junutula, et al., 2008b Nature Biotech., 26(8):925-932; Dornan et al (2009) Blood 114(13):2721-2729; US 7521541; US 7723485; WO2009/052249; McDonagh (2006) Белк Eng. Design & Sel. 19(7): 299-307; Doronina et al (2006) Bioconj. Chem. 17:114-124; Erickson et al (2006) Cancer Res. 66(8):1-8; Sanderson et al (2005) Clin. Cancer Res. 11:843-852; Jeffrey et al (2005) J. Med. Chem. 48:1344-1358; Hamblett et al (2004) Clin. Cancer Res. 10:7063-7070). По отношению к селективности антитела и локализации опухоли многие известные опухолевые маркеры оказались неэффективными мишенями для ADC по ряду причин, включающих низкую экспрессию, отсутствие интернализации, шеддинг и т.д. Выбор подходящих составных частей ADC из лекарственных средств также в прошлом оказался проблематичным. Различные средства были предложены для применения в ADC, включающие фрагменты лекарственных средств, которые придают цитотоксические и цитотостатические эффекты посредством механизмов, включающих связывание тубулина, связывание ДНК, ингибирование протеасом и/или топоизомеразы. Несмотря на некоторый успех, некоторые цитотоксические лекарственные средства имеют тенденцию становиться неактивными или менее активными, когда их конъюгируют с крупными антителами или лигандами белковых рецепторов. Соответственно, выбор соответствующего целенаправленного или связывающегося с клеткой средства и эффективного лекарственного средства в виде полезной нагрузки в качестве составных частей ADC является важным для предоставления соединений, проявляющих желательный клинический профиль.

Один класс соединений, которые являются перспективным в качестве потенциальных полезных нагрузок ADC, представляет собой пирролобензодиазепины (ПБД). В этой связи ПБД обладают способностью распознавать специфичные последовательности ДНК, включающими предпочтительную последовательность PuGPu, и связываться с ними. Первый противоопухолевый антибиотик из ПБД, антрамицин, был обнаружен в 1965 г. (Leimgruber, et al., J. Am. Chem. Soc., 87, 5793-5795 (1965); Leimgruber, et al., J. Am. Chem. Soc., 87, 5791-5793 (1965)). С тех пор, сообщалось о ряде природных ПБД, и были разработаны свыше 10 синтетических путей до разнообразных аналогов (Thurston, et al., Chem. Rev.1994, 433-465 (1994); Antonow, D. and Thurston, D.E., Chem. Rev.2011 111 (4), 2815-2864). Члены семейства включают аббеймицин (Hochlowski, et al., J. Antibiotics, 40, 145-148 (1987)), чикамицин (Konishi, et al., J. Antibiotics, 37, 200-206 (1984)), DC-81 (Патент Японии 58-180 487; Thurston, et al., Chem. Brit., 26, 767-772 (1990); Bose, et al., Тетраhedron, 48, 751-758 (1992)), мазетрамицин (Kuminoto, et al., J. Antibiotics, 33, 665-667 (1980)), неотрамицины A и B (Takeuchi, et al., J. Antibiotics, 29, 93-96 (1976)), поротрамицин (Tsunakawa, et al., J. Antibiotics, 41, 1366-1373 (1988)), протракарцин (Shimizu, et al, J. Antibiotics, 29, 2492-2503 (1982); Langley and Thurston, J. Org. Chem., 52, 91-97 (1987)), сибаномицин (DC-102)(Hara, et al., J. Antibiotics, 41, 702-704 (1988); Itoh, et al., J. Antibiotics, 41, 1281-1284 (1988)), сибиромицин (Leber, et al., J. Am. Chem. Soc., 110, 2992-2993 (1988)) и томамицин (Arima, et al., J. Antibiotics, 25, 437-444 (1972)).

ПБД имеют общую структуру:

Они отличаются по числу, типу и положению заместителей, как в их ароматических кольцах A, так и пирроло-кольцах C, и по степени замещения C-кольца. В B-кольце присутствует либо имин (N=C), карбиноламин (NH-CH(OH)) или метиловый эфир карбиноламина (NH-CH(OMe)) в положении N10-C11, которое является электрофильным центром, ответственным за алкилирование ДНК. Все из известных природных продуктов имеют (S)-конфигурацию по хиральному положению C11a, которое обеспечивает их правосторонним поворотом при наблюдении от C-кольца в направлении A-кольца. Это придает им соответствующую трехмерную форму для структуры, изоспиральной малой бороздке B-формы ДНК, приводящей к точной подгонке на участке связывания (Kohn, In Antibiotics III. Springer-Verlag, New York, pp. 3-11 (1975); Hurley and Needham-VanDevanter, Acc. Chem. Res., 19, 230-237 (1986)). Их способность образовывать аддукт в малой бороздке, позволяет им препятствовать процессингу ДНК, следовательно, обеспечивает их применение противоопухолевых средств.

Особенно преимущественное пирролобензодиазепиновое соединение описано Gregson et al. (Chem. Commun. 1999, 797-798) как соединение 1, и Gregson et al. (J. Med. Chem. 2001, 44, 1161-1174) как соединение 4a. Данное соединение, также известное как SG2000, показано ниже:

WO 2007/085930 описывает получение димерных ПБД соединений, имеющих линкерные группы для соединения со средством связывания с клеткой, таким как антитело. Линкер присутствует в мостике, связывающем мономерные блоки ПБД димера.

WO 2011/130598 описывает димерные ПБД соединения, имеющие линкерные группы для соединения со средством связывания с клеткой, таким как антитело. Линкер в этих соединениях присоединен к одному из доступных положений N10 и предпочтительно расщепляется под действием фермента на линкерную группу.

В то время как различные ПБД ADC оказались перспективными для лечения некоторых пролиферативных нарушений, в данной области остается потребность в клинически эффективных целенаправленных соединениях и способах применения таких соединений для лечения пролиферативных нарушений.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Эти и другие цели предусмотрены настоящим изобретением, которое, в широком смысле, направлено на способы, соединения, композиции и готовые изделия, содержащие некоторые конъюгаты антител с лекарственными средствами, содержащие выбранные ПБД, которые могут применяться при лечении нарушений, ассоциированных с DLL3 (например, пролиферативных нарушений или неопластических нарушений). В этой связи, настоящее изобретение предоставляет антитела с Дельта-подобным лигандом 3 (или DLL3), конъюгированные с выбранными ПБД, которые эффективно целенаправленно действуют на опухолевые клетки и/или раковые стволовые клетки, и могут применяться для лечения пациентов, страдающих от самых разных пролиферативных нарушений и любых их распространений, повторных проявлений, рецидивов или метастазов. В широком аспекте, настоящее изобретение относится к антителам с Дельта-подобным лигандом 3 (DLL3), конъюгированных с выбранными пирролобензодиазепинами, для обеспечения DLL3-иммуноконъюгатов, по существу приведенных в виде ADC1 - 5 непосредственно ниже. Соответственно, в одном аспекте изобретение направлено на конъюгат, выбранный из группы, состоящей из

где Ab содержит анти-DLL3 антителоо или его иммунореактивный фрагмент. Конъюгирование с фрагментом линкерного лекарственного средства в каждом из конъюгатов происходит предпочтительно через свободный тиол в анти-DLL3 антителое.

В других аспектах настоящее изобретение включает в себя композицию, содержащую ADC 1, композицию, содержащую ADC 2, композицию, содержащую ADC 3, композицию, содержащую ADC 4 или композицию, содержащую ADC 5.

Как указано, такие конъюгаты могут применяться для лечения, контроля, устранения или профилактики пролиферативных нарушений или их повторных проявлений или прогрессирования. Выбранные варианты осуществления настоящего изобретения предоставляют применение таких Конъюгат DLL3ов, для иммунотерапевтического лечения злокачественных новообразований, предпочтительно включающего в себя уменьшение опухоли, инициирующей частоту распространения клеток. Раскрытые ADC могут применяться по отдельности или совместно с широким рядом противоопухолевых соединений, таких как химиотерапевтические или иммунотерпевтические средства (например, терапевтические антитела) или модификаторы биологического ответа. В других выбранных вариантах осуществления, два или более дискретных конъюгата DLL3 антитела с лекарственным средством могут применяться в комбинации, чтобы обеспечить усиленные антинеопластические эффекты.

В еще одном аспекте, приведенном в прилагаемых Примерах, изобретение предоставляет способ получения ADC1 - 5, включающий в себя конъюгирование соединения, выбранного из группы, состоящей из

с анти-DLL3 антителоом или его иммунореактивным фрагментом. Для целей далее рассматриваемой заявки DL будет применяться как аббревиатура для “лекарственное средство-линкер” и будет содержать линкеры лекарственного средства 1-5 (т.е., DL1, DL2, DL3, DL4 и DL5), приведенные выше.

Следуеит принимать во внимание, что прилагаемый к линкеру концевой малеимидо-фрагмент (DL1-DL3 и DL5) или йодацетамидный фрагмент (DL4) могут быть конъюгированы со свободными сульфгидрилом(сульфгидрилами) в выбранном DLL3 антителе с использованием принятых в данной области методов В дополнение к более подробному обсуждению ниже, путь синтеза к каждому соединению из DL 1-5 предоставлен в Примере 1, прилагаемому к данному документу, в то время как специфичные способы конъюгирования таких соединений для предоставления ADC 1-5 приведены в Примере 7.

Отмечаем, что для целей рассматриваемой заявки следует принимать во внимание, что термины “модулятор” и “антитело” могут применяться взаимозаменяемо, если иное не предписано контекстом. Аналогично, все термины “анти-Конъюгат DLL3” и “Конъюгат DLL3”, или просто “конъюгат”, относятся к соединениям, приведенным в виде ADC 1-5, содержащих анти-DLL3 антителоо, и могут применяться взаимозаменяемо если иное не предписано контекстом.

При любых обстоятельствах эти и другие цели предусмотрены настоящим изобретением, которое, в широком смысле, направлено на вышеуказанные Конъюгат DLL3ы и ассоциированные способы, композиции и готовые изделия, которые могут применяться при лечении нарушений, ассоциированных с DLL3 (например, пролиферативных нарушений или неопластических нарушений). В этой связи, настоящее изобретение предоставляет конъюгаты антитела Дельта-подобного лиганда 3 (или DLL3), которые эффективно целенаправленно действуют на опухолевые клетки и/или раковые стволовые клетки и могут применяться для лечения пациентов, страдающих от самых различных злокачественных новообразований. Как будет обсуждаться более подробно в данном документе, существуют по меньшей мере две изоформы или два варианта DLL3 природного происхождения, и раскрытые модуляторы могут включать в себя или селективно ассоциироваться с одной или другой изоформой или с обеими. Более того, в некоторых вариантах осуществления раскрытые модуляторы DLL3 могут дополнительно взаимодействовать с одним или более членами семейства DLL (например, DLL1 или DLL4) или, в других вариантах осуществления, могут генерироваться и выбираться таким образом, чтобы ассоциироваться или взаимодействовать исключительно с одной или более изоформами DLL3.

Следует дополнительно принимать во внимание, что раскрытые конъюгаты антитела с лекарственным средством могут содержать любой модулятор, антитело или его иммунореактивный фрагмент, который распознает, конкурирует с, является агонистом, является антагонистом, взаимодействует, связывается или ассоциирует с детерминантой DLL3 (или ее фрагментом) и модулирует, настраивает, изменяет, регулирует, изменяет или модифицирует воздействие белка DLL3 на один или более физиологических путей и/или ингибирует или устраняет DLL3-ассоциированные клетки. Таким образом, в широком смысле, настоящее изобретение в целом направлено на Конъюгат DLL3ы и их применения. Кроме того, как всесторонне обсуждается ниже, такие конъюгаты антитела с лекарственным средством могут применяться для обеспечения фармацевтических композиций, применимых для профилактики, диагностики или лечения пролиферативных нарушений, включающих злокачественное новообразование.

Что касается ADC 1-5, следует принимать во внимание, что совместимые антитела могут принимать любую одну из ряда форм, включающих, например, поликлональные и моноклональные антитела, химерные, CDR-привитые, гуманизированные и человеческие антитела и иммунореактивные фрагменты и/или варианты каждого из вышеуказанных. Предпочтительные варианты осуществления будут включать в себя антитела, которые являются относительно неиммуногенными, такие как гуманизированные или полностью человеческие конструкции. Несомненно, принимая во внимание рассматриваемое раскрытие, квалифицированные специалисты в данной области смогут легко идентифицировать одну или более областей, определяющих комплементарность, (CDR) ассоциированных с модуляторами вариабельных областей тяжелой и легкой цепи DLL3-антитела и применять эти CDR, чтобы конструировать или производить химерные, гуманизированные или CDR-привитые антитела без излишнего экспериментирования. Соответственно, в некоторых предпочтительных вариантах осуществления компонент DLL3-антитела раскрытых ADC содержит антитело, которое включает в себя одну или более областей, определяющих комплементарность (CDR), как определено на ФИГУРАХ 3A и 3B, и является производным иллюстративных смежных легкой (ФИГ. 3A) или тяжелой (ФИГ. 3B) цепи мышиных вариабельных областей (SEQ ID NO: 21-387, нечетные номера), приведенных в них. Также на ФИГ. 3 показаны иллюстративные гуманизированные (CDR привитые) последовательности вариабельной области легкой и тяжелой цепи, содержащие SEQ ID NO: 389-407. В предпочтительных вариантах осуществления антитела, содержащие CDR, приведенные на ФИГУРАХ 3A и 3B будут содержать моноклональные антитела и, даже в более предпочтительных вариантах осуществления, будут содержать химерные, CDR-привитые или гуманизированные антитела. Иллюстративные последовательности нуклеиновой кислоты, кодирующие каждую из аминокислотных последовательностей, приведенных на ФИГУРАХ 3A и 3B прилагаются в данном документе в списке последовательностей.

В еще одном варианте осуществления, антитело изобретения включает в себя вариабельные области тяжелой и легкой цепи, содержащие аминокислотные последовательности, которые являются гомологичными аминокислотным последовательностям иллюстративных антител, описанн в данном документе, и, где антитела сохраняют желательные функциональные свойства анти-DLL3 антитело изобретения.

Более конкретно, в избранных вариантах осуществления, антитела, включенные в любой из ADC 1-5, могут включать в себя антитело или его иммунореактивный фрагмент, имеющие вариабельную область легкой цепи и вариабельную область тяжелой цепи, где указанная вариабельная область легкой цепи содержит аминокислотную последовательность, которая по меньшей мере на 60% является гомологичной аминокислотной последовательности, выбранной из группы, состоящей из SEQ ID NO: 21, SEQ ID NO: 25, SEQ ID NO: 29, SEQ ID NO: 33, SEQ ID NO: 37, SEQ ID NO: 41, SEQ ID NO: 45, SEQ ID NO: 49, SEQ ID NO: 53, SEQ ID NO: 57, SEQ ID NO: 61, SEQ ID NO: 65, SEQ ID NO: 69, SEQ ID NO: 73, SEQ ID NO: 77, SEQ ID NO: 81, SEQ ID NO: 85, SEQ ID NO: 89, SEQ ID NO: 93, SEQ ID NO: 97, SEQ ID NO: 101, SEQ ID NO: 105, SEQ ID NO: 109, SEQ ID NO: 113, SEQ ID NO: 117, SEQ ID NO: 121, SEQ ID NO: 125, SEQ ID NO: 129, SEQ ID NO: 133, SEQ ID NO: 137, SEQ ID NO: 141, SEQ ID NO: 145, SEQ ID NO: 149, SEQ ID NO: 153, SEQ ID NO: 157, SEQ ID NO: 161, SEQ ID NO: 165, SEQ ID NO: 169, SEQ ID NO: 173, SEQ ID NO: 177, SEQ ID NO: 181, SEQ ID NO: 185, SEQ ID NO: 189, SEQ ID NO: 193, SEQ ID NO: 197, SEQ ID NO: 201, SEQ ID NO: 205, SEQ ID NO: 209, SEQ ID NO: 213, SEQ ID NO: 217, SEQ ID NO: 221, SEQ ID NO: 225, SEQ ID NO: 229, SEQ ID NO: 233, SEQ ID NO: 237, SEQ ID NO: 241, SEQ ID NO: 245, SEQ ID NO: 249, SEQ ID NO: 253, SEQ ID NO: 257, SEQ ID NO: 261, SEQ ID NO: 265, SEQ ID NO: 269, SEQ ID NO: 273, SEQ ID NO: 277, SEQ ID NO: 281, SEQ ID NO: 285, SEQ ID NO: 289, SEQ ID NO: 293, SEQ ID NO: 297, SEQ ID NO: 301, SEQ ID NO: 305, SEQ ID NO: 309, SEQ ID NO: 313, SEQ ID NO: 317, SEQ ID NO: 321, SEQ ID NO: 325, SEQ ID NO: 329, SEQ ID NO: 333, SEQ ID NO: 337, SEQ ID NO: 341, SEQ ID NO: 345, SEQ ID NO: 349, SEQ ID NO: 353, SEQ ID NO: 357, SEQ ID NO: 361, SEQ ID NO: 365, SEQ ID NO: 369, SEQ ID NO: 373, SEQ ID NO: 377, SEQ ID NO: 381 и SEQ ID NO: 385, и, где указанная вариабельная область тяжелой цепи содержит аминокислотную последовательность, которая по меньшей мере на 60% является гомологичной аминокислотной последовательности, выбранной из группы, состоящей из SEQ ID NO: 23, SEQ ID NO: 27, SEQ ID NO: 31, SEQ ID NO: 35, SEQ ID NO: 39, SEQ ID NO: 43, SEQ ID NO: 47, SEQ ID NO: 51, SEQ ID NO: 55, SEQ ID NO: 59, SEQ ID NO: 63, SEQ ID NO: 67, SEQ ID NO: 71, SEQ ID NO: 75, SEQ ID NO: 79, SEQ ID NO: 83, SEQ ID NO: 87, SEQ ID NO: 91, SEQ ID NO: 95, SEQ ID NO: 99, SEQ ID NO: 103, SEQ ID NO: 107, SEQ ID NO: 111, SEQ ID NO: 115, SEQ ID NO: 119, SEQ ID NO: 123, SEQ ID NO: 127, SEQ ID NO: 131, SEQ ID NO: 135, SEQ ID NO: 139 SEQ ID NO: 143, SEQ ID NO: 147, SEQ ID NO: 151, SEQ ID NO: 155, SEQ ID NO: 159, SEQ ID NO: 163, SEQ ID NO: 167, SEQ ID NO: 171, SEQ ID NO: 175, SEQ ID NO: 179, SEQ ID NO: 183, SEQ ID NO: 187, SEQ ID NO: 191, SEQ ID NO: 195, SEQ ID NO: 199, SEQ ID NO: 203, SEQ ID NO: 207, SEQ ID NO: 211, SEQ ID NO: 215, SEQ ID NO: 219, SEQ ID NO: 223, SEQ ID NO: 227, SEQ ID NO: 231, SEQ ID NO: 235, SEQ ID NO: 239, SEQ ID NO: 243, SEQ ID NO: 247, SEQ ID NO: 251, SEQ ID NO: 255, SEQ ID NO: 259, SEQ ID NO: 263, SEQ ID NO: 267, SEQ ID NO: 271, SEQ ID NO: 275, SEQ ID NO: 279, SEQ ID NO: 283, SEQ ID NO: 287, SEQ ID NO: 291, SEQ ID NO: 295, SEQ ID NO: 299, SEQ ID NO: 303, SEQ ID NO: 307 SEQ ID NO: 311, SEQ ID NO: 315, SEQ ID NO: 319, SEQ ID NO: 323, SEQ ID NO: 327, SEQ ID NO: 331, SEQ ID NO: 335, SEQ ID NO: 339, SEQ ID NO: 343, SEQ ID NO: 347, SEQ ID NO: 351, SEQ ID NO: 355, SEQ ID NO: 359, SEQ ID NO: 363, SEQ ID NO: 367, SEQ ID NO: 371, SEQ ID NO: 375, SEQ ID NO: 379, SEQ ID NO: 383 и SEQ ID NO: 387. В других предпочтительных вариантах осуществления выбранные модуляторы будут содержать вариабельные области тяжелой и легкой цепи, которые на 65, 70, 75 или 80% являются гомологичными вышеуказанным мышиным последовательностям. В еще других вариантах осуществления модуляторы будут содержать аминокислотные последовательности вариабельной области тяжелой и легкой цепи, которые на 85, 90 или даже 95% являются гомологичными раскрытым мышиным последовательностям. В связи с эти, следует принимать во внимание, что гуманизированные антитела, полученные из антител мышиного происхождения обычно имеют вариабельные области тяжелой и легкой цепи, которые предпочтительно на от приблизительно 70% до приблизительно 85% являются гомологичными относительно исходных антител. Путем сравнения гуманизированные антитела будут обычно иметь вариабельные области тяжелой и легкой цепи, которые предпочтительно на от приблизительно 80% до приблизительно 95% являются гомологичными с такими же областями акцепторных человеческих антител.

В других предпочтительных вариантах осуществления выбранные антитела будут включать в себя одну или более CDR, полученные из любой из приведенных выше аминокислотных последовательностей вариабельной области легкой и тяжелой цепи. Соответственно, избранные варианты осуществления изобретения включают модулятор DLL3, содержащий одну или более CDR из любой одной из SEQ ID NO:21-387, нечетные номера. Предпочтительно, антитела будут содержать три CDR легкой цепи, полученные из единственной аминокислотной последовательности вариабельной области легкой цепи, приведенной на ФИГ. 3A, и три CDR тяжелой цепи, полученные из единственной аминокислотной последовательности вариабельной области тяжелой цепи, приведенной на ФИГ. 3B. Например, иллюстративные антитела могут содержать три CDR легкой цепи, полученные из единственной аминокислотной последовательности, вариабельной области легкой цепи, приведенной на ФИГ. 3A, и три CDR тяжелой цепи из единственной аминокислотной последовательности вариабельной области тяжелой цепи, приведенной на ФИГ. 3B, где вариабельные области легкой цепи и тяжелой цепи происходят из одного и того же клона. В еще других вариантах осуществления конъюгаты рассматриваемого изобретения будут содержать антитело или его иммунореактивный фрагмент, который конкурирует за связывание с любым из приведенных выше модуляторов.

Таким образом, еще один аспект изобретения содержит ADC, включающий в себя антитела, полученные или произведенные из SC16.3, SC16.4, SC16.5, SC16.7, SC16.8, SC16.10, SC16.11, SC16.13, SC16.15, SC16.18, SC16.19, SC16.20, SC16.21, SC16.22, SC16.23, SC16.25, SC16.26, SC16.29, SC16.30, SC16.31, SC16.34, SC16.35, SC16.36, SC16.38, SC16.41, SC16.42, SC16.45, SC16.47, SC16.49, SC16.50, SC16.52, SC16.55, SC16.56, SC16.57, SC16.58, SC16.61, SC16.62, SC16.63, SC16.65, SC16.67, SC16.68, SC16.72, SC16.73, SC16.78, SC16.79, SC16.80, SC16.81, SC16.84, SC16.88, SC16.101, SC16.103, SC16.104, SC16.105, SC16.106, SC16.107, SC16.108, SC16.109, SC16.110, SC16.111, SC16.113, SC16.114, SC16.115, SC16.116, SC16.117, SC16.118, SC16.120, SC16.121, SC16.122, SC16.123, SC16.124, SC16.125, SC16.126, SC16.129, SC16.130, SC16.131, SC16.132, SC16.133, SC16.134, SC16.135, SC16.136, SC16.137, SC16.138, SC16.139, SC16.140, SC16.141, SC16.142, SC16.143, SC16.144, SC16.147, SC16.148, SC16.149 и SC16.150; или любого из идентифицированных выше антител или их химерных или гуманизированных версий. В других вариантах осуществления ADC изобретения будут содержать DLL3-антитело, имеющее одно или более CDR, например, одно, два, три, четыре, пять или шесть CDR, из любого из вышеуказанных модуляторов.

В еще одном аспекте настоящее изобретение будет включать в себя конъюгат, где анти-DLL3 антителоо или его иммунореактивный фрагмент содержит вариабельную область легкой цепи и вариабельную область тяжелой цепи, где указанная вариабельная область легкой цепи содержит аминокислотную последовательность, произведенную из аминокислотной последовательности, выбранной из группы, состоящей из SEQ ID NO: 21, SEQ ID NO: 25, SEQ ID NO: 29, SEQ ID NO: 33, SEQ ID NO: 37, SEQ ID NO: 41, SEQ ID NO: 45, SEQ ID NO: 49, SEQ ID NO: 53, SEQ ID NO: 57, SEQ ID NO: 61, SEQ ID NO: 65, SEQ ID NO: 69, SEQ ID NO: 73, SEQ ID NO: 77, SEQ ID NO: 81, SEQ ID NO: 85, SEQ ID NO: 89, SEQ ID NO: 93, SEQ ID NO: 97, SEQ ID NO: 101, SEQ ID NO: 105, SEQ ID NO: 109, SEQ ID NO: 113, SEQ ID NO: 117, SEQ ID NO: 121, SEQ ID NO: 125, SEQ ID NO: 129, SEQ ID NO: 133, SEQ ID NO: 137, SEQ ID NO: 141, SEQ ID NO: 145, SEQ ID NO: 149, SEQ ID NO: 153, SEQ ID NO: 157, SEQ ID NO: 161, SEQ ID NO: 165, SEQ ID NO: 169, SEQ ID NO: 173, SEQ ID NO: 177, SEQ ID NO: 181, SEQ ID NO: 185, SEQ ID NO: 189, SEQ ID NO: 193, SEQ ID NO: 197, SEQ ID NO: 201, SEQ ID NO: 205, SEQ ID NO: 209, SEQ ID NO: 213, SEQ ID NO: 217, SEQ ID NO: 221, SEQ ID NO: 225, SEQ ID NO: 229, SEQ ID NO: 233, SEQ ID NO: 237, SEQ ID NO: 241, SEQ ID NO: 245, SEQ ID NO: 249, SEQ ID NO: 253, SEQ ID NO: 257, SEQ ID NO: 261, SEQ ID NO: 265, SEQ ID NO: 269, SEQ ID NO: 273, SEQ ID NO: 277, SEQ ID NO: 281, SEQ ID NO: 285, SEQ ID NO: 289, SEQ ID NO: 293, SEQ ID NO: 297, SEQ ID NO: 301, SEQ ID NO: 305, SEQ ID NO: 309, SEQ ID NO: 313, SEQ ID NO: 317, SEQ ID NO: 321, SEQ ID NO: 325, SEQ ID NO: 329, SEQ ID NO: 333, SEQ ID NO: 337, SEQ ID NO: 341, SEQ ID NO: 345, SEQ ID NO: 349, SEQ ID NO: 353, SEQ ID NO: 357, SEQ ID NO: 361, SEQ ID NO: 365, SEQ ID NO: 369, SEQ ID NO: 373, SEQ ID NO: 377, SEQ ID NO: 381 и SEQ ID NO: 385, и, где указанная вариабельная область тяжелой цепи содержит аминокислотную последовательность, производную от аминокислотной последовательности, выбранной из группы, состоящей из SEQ ID NO: 23, SEQ ID NO: 27, SEQ ID NO: 31, SEQ ID NO: 35, SEQ ID NO: 39, SEQ ID NO: 43, SEQ ID NO: 47, SEQ ID NO: 51, SEQ ID NO: 55, SEQ ID NO: 59, SEQ ID NO: 63, SEQ ID NO: 67, SEQ ID NO: 71, SEQ ID NO: 75, SEQ ID NO: 79, SEQ ID NO: 83, SEQ ID NO: 87, SEQ ID NO: 91, SEQ ID NO: 95, SEQ ID NO: 99, SEQ ID NO: 103, SEQ ID NO: 107, SEQ ID NO: 111, SEQ ID NO: 115, SEQ ID NO: 119, SEQ ID NO: 123, SEQ ID NO: 127, SEQ ID NO: 131, SEQ ID NO: 135, SEQ ID NO: 139 SEQ ID NO: 143, SEQ ID NO: 147, SEQ ID NO: 151, SEQ ID NO: 155, SEQ ID NO: 159, SEQ ID NO: 163, SEQ ID NO: 167, SEQ ID NO: 171, SEQ ID NO: 175, SEQ ID NO: 179, SEQ ID NO: 183, SEQ ID NO: 187, SEQ ID NO: 191, SEQ ID NO: 195, SEQ ID NO: 199, SEQ ID NO: 203, SEQ ID NO: 207, SEQ ID NO: 211, SEQ ID NO: 215, SEQ ID NO: 219, SEQ ID NO: 223, SEQ ID NO: 227, SEQ ID NO: 231, SEQ ID NO: 235, SEQ ID NO: 239, SEQ ID NO: 243, SEQ ID NO: 247, SEQ ID NO: 251, SEQ ID NO: 255, SEQ ID NO: 259, SEQ ID NO: 263, SEQ ID NO: 267, SEQ ID NO: 271, SEQ ID NO: 275, SEQ ID NO: 279, SEQ ID NO: 283, SEQ ID NO: 287, SEQ ID NO: 291, SEQ ID NO: 295, SEQ ID NO: 299, SEQ ID NO: 303, SEQ ID NO: 307 SEQ ID NO: 311, SEQ ID NO: 315, SEQ ID NO: 319, SEQ ID NO: 323, SEQ ID NO: 327, SEQ ID NO: 331, SEQ ID NO: 335, SEQ ID NO: 339, SEQ ID NO: 343, SEQ ID NO: 347, SEQ ID NO: 351, SEQ ID NO: 355, SEQ ID NO: 359, SEQ ID NO: 363, SEQ ID NO: 367, SEQ ID NO: 371, SEQ ID NO: 375, SEQ ID NO: 379, SEQ ID NO: 383 и SEQ ID NO: 387. Например, такие антитела могут включать вариабельную область легкой цепи и вариабельную область тяжелой цепи одного и того же клона, идентифицированного на ФИГУРАХ 3A и 3B.

В еще других совместимых вариантах осуществления конъюгаты антитела с лекарственным средством рассматриваемого изобретения будут содержать одно из CDR-привитых или гуманизированных DLL3 антител hSC16.13, hSC16.15, hSC16.25, hSC16.34 и hSC16.56.

Другие варианты осуществления направлены на ADC, содержащие антитело, где указанное антитело содержит:

легкую цепь антитела, содержащую CDR1 вариабельной области легкой цепи, содержащую SEQ ID NO: 408, CDR2 вариабельной области легкой цепи, содержащую SEQ ID NO: 409 и CDR3 вариабельной области легкой цепи, содержащую SEQ ID NO: 410; и

тяжелую цепь антитела, содержащую CDR1 вариабельной области тяжелой цепи, содержащую SEQ ID NO: 411, CDR2 вариабельной области тяжелой цепи, содержащую SEQ ID NO: 412 и CDR3 вариабельной области тяжелой цепи, содержащую SEQ ID NO: 413.

В еще одном варианте осуществления изобретение направлено на ADC, содержащие антитело, где указанное антитело содержит:

легкую цепь антитела, содержащую CDR1 вариабельной области легкой цепи, содержащую SEQ ID NO: 414, CDR2 вариабельной области легкой цепи, содержащую SEQ ID NO: 415, и CDR3 вариабельной области легкой цепи, содержащую SEQ ID NO: 416; и

тяжелую цепь антитела, содержащую CDR1 вариабельной области тяжелой цепи, содержащую SEQ ID NO: 417, CDR2 вариабельной области тяжелой цепи, содержащую SEQ ID NO: 418, и CDR3 вариабельной области тяжелой цепи, содержащую SEQ ID NO: 419.

В еще одном варианте осуществления изобретение направлено на ADC, содержащие антитело, где указанное антитело содержит:

легкую цепь антитела, содержащую CDR1 вариабельной области легкой цепи, содержащую SEQ ID NO: 420, CDR2 вариабельной области легкой цепи, содержащую SEQ ID NO: 421, и CDR3 вариабельной области легкой цепи, содержащую SEQ ID NO: 422; и

тяжелую цепь антитела, содержащую CDR1 вариабельной области тяжелой цепи, содержащую SEQ ID NO: 423, CDR2 вариабельную область тяжелой цепи, содержащую SEQ ID NO: 424, и CDR3 вариабельную область тяжелой цепи, содержащую SEQ ID NO: 425.

В еще одном варианте осуществления изобретение направлено на ADC, содержащее антитело, где указанное антитело содержит:

легкую цепь антитела, содержащую CDR1 вариабельной области легкой цепи, содержащую SEQ ID NO: 426, CDR2 вариабельной области легкой цепи, содержащую SEQ ID NO: 427, и CDR3 вариабельной области легкой цепи, содержащую SEQ ID NO: 428; и

тяжелую цепь антитела, содержащую CDR1 вариабельной области тяжелой цепи, содержащую SEQ ID NO: 429, CDR2 вариабельной области тяжелой цепи, содержащую SEQ ID NO: 430, и CDR3 вариабельной области тяжелой цепи, содержащую SEQ ID NO: 431.

В еще одном варианте осуществления изобретение направлено на ADC, содержащие антитело, где указанное антитело содержит:

легкую цепь антитела, содержащую CDR1 вариабельной области легкой цепи, содержащую SEQ ID NO: 432, CDR2 вариабельной области легкой цепи, содержащую SEQ ID NO: 433, и CDR3 вариабельной области легкой цепи, содержащую SEQ ID NO: 434; и

тяжелую цепь антитела, содержащую CDR1 вариабельной области тяжелой цепи, содержащую SEQ ID NO: 435, CDR2 вариабельной области тяжелой цепи, содержащую SEQ ID NO: 436, и CDR3 вариабельной области тяжелой цепи, содержащую SEQ ID NO: 437.

В некоторых предпочтительных вариантах осуществления каждое из вышеуказанных антител содержит гуманизированные антитела. Более того, как описанл в данном документе, последовательности нуклеиновых кислот, кодирующие такие иллюстративные гуманизированные вариабельные области тяжелой и легкой цепи, приведены в прилагаемом списке последовательностей.

В дополнение, один аспект изобретения может содержать терапевтическую ассоциацию DLL3 полипептидов с раковыми стволовыми клетками. Таким образом, в некоторых других вариантах осуществления изобретение будет включать в себя Конъюгат DLL3 ADC 1-5, который уменьшает частоту распространения клеток, инициирующих опухоль, при введении субъекту. Предпочтительно, уменьшение частоты распространения будет определяться с использованием анализа методом серийных разведений in vitro или in vivo. В особенно предпочтительных вариантах осуществления такой анализ может проводиться с использованием анализа методом серийных разведений in vivo, включающим в себя пересадку живых человеческих опухолевых клеток в иммунодефицитным мышам. Альтернативно, анализ методом серийных разведений может проводиться с использованием анализа методом серийных разведений in vitro, включающего в себя депонирование серийных разведений живых человеческих опухолевых клетк при условиях поддержания колонии in vitro. В обоих случаях, анализ, вычисление или количественная оценка снижения частоты распостранения будут предпочтительно включать применение статистики распределения Пуассона для обеспечения точного учета. Следует принимать во внимание, что, в то время как такие методы количественной оценки являются предпочтительными, другие, менее трудоемкие методологии, такие как проточная цитометрия или иммуногистохимия также могут применяться для обеспечения желательных значений и, соответственно, явным образом рассматриваются, как включенные в объем рассматриваемого изобретения. В таких случаях уменьшение частоты распространения может также определяться с использованием проточного цитометрического анализа или иммуногистохимическог обнаружения поверхностных маркеров опухолевой клетки, известных как обогащающие клетки, инициирующие опухоли.

В этой связи, следует принимать во внимание, что настоящее изобретение основано, по меньшей мере, частично, на открытии того, что иммуногены DLL3 являются терапевтически ассоциированными с поддерживающими опухоль клетками (т.е., раковыми стволовыми клетками), которые вовлечены в этиологию различных пролиферативных нарушений, включающих неоплазию. Более конкретно, рассматриваемая заявка раскрывает, что введение раскрытых Конъюгат DLL3ов может опосредовать, уменьшать, истощать, ингибировать или устранять туморогенную передачу сигналов клетками, инициирующими опухоли (например, снижение частоты распространения клеток, инициирующих опухоли). Такая пониженная передача сигналов, либо посредством истощения, нейтрализации, уменьшения, устранения, перепрограммирования или сайленсинга клеток, инициирующих опухоли, или посредством модификации морфологии опухолевых клеток (например, индуцированной дифференциации, разрушения ниши), в свою очередь позволяет проводить более эффективное лечение нарушений, ассоциированных с DLL3, посредством ингибирования онкогенеза, поддержания опухоли, распространения и/или метастазирования и повторного проявления.

Помимо вышеуказанной ассоциации с раковыми стволовыми клетками, очевидно, что bзоформы DLL3 могут быть вовлечены в рост, повторное проявление или метастатический потенциал опухолей, содержащих или проявляющих нейроэндокринные признаки или фенотипические детерминанты. Для целей рассматриваемого изобретения такие опухоли будут включать нейроэндокринные опухоли и псевдонейроэндокринные опухоли. Вмешательство в пролиферацию таких онкогенных клеток с использованием новых Конъюгат DLL3ов, описанных в данном документе, могут, таким образом, уменьшать тяжесть или лечить расстройство посредством более чем одного механизма (например, инициирующего опухоль восстановления клеток и разрушения сигнального пути онкогенного пути), чтобы предоставить аддитивные или синергистические эффекты. Еще другие предпочтительные варианты осуществления могут воспользоваться преимуществами клеточной интернализации белка DLL3 клеточной повнрхности, чтобы доставить присоединенное противоопухолевое средство. В данной связи следует принимать во внимание, что настоящее изобретение не ограничивается каким-либо конкретным механизмом действия, но скорее охватывает широкое применение раскрытых модуляторов для лечения нарушений, ассоциированных с DLL3 (включающих различные неоплазии).

В еще других предпочтительных вариантах осуществления модуляторы будут ассоциироваться или связываться с специфичными эпитопом, частью, мотивом или доменом DLL3. Как будет обсуждаться довольно подробно ниже, обе изоформы DLL3 включают идентичную внеклеточную область (см. ФИГ. 2), содержащую по меньшей мере N-терминальный домен, DSL (Дельта/Пиловидный/лаг-2) домен и шесть EGF-подобных доменов (т.е., EGF1-EGF6). Соответственно, в некоторых вариантах осуществления модуляторы будут связываться или ассоциироваться с N-терминальным доменом DLL3 (т.е. аминокислотами 27-175 в зрелом белке), в то время как в других выбранных вариантах осуществления модуляторы будут ассоциироваться с доменом DSL (т.е. аминокислотами 176-215 DLL3) или эпитопом в этом месте. Другие аспекты рассматриваемого изобретения включают антитела, которые ассоциируются или связываются со специфичным эпитопом, расположенным в конкретном EGF-подобном домене DLL3. В данной связи конкретный модулятор может ассоциироваться или связываются с эпитопом, расположенном в EGF1 (аминокислоты 216-249), EGF2 (аминокислоты 274-310), EGF3 (аминокислоты 312-351), EGF4 (аминокислоты 353-389), EGF5 (аминокислоты 391-427) или EGF6 (аминокислоты 429-465). Конечно, следует принимать во внимание, что каждый из вышеуказанных доменов может содержать более одного эпитопа и/или более одного бина. В особенно предпочтительных вариантах осуществления изобретение будет включать антитело, которое связывается, взаимодействует или ассоциируется с доменом DSL или эпитопом в этом месте. В других предпочтительных вариантах осуществления изобретение будет включать антитела, которые связываются, взаимодействуют или ассоциируются с конкретным EGF-подобным доменом или эпитопом в этом месте. В еще других предпочтительных вариантах осуществления модуляторы будут связываться, взаимодействовать или ассоциировать с N-терминальным доменом или эпитопом в этом месте.

Что касается “бинов” модулятора или антитела, следует принимать во внимание, что антиген DLL3 может быть проанализирован или картирован посредством связывания конкурентных антител с использованием методов, принятых в данной области, для определения специфичных бинов, расположенных на белке или вдоль него. В то время, как обсуждается и показано в Примерах ниже, две антитела (одно из которых может называться “референтным антителом” “очерчивающим бин антителом” или “очерчивающим антителом”) могут считаться находящимися в одинаковом бине, если они конкурируют друг с другом за связывание с целевым антигеном. В таких случаях эпитопы субъектного антитела могут быть идентичными, по существу идентичными идентичн или достаточно близкими (либо в линейном смысле, где они разделены несколькими аминокислотами или конформационно), таким образом, что оба антитела стерически или элекростатически ингибируются или заранее исключаются из связывания с антигеном. Такие определенные бины могут быть, как правило, ассоциированы с некоторыми доменами DLL3 (например, референтное антитело будет связываться с эпитопом, содержащемся в специфичном домене), хотя корреляция не всегда бывает точной (например, может быть более одного бина в домене или бин может быть определен конформационно и содержать более одного домена). Следует принимать во внимание, что специалисты в данной области могут леко определить взаимосвязь между доменами DLL3 и эмпирически определенными бинами.

В отношении настоящего изобретения анализ конкурентного связывания с использованием методов, принятых в данной области, (например, ELISA, поверхностный плазмонный резонанс или интерферометрия биослоя) определил по меньшей мере девять различных бинов, каждый из которых, как было обнаружено, содержит ряд модуляторов антитела. Для целей рассматриваемого раскрытия девять бинов были проименованы от бина A до бина I. Таким образом, в избранных вариантах осуществления, настоящее изобретени будет содержать конъюгат антитела с лекарственным средством ADC 1-5, находящийся в бине, выбранном из группы, состоящей из бина A, бина B, бина C, бина D, бина E, бина F, бина G, бина H и бина I.

В других вариантах осуществления конъюгаты настоящего изобретения содержат антитело, находящееся в бине, определенном референтным антителом, выбранным из группы, состоящей из SC16.3, SC16.4, SC16.5, SC16.7, SC16.8, SC16.10, SC16.11, SC16.13, SC16.15, SC16.18, SC16.19, SC16.20, SC16.21, SC16.22, SC16.23, SC16.25, SC16.26, SC16.29, SC16.30, SC16.31, SC16.34, SC16.35, SC16.36, SC16.38, SC16.41, SC16.42, SC16.45, SC16.47, SC16.49, SC16.50, SC16.52, SC16.55, SC16.56, SC16.57, SC16.58, SC16.61, SC16.62, SC16.63, SC16.65, SC16.67, SC16.68, SC16.72, SC16.73, SC16.78, SC16.79, SC16.80, SC16.81, SC16.84, SC16.88, SC16.101, SC16.103, SC16.104, SC16.105, SC16.106, SC16.107, SC16.108, SC16.109, SC16.110, SC16.111, SC16.113, SC16.114, SC16.115, SC16.116, SC16.117, SC16.118, SC16.120, SC16.121, SC16.122, SC16.123, SC16.124, SC16.125, SC16.126, SC16.129, SC16.130, SC16.131, SC16.132, SC16.133, SC16.134, SC16.135, SC16.136, SC16.137, SC16.138, SC16.139, SC16.140, SC16.141, SC16.142, SC16.143, SC16.144, SC16.147, SC16.148, SC16.149 и SC16.150. В еще других вариантах осуществления ADC изобретения будет включать антитела из бина A, антитела из бина B, антитела из бина C, антитела из бина D, антитела из бина E, антитела из бина F, антитела из бина G,антитела из бина H или антитела из бина I. Еще другие предпочтительные варианты осуществления будут включать модулятор референтного антитела и любое антитело, которое конкурирует с референтным антителом.

Термин “кокурирует” или “конкурирующее антитело”, когда используется в контексте раскрытых модуляторов, означает конкуренцию за связывание между антителами, как определяют посредством анализа, в котором референтное антитело или иммунологически функциональный фрагмент по существу предотвращает или ингибирует (например, боле чем на 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85% или 90%.) специфическое связывание тестируемого антитела с общим антигеном. Совместимые способы определения такой конкуренции включают известные методы, такие как, например, интерферометрия биослоя, поверхностный плазмонный резонанс, проточная цитометрия, конкурентный ELISA, и т.д.

Настоящее изобретение также предоставляет наборы или устройства и ассоциированные методы, в которых используют конъюгаты DLL3, раскрытые в данном документе, и фармацевтические композиции конъюгатов DLL3, раскрытых в данном документе, которые являются применимыми для лечения расстройств, ассоциированных с DLL3, таких как злокачественное новообразование. С этой целью, настоящее изобретение предпочтительно предоставляет готовое изделие, применимое для лечения расстройств, ассоциированных с DLL3, включающее емкость, содержащую конъюгат антитела с лекарственным средством из ADC1 - 5 и информационный обучающий материал по применению конъюгатов для лечения, облегчения протекания или предотвращения расстройства, ассоциированного с DLL3, или прогресстрования или повторного его проявления.

Вышеизложенное представляет собой краткое содержание сущности, и, таким образом, содержит, по необходимости, упрощения, обобщения, и пропуски подробностей; следовательно, специалисты в данной области смогут понять, краткое содержание сущности изобретения является только иллюстративным и не предназначено для ограничения никаким образом. Другие аспекты, признаки, и преимущества способов, композиций и/или устройств и/или другой субъектный материал, описанный в данном документе, станет очевидным из положений, изложенных в данном документе. Краткое содержание предоставлено, чтобы ввести в выбор концепций в упрощенной форме, которые дополнительно описаны ниже в Подробном Описании. Это краткое содержание не предназначено, ни для того, чтобы идентифицировать ключевый признаки или отличительные признаки заявленного предмета изобретения, ни для применения в качестве вспомогательного материала при определении объема заявленного предмета.

Краткое описание чертежей

ФИГ. 1 предоставляет выравнивание последовательностей двух изоформ белка DLL3 (SEQ ID NO: 1 и 2).

ФИГ. 2 предоставляет схематическое представление внеклеточной области белка DLL3, иллюстрирующее положения различных доменов.

ФИГ. 3A и 3B предоставляют, в табличной форме, смежные аминокислотные последовательности (SEQ ID NO: 21-407, с нечетными номерами) вариабельных областей легкой и тяжелой цепи ряда мышиных и гуманизированных иллюстративных антител к DLL3, совместимых с раскрытыми конъюгатами антител с лекарственным средством, выделенных, клонированных и сконструированных, как описано в Примерах в данном документе.

ФИГ. 4 отображает, в схематическом виде, результаты анализа на доменом уровне картирования иллюстративных модуляторов DLL3, выделенных, клонированных и сконструированных, как описано в Примерах в данном документе.

На ФИГ. 5 приведены биохимические и иммунологические свойства иллюстративных модуляторов DLL3, представленные в табличном формате.

ФИГ. 6 предоставляет список иллюстративных конъюгатов антител с лекарственным средством, генерированных согласно рассматриваемому раскрытию.

Подробное описание изобретения

I. ВВЕДЕНИЕ

В то время как настоящее изобретение может воплощаться во многих различных формах, раскрытыми в данном документе являются их конкретные иллюстративные варианты осуществления, которые демонстрируют на примерах принципы изобретения. Ледует особенно отметить, что настоящее изобретени не ограничивается конкретными иллюстрированными вариантами осуществления. Более того, любые заголовки разделов, используемые в данном документе, приводятся только для организационных целей, и не рассматриваются как ограничивающие описанный предмет. Окончательно, для целей рассматриваемого раскрытия все идентифицирующие последовательности Инвентарные номера можно найти в базе данных NCBI референтных последовательностей (RefSeq) и/или в архивируемой базе данных последовательностей NCBI GenBank®, если не отмечено иначе.

Как обсуждается выше, было обнаружено, что фенотипические детерминанты DLL3 являются клинически ассоциированными с различными пролиферативными нарушениями, включающими неоплазию, проявляющую нейроэндокринные признаки, и, что белок DLL3 и его варианты или изоформы предоставляют применимые опухолевые маркеры, которые могут использоваться при лечении родственных заболеваний. В данной связи, настоящее изобретение предоставляет ряд конъюгатов антител с лекарственным средством, приведенных как ADC 1-5 выше, которые содержат целенаправленное средство анти-DLL3 антитело и ПБД полезную нагрузку. Как обсуждается более подробно ниже и приведено в прилагаемых Примерах, раскрытые DLL3 ADC являются особенно эффективными при устранении онкогенных клеток, и, следовательно, применимыми для лечения и профилактики некоторых пролиферативных нарушений или их прогрессирования или повторного проявления.

Более того, как показано в рассматриваемой заявке, было обнаружено, что маркеры DLL3 или детерминанты, такие как белок DLL3 клеточной поверхности являются терапевтически ассоциированными с раковыми стволовыми клетками (также известными, как опухолесохраняющие клетки) и могут эффективно использоваться для их устранения или подавления. Способность селективно снижать или устранять раковые стволовые клетки посредством применения конъюгированных модуляторов DLL3, раскрытых в данном документе, является удивительной в том, что такие клетки, как известно, в целом, являются резистентными ко многим общепринятым терапиям. Таким образом, эффективнность традиционных, а также более недавних способов целенаправленного лечения, часто ограничена существованием и/или возникновением резистентных раковых стволовых клеток, которые являются способными к сохранению роста опухоли, даже несмотря на эти разнообразные способы лечения. Дополнительно, детерминанты, ассоциированные с раковыми стволовыми клетками, часто создают слабые терапевтические мишени вследствие низкой или неустойчивой экспрессии, неспособности оставаться ассоциированными с опухолеобразующими клетками или неспособности присутствовать на клеточной поверхности. В резком противоречии с принципами предшествующего уровня, раскрытые сейчас конъюгаты антитела с лекарственным средством и способы эффективно преодолевают эту характерную резистентность и специфически устраняют, истощают, замедляют или инициируют дифференциацию таких раковых стволовых клеток, нейтрализуя посредством этого их способность поддерживать или реиндуцировать лежащий в основе рост опухоли. Более того, так как экспрессия белка DLL3 в значительной степени ассоциирована с внутриклеточными расположениями, такими как Гольджи, было неизвестно, что такие фенотипические детерминанты могут успешно использоваться в качестве терапевтической мишени для специфичных ADC, как изложено в данном документе.

Таким образом, особенно примечательно, что конъюгаты DLL3, такие как раскрытые в данном документе, могут преимущественно применяться при лечении и/или предотвращении выбранных пролиферативных (например, неопластических) растройств или их прогрессирования или повторного проявления. Следует принимать во внимание, что, в то время, как предпочтительные варианты осуществления изобретения будут широко обсуждаться ниже, в частности, в отношении конкретных доменов, областей или эпитопов или в контексте раковых стволовых клеткок или опухолей, содержащих нейроэндокринные признаки, и их взаимодействий с раскрытыми конъюгатами антител с лекарственным средством, специалисты в данной области смогут понять, что объем рассматриваемого изобретения не ограничивается такими иллюстративными вариантами осуществления. В большей степени, наиболее обширные варианты осуществления настоящего изобретения и прилагаемая формула изобретения широким образом и выраженно направлены на раскрытые конъюгаты DLL3 и их применение при лечении и/или предотвращении разнообразных ассоциированных с DLL3 или опосредованных им расстройств, включающих неопластические или клеточные пролиферативные нарушения, вне зависимости от какого-либо конкретного механизма действия или специфически целевой опухоли, клнточного или молекулярного компонента.

В этой связи, и как демонстрируется в рассматриваемой заявке, неожиданно было обнаружено, что раскрытые конъюгаты DLL3 могут эффективно применяться для устранения или иным образом обезвреживания пролиферативных или онкогенных клеток и целенаправленного действия на эти клетки и лечения расстройств, ассоциированных с DLL3 (например, неоплазии). Как используют в данном документе “расстройство, ассоциированное с DLL3”, будет означать любое расстройство или заболевание (включая пролиферативные нарушения), которое отмечают, диагностируют, обнаруживают или идентифицируют посредством фенотипической аберрации генетических компонентов DLL3 или его экспрессии (“детерминанта DLL3”) в процессе протекания или этиологии заболевания или расстройства. В данной связи, DLL3 фенотипическая аберрация или детерминанта могут, например, включать повышенные или подавленные уровни экспрессии белка DLL3, аномальную экспрессию белка DLL3 на некоторых определяемых клеточных популяциях или аномальную экспрессию белка DLL3 на несоответствующей фазе или стадии жизненного цикла клеток. Несомненно, следует принимать во внимание, что аналогичные схемы экспрессии генотипических детерминант (например, уровней транскрипции мРНК) DLL3 также могут применяться для классификации, обнаружения или лечения расстройств, связанных с DLL3.

В отношении раскрытых конъюгатов, настоящее изобретение предоставляет димеры ПБД с линкером, соединенным с положением на одном из фрагментов ПБД и конъюгированные через линкер с модулятором антитела DLL3. Посредством этих тщательно сконструированных конфигураций конъюгат обеспечивает высвобождение активных ПБД соединений, которые, предпочтительно, не сохраняют какую-либо часть линкера. Таким образом, не присутствует никакого укороченного или линкерного остатка, который мог бы неблагоприятно воздействовать на реакционную способность ПБД полезнрй нагрузки. Таким образом, раскрытые конъюгаты DLL3 высвобождают следующие димерные ПБД соединения при расщеплении линкера.

Конъюгат ADC 1 высвобождает соединение ПБД 1:

Конъюгат ADC 2 высвобождает соединение ПБД 2:

Конъюгат ADC3 высвобождает соединение ПБД 3:

Конъюгат ADC4 высвобождает соединение PBD4:

Конъюгат ADC 5 высвобождает соединение ПБД 5:

Соответственно, доставка токсичного соединения из ПБД 1, ПБД 2, ПБД 3, ПБД 4 или ПБД 5 достигается на желательном участке активации (т.е., внутри опухолеобразующей клетки) посредством ADC 1-5 через действие фермента, такого как катепсин, на соединяющую группу, и, в частности, на включенный дипептидный фрагмент валин-аланин. Как обсуждается более подробно ниже, локализованная доставка раскрытых ПБД цитотоксинов может обеспечить эффективное устранение нескольких типов онкогенных клеток со значительно меньшей токсичностью, чем при ассоциации с нецелевыми стандартными химиотерапиями.

В данной связи один аспект изобретения включает доставку соединения, выбранного из группы, состоящей из ПБД 1, ПБД 2, ПБД 3, ПБД 4 и ПБД 5, включающую стадию введения конъюгата DLL3.

II. ФИЗИОЛОГИЯ DLL3

Cигнальный путь Нотч, впервые идентифицированный у C. elegans и Drosophila, и, как показано впоследствии, являющийся эволюционно консервативным от беспозвоночных до позвоночных, участвует в ряде фундаментальных биологических процессов, включающих нормальное эмбриональное развитие, гомеостаз взрослых тканей, и поддержание стволовых клеток (D'Souza et al., 2010; Liu et al., 2010). Cигнальный путь Нотч является решающим для различных клеточных типов во время спецификации, формирования и морфогенеза. Часто, это происходит посредством механизма латерального ингибирования, при котором клетки экспрессирующие Нотч лиганд(ы) принимают предопределенную судьбу клеток, все еще подавляя эту судьбу у примыкающих клеток посредством стимуляции сигнального пути Нотч (Sternberg, 1988, Cabrera 1990). Обнаружено, что этот выбор бинарной судьбы клеток, опосредованный сигнальным путем Нотч играет важную роль в многочисленных тканях, включающую развитие нервной системы (de la Pompa et al., 1997), гематопоэтической и иммунной систем (Bigas и Espinosoa, 2012; Hoyne et al, 2011; Nagase et al., 2011), кишечника (Fre et al., 2005; Fre et al., 2009), эндокринной поджелудочной железы (Apelqvist et al., 1999; Jensen et al., 2000), гипофиза (Raetzman et al., 2004), и диффузной нейроэндокринной системы (Ito et al., 2000; Schonhoff et al, 2004). Генерализованный механизм осуществления этого бинарного включения, по-видимому, является консервативным, несмотря на широкий диапазон относящихся к развитию систем, в которых Нотч играет важную роль; например, в клетках, где выбор предопределенной судьбы клеток определяют по транскрипционным регуляторам, известным как основные белки спираль-петля-спираль (bHLH), сигнальный путь Нотч приводит к активации класса реагирующих на Нотч генов, которые, в свою очередь, подавляют активность белков bHLH (Ball, 2004). Эти бинарные решения происходят в широком контексте имеющих отношение к развитию и сигнальных команд, которые поволяют сигнальному пути Нотч оказывать воздействие на пролиферацию или ингибировать ее, и запускать самообновление или ингибировать его.

У Drosophila, сигнальный путь Нотч опосредован, в первую очередь, одним геном Нотч-рецептора и двумя лигандными генами, известными как Пилообразный (Serrate) и Дельта (Delta) (Wharton et al, 1985; Rebay et al., 1991). У людей, существуют четыре известных Нотч-рецептора и пять DSL (Delta-Serrate LAG2) лигандов - два гомолога Serrate, известных как Jagged 1 и Jagged 2, и три гомолога Delta, называемых дельта-подобные лиганды или DLL1, DLL3 и DLL4. В целом, Нотч-рецепторы на поверхности принимающей сигнал клетки активируются при взаимодействии с лигандами, экспрессируемыми на поверхности протвоположной, посылающей сигнал клетки (называемом транс-взаимодействием). Эти транс-взаимодействия приводят к последовательности опосредованных протеазой расщеплений Нотч-рецептора. Впоследствии, внутриклеточный домен Нотч-рецептора становится свободным, чтобы перемещаться от мембраны к ядру, где он объединяется с семейством CSL транскрипционных факторов (RBPJ у людей) и преобразует их из транскрипционных репрессоров в активаторы Нотч-чувствительных генов.

Из человеческих Нотч-лигандов, DLL3 отличается тем, что он, по-видимому, неспособен к активации Нотч-рецептора через транс-взаимодействия (Ladi et al., 2005). Нотч-лиганды могут также взаимодействовать с Нотч-рецепторами цис-образом (на той же клетке), что приводит к ингибированию Нотч-сигнала, хотя точные механизмы цис-ингибирования остаются неясными и могут варьировать в зависимости от лиганда (например, см. Klein et al., 1997; Ladi et al., 2005; Glittenberg et al., 2006). Два предполагаемых пути ингибирования включают модуляцию сигнального путь Нотч на клеточной поверхности посредством предотвращения транс-взаимодействий, или посредством снижения количества Нотч-рецептора на поверхности клетки посредством возмущения процессинга рецептора или физически вызывая удерживание рецептора в эндоплазматической сети или Гольджи (Sakamoto et al., 2002; Dunwoodie, 2009). Ясно, однако, что стохастические различия в экспрессии Нотч-рецепторов и лигандов на соседних клетках могут быть амплифицированы через как транскрипционные, так и нетранскрипционные процессы, и тонкие балансы цис- и транс-взаимодействий могут приводить к точной настройке Нотч-опосредованной трансдифференцировке дивергентных судеб клеток в соседних тканях (Sprinzak et al., 2010).

DLL3 (также известный как Дельта-подобный 3 или SCDO1) является членом Дельта-подобного семейства Нотч-лигандо DSL. Представительные ортологи белка DLL3 включают, но не ограничиваются перечисленным, человеческий (Учетный номер. NP_058637 и NP_982353), шимпанзе (Учетный номер. XP_003316395), мышиный (Учетный номер. NP_031892) и крысиный (Учетный номер. NP_446118). У людей, ген DLL3 состоит из 8 экзонов, охватывающих 9,5 kBp, расположенных на хромосоме 19q13. Чередующийся сплайсинг в последнем экзоне приводит к возникновению двух процессированных транскриптов, одного из 2389 оснований (Учетный номер. NM_016941), и одного из 2052 оснований (Учетный номер. NM_203486). Первый транскрипт кодирует белок из 618 аминокислот (Учетный номер. NP_058637; ФИГ. 1, SEQ ID NO: 1), в то время как последний кодирует белок из 587 аминокислот (Учетный номер. NP_982353; ФИГ. 1, SEQ ID NO: 2). Эти две белковые изоформы DLL3 имеют в целом 100% идентичности на протяжении их внеклеточных доменов и их трансмембранных доменов, отличаясь только тем, что более длинная изоформа содержит расширенный цитоплазматический хвост, содержащий 32 дополнительных остатка по карбокси-концу белка (ФИГ. 1). Биологическая уместность изоформ является неясной, несмотря на то, что обе изоформы могут быть обнаружены в опухолевой клетке.

В целом, DSL лиганды составлены из ряда структурных доменов: уникального N-терминального домена, сопровождаемого консервативным доменом DSL, множеством тандемных подобных эпидермальному фактору роста (EGF) повторов, трансмембранного домена, и цитоплазматического домена, не являющегося высококонсерватвным среди лигандов, но который содержит множество остатков лизина, которые являются потенциальными участками для убиквитинилирования по действием уникальных E3 убиквитинлигаз. Домен DSL является дегенеративным EGF-доменом, который является необходимым, но не достаточным для взаимодействий с Нотч-рецепторами (Shimizu et al., 1999). Дополнительно, первые два EGF-подобных повтора большинства DSL лигандов содержат более мелкий мотив последовательности белка, известный как DOS домен, который совместно взаимодействует с доменом DSL, при активации сигнального пути Нотч.

ФИГ. 2 предоставляет схематический чертеж внеклеточной области белка DLL3, иллюстрирующий общее соседнее положение шести EGF-подобных доменов, одиночного домена DSL и N-терминального домена. В целом, EGF домены распознают, как имеющие место при приблизительно аминокислотных остатках 216-249 (домен 1), 274-310 (домен 2), 312-351 (домен 3), 353-389 (домен 4), 391-427 (домен 5) и 429-465 (домен 6), с доменом DSL при приблизительно аминокислотных остатках 176-215 и N-терминальным доменом при приблизительно аминокислотных остатках 27-175 hDLL3 (SEQ ID NO: 1 и 2). Как обсуждается более подробно в данном документе, и показано в Примерах ниже, каждый из EGF-подобных доменов, домена DSL и N-терминального домена содержит часть белка DLL3, определенную отличающейся аминокислотной последовательностью. Следует отметить, что, для целей рассматриваемого раскрытия соответствующие EGF-подобные домены могут именоваться от EGF1 до EGF6, причем EGF1 является наиболее близким к N-терминальной части белка. По отношению к структурному составу белка, один существенный аспект рассматриваемого изобретения состоит в том, что раскрытые модуляторы DLL3 могут генерироваться, изготавливаться, конструироваться или выбираться таким образом, чтобы взаимодействовать с выбранным доменом, мотивов или эпитопом. В некоторых случаях такие сайт-специфичные модуляторы могут обеспечить увеличенную реакционную способность и/или эффективность действия в зависимости от их первичного образа действия.

Следует отметить, что, как используют в данном документе, термины “зрелый белок” или “зрелый полипептид”, относятся к форме(формам) белка, продуцируемого посредством экспрессии в клетке млекопитающих. В целом, гипотетически предполагают, что как только был инициирован экспорт растущей белковой цепи через грубую эндоплазматическую сеть, белки, секретируемые клетками млекопитающих, имеют последовательность сигнального пептида (SP), которая отщепляется от полного полипептида, чтобы продуцировать “зрелую” форму белка. В обеих изоформах зрелый белок DLL3 содержит сигнальный пептид из 26 аминокислот, который может быть зажат перед экспрессией клеточной поверхности. Таким образом, в зрелых белках N-терминальный домен будет располагаться от положения 27 в белке до начала домена DSL. Конечно, если белок не процессируется таким образом, N-терминальный домен будет удерживаться, чтобы достигать положения одной из SEQ ID NO: 1 и 2.

Из различных дельта-подобных лигандов, DLL3 является наиболее отличающимся от других в семействе, так как он содержит дегенеративный домен DSL, никаких DOS мотивов, и внутриклеточный домен, в котором отсутствуют остатки лизина. Дегенеративный DSL и отсутствие DOS мотивов согласуется с неспособностью DLL3 запускать сигнальный путь Нотч транс-путем (между клетками), с предположением, что DLL3, в отличие от DLL1 или DLL4, действует только как ингибитор сигнального пути Нотч (Ladi et al., 2005). Исследования показали, что DLL3 может располагаться первично в цис-Гольджи (Geffers et al., 2007), что согласовывалось бы с предполагаемой способностью удерживать Нотч-рецептор внутриклеточно, или препятствовать процессингу Нотч-рецепторов, предотвращая экспорт к клеточной поверхности, и, вместо этого перенацеливая его к лизосоме (Chapman et al., 2011). Некоторая часть белка DLL3 может появляться на клеточной поверхности, однако, когда белок искусственно сверхэкспрессируется в модельных системах (Ladi et al., 2005), но не очевидно, что это будет происходить ни при нормальных биологических контекстах, ни в опухолях, в которых повышается транскрипт мРНК DLL3; в некоторой степени удивительно, что уровни белка, обнаруживаемые в типах опухолей, раскрытых в данном документе, указывают на то, что значительная часть белка DLL3 уходит к поверхности клеток различных опухолей.

Дополнительно, как обсуждается выше, сигнальный путь Нотч играет роль в развитии и поддержании нейроэндокринных клеток и опухолей, проявляющих нейроэндокринные признаки. В данной связи сигнальный путь Нотч вовлечен в широкий диапазон решений судьбы клеток в нормальных эндокринных органах и в диффузной нейроэндокринной смстеме. Например, в поджелудочной железе, сигнальный путь Нотч требуется для подавления развития по умолчанию эндокринного фенотипа, опосредованного bHLH фактором транскрипции NGN3 (Habener et al, 2005). Аналогичное Нотч-опосредованное подавление судьбы эндокринных клеток происходит в энтероэндокринных клетках (Schonhoff et al., 2004), парафолликулярных клетках щитовидной железы (Cook et al., 2010), при установлении относительных соотношений нейроэндокринных клеточных типов в гипофизе (Dutta et al., 2011), и, вероятно, вовлечен в решение судьбы клеток внутри легкого, чтобы принять нейроэндокринный или не-нейроэндокринный фенотип (Chen et al., 1997; Ito et al., 2000; Sriuranpong et al., 2002). Следовательно, ясно, что во многих тканях подавление сигнального пути Нотч связано с нейроэндокринными фенотипами.

Несоответствующая реактивация сигнальных путей, имеющих отношение к развитию, или дисрегуляция нормальных сигальных путей обычно наблюдается в опухолях, и, в случае сигнального пути Нотч, была ассоциирована с многочисленными опухолевыми типами (Koch и Radtke, 2010; Harris et al., 2012). Путь-Нотч исследовали в качестве онкогена в лимфомах, при колоректальном раке, раке поджелудочной железы, и в некоторых типах немелкоклеточного рака легких (см. Zarenczan and Chen, 2010 и приведенные в них ссылки). Напротив, сообщается, что Нотч действует в качестве супрессора опухоли в опухолях с нейроэндокринными признаками (см. Zarenczan and Chen, 2010 выше). Опухоли с нейроэндокринными признаками возникают нечасто в широком ряде первичных участков, и, в то время, как их исчерпывающая классификация остается проблематичной (Yao et al., 2008; Klimstra et al., 2010; Klöppel, 2011), они могут быть классифицированы на четыре основных типа: низкой степени доброкачественные карциноиды, низкой степени хорошо дифференцируемые нейроэндокринные опухоли со злокачественным поведением, опухоли со смешанными нейроэндокринными и эпителиальными признаками, и высокой степени слабо дифференцируемые нейроэндокринные карциномы. Из этих классификаций, слабо диффернцируемые нейроэндокринные карциномы, которые включают мелкоклеточный рак легких (SCLC) и подтипы немелкоклеточного рака легких (NSCLC), представляют собой типы злокачественных новообразований с неблагоприятным прогнозом. Было постулировано, что SCLC является бронхогенным по происхождению, возникающим отчасти из легочных нейроэндокринных клеток (Galluzzo и Bocchetta, 2011). Какой бы ни был специфичный клеточный источник происхождения для каждой из этих опухолей, обладающей нейроэндокринным фенотипом, можно ожидать, что подавление сигнального пути Нотч, либо посредством прямых повреждений самих генов пути Нотч, или посредством активации других генов, которые подавляют сигнальный путь Нотч, может приводить к приобретению нейроэндокринного фенотипа этих опухолей. При расширении, гены, которые приводят к возмущению пути Нотч, могут представить терапевтические мишени для лечения опухолей с нейроэндокринными фенотипами, особенно для показаний, которые в настоящее время имеют плохие клинические исходы.

ASCL1 является одним таким геном, который, по-видимому, взаимодействует с сигнальным путем Нотч через DLL3. Ясно, что многие нейроэндокринные опухоли показывают слабо дифференцируемый (т.е. частично полный) эндокринный фенотип; например, отмеченные повышение или экспрессию различных эндокринных белков и полипептидов (например, хромогранина A, CHGA; кальцитонина, CALCA; пропиомеланокорина, POMC; соматостатина, SST), белков, ассоциированных с секреторными везикулами (например, синаптофизина, SYP), и генов, вовлеченных в биохимические пути, отвечающие за синтез биоактивных аминов (например, допа-декарбоксилазы, DDC). Вероятно неудивительно, что эти опухоли часто сверхэкспрессируют ASCL1 (также известный как mASH1 у мышей, или hASH1 у людей), фактор транскрипции, известный, как играющий роль в слаженной работе генных каскадов, ведущих к невральному и нейроэндокринному фенотипам. Несмотря на специфические молекулярные детали, каскад остается слабовыраженным, и становится ясно, что для некоторых клеточных типов, особенно парафолликулярных клеток щитовидной железы (Kameda et al., 2007), хромаффинных клеток мозгового слоя надпочечников (Huber et al., 2002) и клеток, обнаруживаемых в диффузной нейроэндокринной системе легкого (Chen et al., 1997; Ito et al., 2000; Sriuranpong et al., 2002), ASCL1 является частью точно настроенной регуляиорной петли развития, в которой выборы судьбы клеток опосредованы балансом ASCL1-опосредованных и Нотч-опосредованных каскадов экспрессии генов. Например, было обнаружено, что ASCL1 экспрессируется в нормальных мышиных легочных нейроэндокринных клетках, в то время как эффектор сигнального пути Нотч, HES1, экспрессировался в легочных ненейроэндокринных клетках (Ito et al., 2000). Особенно надо учитывать, что эти два каскада находятся в тонком балансе с потенциальной перекрестной регуляцией. Было показано, что эффектор Нотч HES1 регулирует с понижением экспрессию ASCL1 (Chen et al., 1997; Sriuranpong et al., 2002). Эти результаты ясно демонстрируют, что сигнальный путь Нотч может подавлять нейроэндокринную дифференциацию. Однако, демонстрация связывания ASCL1 с промотором DLL3 активирует экспрессию DLL3 (Henke et al., 2009), и наблюдение того, что DLL3 ослабляет сигнальный путь Нотч (Ladi et al., 2005), закрывает генетический контур для выборов судьбы клеток между нейроэндокринными и ненейроэндокринными фенотипами.

Принимая во внимание, что сигнальный путь Нотч, по-видимому, возник для амплификации тонких различий между соседними клетками, чтобы позволить появиться резко ограниченным тканевым доменам с дивергентными путями дифференциации (например, “латерального ингибирования”, как описано выше), эти данные вместе позволяют предположить, что точно настроенная регуляторная петля для развития стала реактивированной и дисрегулированной у злокачественных новообразований с нейроэндокринными фенотипами. В то время, как неочевидно, что DLL3 смог бы обеспечить подходящую мишень клеточной поверхности для разработки терапевтических антител с учетом его нормального расположения внутри мебранных компартментов клетки (Geffers et al., 2007) и его предполагаемых там взаимодействий с Нотч, возможно, что полученная в результате экспресси DLL3 в нейроэндокринных опухолях может предложить уникальную терапевтическую мишень для опухолей с нейроэндокринным фенотипом (например, NET и pNET). Обычно наблюдают, что обширная сверхэкспрессия белков в лабораторных системах может вызывать отклонение от локализации сверхэкспрессированного белка внутри клетки. Следовательно, выдвигается обоснованная гипотеза, еще не являющаяся очевидной без экспериментальной верификации, что сверхэкспрессия DLL3 в опухоли может приводить к некоторой экспрессии белка на клеточной поверхности, и, таким образом, представлять мишень для раскрытых ADC настоящего изобретения.

III. Раковые стволовые клетки

Как упоминалось выше, неожиданно было обнаружено, что аберрантная экспрессия DLL3 (генотипическая и/или фенотипическая) ассоциирована с субпопуляциями различных опухолеобразующих клеток. В данном отношении, настоящее изобретение предоставляет конъюгаты антитела к DLL3 с лекарственным средством, которые могут быть особенно применимыми для целенаправленного действия на такие клетки (например, раковые стволовые клетки), способствуя, таким образом, лечению, контролю или предотвращения неопластических расстройств. Таким образом, в предпочтительных вариантах осуществления, раскрытые DLL3 ADC могут преимущественно применяться для снижения частоты клеток, инициирующих опухоль, в соответствии с представленными принципами, и, таким образом, способствовать лечению или контролю пролиферативных нарушений.

Для целей рассматриваемой заявки термин “клетка, инициирующая опухоль” (TIC) охватывает как “поддерживающие опухоль клетки” (TPC; т.е., раковые стволовые клетки или CSC) и в высокой степени пролиферативные “клетки-предшественники опухоли” (называемые TProg), которые вместе содержат уникальную субпопуляцию (т.е. 0,1-40%) объема или массы опухоли. Для целей рассматриваемого раскрытия термины “поддерживающие опухоль клетки” и “раковые стволовые клетки” или “неопластические стволовые клетки” являются эквивалентными и могут применяться взаимозаменяемо в данном документе. TPC отличаются от TProg в том, что TPC могут полностью повторять состав опухолевых клеток, существующих внутри опухоли, и имеют неограниченную способность к самообновлению, как продемонстрировано посредством серийной трансплантации (два или более пассажей через мышей) низкого количества выделенных клеток, в то время как TProg не будут проявлять неограниченную способность к самообновлению.

Специалисты в данной области смогут понять, что сортировка флуоресцентно-активированных клеток (FACS) с использованием соответствующих маркеров клеточной поверхности является надежным методом для выделения высоко обогащенных субпопуляций раковых стволовых клеток (например, >99,5% чистоты) вследствие, по меньшей мере, частично, его способности проводить различие между одиночными клетками и скоплениями клеток (т.е. дублетами и т.д.). С использованием таких методов было показано, что, когда низкие количества высокоочищенных клеток TProg пересаживают иммунодефицитным мышам, они могут подпитывать опухолевый рост в первичном трансплантате. Однако, в отличие от субпопуляций очищенных TPC, опухоли, генерируемые TProg, не полностью отражают родительскую опухоль по гетерогенности фенотипических клеток, и очевидно являются неэффективными при повторной инициации серийного онкогенеза в последующих трансплантатах. Напротив, субпопуляции раковых стволовых клеток полностью восстанавливают клеточную гетерогенность родительской опухоли и могут эффективно инициировать опухоли, когда их серийно выделяют и трансплантируют. Таким образом, специалисты в области смогут понять, что определенное различие между TPC и TProg, хотя оба типа могут являться генерирующими опухоль в первичных трансплантатах, представляет собой уникальную способность TPC бесконечно подпитывать гетерогенный опухолевый рост при серийной трансплантации с низкими количествами клеток. Другие общие подходы для характеризации TPC включают морфологию и исследование маркеров поверхности клетки, транскрипционного профиля, и ответа на лекарственное средство, несмотря на то, что маркер экспресси может изменяться вместе с условиями культивирования и с пассажем клеточной линии in vitro.

Соответственно, для целей рассматриваемого изобретения поддерживающие опухоль клетки, подобно нормальным стволовым клеткам, которые поддерживают клеточные иерархии в нормальной ткани, предпочтительно определяют по их способности к самообновлению неопределенным образом, при поддержании в то же время способности к дифференциации смешанного типа. Поддерживающие опухоль клетки, таким образом, являются способными к генерации как туморогенного потомства (т.е., клеток, инициирующих опухоли: TPC и TProg), так и нетуморогенного (NTG) потомства. Как используют в данном документе “неопухолеобразующая клетка” (NTG) относится к опухолевой клетке, которая возникает из клеток, инициирующих опухоль, но сама по себе не имеет способности к самообновлению или генерации гетерогенных рядов поколений опухолевых клеток, котрые составляют опухоль. Экспериментально, клетки NTG неспособны к репродуцируемому образованию опухоли у мышей, даже когда их персаживают при избытке количества клеток.

Как указано, TProg также категоризуют как клетки, инициирующие опухоли (или TIC), вследствие их ограниченной способности генерировать опухоли у мышей. TProg являются потомками TPC, и обычно способны к конечному числу делений несамообновляющихся клеток. Более того, клетки TProg могут дополнительно подразделяться на ранних предшественников опухолевых клеток - (ETP) и поздних предшественников опухолевых клеток (LTP), каждые из которых могут различаться по фенотипу (например, маркерам клеточной поверхности) и различным способностям повторять архитектуру опухолевой клетки. Несмотря на такие технические различия, как ETP, так и LTP отличаются функционально от TPC тем, что они, как правило, менее способны к серийному восстановлению опухоли, когда их пересаживают при небольшом числе клеток, и обычно не отражают гетерогенность родительской опухоли. Вопреки приведенным выше различиям, также было показано, что различные популяции TProg могут, в редком случае, приобретать способности к самообновлению, обычно присущие стволовым клеткам, и сами становятся TPC (или CSC). В любом случае, оба типа клеток, инициирующих опухоль, вероятно, представлены в типичной массе опухоли единичного пациента и являются предметом лечения с использованием модуляторов, раскрытых в данном документе. Таким образом, раскрытые композиции в целом являются эффективными при снижении частоты или изменении хемочувствительности таких DLL3-положительных клеток, инициирующих опухоли, независимо от конкретного варианта осуществления или смеси, представленной в опухоли.

В контексте рассматриваемого изобретения, TPC являются более туморогенными, относительно более спокойными и часто более химиорезистентными, чем TProg (как ETP, так и LTP), клетки NTG и инфильтративные через опухоль, не-TPC производные клетки (например, фибробласты/строма, эндотелиальные и гематопоэтические клетки), которые составляют основную массу опухоли. С учетом того, что общепринятые терапии и режимы лечения были, в основном, разработаны, чтобы, как сокращать массу опухоли, так и атаковать быстро пролиферирующие клетки, TPC, вероятно, являются более резистентными к общепринятым терапиям и режимам, чем более быстро пролиферирующие TProg и другие клеточные популяции основной массы опухоли. Дополнительно, TPC часто экспрессируют другие характеристики, которые делают их относительно химиорезистентными к общепринятым терапиям, такие как увеличенная экспрессия транспортеров резистентности к мультилекарственным средствам, усиленный механизм репарации ДНК и анти-апоптотические белки. Эти свойства, каждое из которых способствует перносимости лекарственного средства у TPC, оставляют главную причину неудач стандартных режимов онкологического лечения для обеспечения долговременного благоприятного эффекта для большинства пациентов с прогрессирующей стадией неоплазии; т.е. неспособность адекватно целенаправленно действовать и уничтожать эти клетки, которые подпитывают продолжающийся опухолевый рост и повторное проявление (т.е. TPC или CSC).

В отличие от многих терапий предшествующего уровня, новые конъюгаты антител с лекарственным средством настоящего изобретения предпочтительно снижают частоту клеток, инициирующих опухоли, при введении ADC субъекту. Как отмечалось выше, снижение частоты клеток, инициирующих опухоль, может происходить в результате a) устранения, истощения, сенсибилизации, сайленсинга или ингибирования клеток, инициирующих опухоли; b) управления ростом, экспансией или повторным проявлением клеток, инициирующих опухоли; c) прерывания инициации, распространения, поддержания или пролиферации клеток, инициирующих опухоли; или d) посредством иного затруднения выживания, регенерации и/или метастазирования онкогенных клеток. В некоторых вариантах осуществления, снижение частоты клеток, инициирующих опухоли, происходит в результате изменения в одном или нескольких физиологических путях. Изменение в пути, либо посредством уменьшения или устранения клеток, инициирующих опухоли или посредством модификации их потенциала (например, индуцированной дифференциации, разрушения ниши) или иного противодействия их способности влиять на окружение опухоли или другие клетки, что, в свою очередь обеспечивает более эффективное лечение нарушений, ассоциированных с DLL3, посредством ингибирования онкогенеза, поддержания опухоли и/или метастазирования и повторного проявления.

Среди признанных в области методов, которые могут применяться для оценки такого снижения частоты клеток, инициирующих опухоли, находится анализ методом серийных разведений либо in vitro или in vivo, предпочтительно с последующим перчислением с использованием статистики распределения Пуассона или оценки частоты предварительно заданных определенных событий, таких как способность или неспособность генерировать опухоли in vivo. В то время, как такой анализ методом серийных разведений включает предпочтительные методы расчета снижения частоты клеток, инициирующих опухоли, менее востребованные методы, также могут применяться, чтобы эффективно определять желательные значения, хотя и немного менее точно, и являются полностью совместимыми с принципами данного документа. Таким образом, как смогут оценить специалисты в области, также является возможным определить снижение значений частоты посредством хорошо известных проточной цитометрии или иммуногистохимических средств. По всем вышеуказанным методам см., например, Dylla et al. 2008, PMID: 18560594 & Hoey et al. 2009, PMID: 19664991; каждая из которых полностью включена в данный документ посредством ссылки и, в частности, для раскрытых методов.

Что касается анализа методом серийных разведений in vitro, то учет частоты клеток, инициирующих опухоль, может осуществляться посредством осаждения либо фракционированных или нефракционированных человеческих опухолевых клеток (например, из подвергаемых лечению и неподвергаемых лечению опухолей, соответственно) в условия роста in vitro, которые благоприятствуют образованию колонии. Таким образом, колониеобразующие клетки могут быть учтены посредством простого подсчета и характеризации колоний или посредством анализа состоящего из, например, осаждения человеческих опухолевых клеток в планшеты при серийных разведениях и оценки каждой лунки либо как положительной или отрицыательной для образования колонии по меньшей мере через 10 дней после внесения в планшеты. Эксперименты in vivo с ограничивающим разведением или анализы, которые, обычно, являются более точными по их способности определять инициирующую опухоль частоту клеток, охватывают трансплантацию человеческих опухолевых клеток, либо из необработанных контрольных или обработанных популяций, например, иммунодефицитным мышам при серийных разведениях и, в последующем, оценку каждой мыши, либо как положительную или отрицательную для образования опухоли по меньшей мере через 60 дней после пересадки. Вывод значений частоты клеток посредством анализа методом серийных разведений in vitro или in vivo предпочтительно проводят посредством применения статистического распределения Пуассона к известной частоте положительных и отрицательных событий, таким образом, обеспечивая частоту событий, выполняя определение положительного события; в данном случае, образования колонии или опухоли, соответственно.

Что касается других методов, совместимых с рассматриваемым изобретением, которые могут применяться для расчета частоты клеток, инициирующих опухоль, то они наиболее часто включаеют поддающиеся количественному измерению методы проточной цитометрии и методики иммуногистохимического окрашивания. Хотя и не являясь настолько точными, как методы анализа методом серийных разведений, описанным непосредственно выше, эти методики являются намного менее трудозатратными и обеспечивают приемлемые в относительно коротком формате времени. Таким образом, следует принимать во внимание, что квалифицированный специалист может применять проточное цитометрическое определение профиля маркеров клеточной поверхности с использованием одного или более антител или реагентов, которые связываются с принятыми в данной области белков клеточной поверхности, которые как известно, обогащают клетки, инициирующие опухоли (например, потенциально совместимые маркеры, приведенные в заявке PCT 2012/031280, которая полностью включена в данный документ), и, таким образом, измерить уровни TIC из различных образцов. В еще одном совместимом методе специалист в области сможет учесть частоту TIC in situ (например, в тканевом срезе) посредством иммуногистохимии с использованием одного или более антител или реагентов, способных связываться с белками клеточной поверхности, которые, как полагают, разграничивают эти клетки.

Общепризнанно, что многочисленные маркеры (или их отсутствие) были ассоциированы с различными популяциями раковых стволовых клеток, и их приеняли для выделения или характеризации субпопуляций опухолевых клеток. В данном отношении, иллюстративные маркеры раковых стволовых клеток включают OCT4, Nanog, STAT3, EPCAM, CD24, CD34, NB84, TrkA, GD2, CD133, CD20, CD56, CD29, B7H3, CD46, рецептор трансферрина, JAM3, карбоксипептидазу M, ADAM9, онкостатин M, Lgr5, Lgr6, CD324, CD325, нестин, Sox1, Bmi-1, eed, easyh1, easyh2, mf2, yy1, smarcA3, smarckA5, smarcD3, smarcE1, mllt3, FZD1, FZD2, FZD3, FZD4, FZD6, FZD7, FZD8, FZD9, FZD10, WNT2, WNT2B, WNT3, WNT5A, WNT10B, WNT16, AXIN1, BCL9, MYC, (TCF4) SLC7A8, IL1RAP, TEM8, TMPRSS4, MUC16, GPRC5B, SLC6A14, SLC4A11, PPAP2C, CAV1, CAV2, PTPN3, EPHA1, EPHA2, SLC1A1, CX3CL1, ADORA2A, MPZL1, FLJ10052, C4,4A, EDG3, RARRES1, TMEPAI, PTS, CEACAM6, NID2, STEAP, ABCA3, CRIM1, IL1R1, OPN3, DAF, MUC1, MCP, CPD, NMA, ADAM9, GJA1, SLC19A2, ABCA1, PCDH7, ADCY9, SLC39A1, NPC1, ENPP1, N33, GPNMB, LY6E, CELSR1, LRP3, C20orf52, TMEPAI, FLVCR, PCDHA10, GPR54, TGFBR3, SEMA4B, PCDHB2, ABCG2, CD166, AFP, BMP-4, β-катенин, CD2, CD3, CD9, CD14, CD31, CD38, CD44, CD45, CD74, CD90, CXCR4, декорин, EGFR, CD105, CD64, CD16, CD16a, CD16b, GLI1, GLI2, CD49b, и CD49f. См., например, Schulenburg et al., 2010, PMID: 20185329, ПАТЕНТЕ США № 7,632,678 и В патентах США №№ 2007/0292414, 2008/0175870, 2010/0275280, 2010/0162416 и 2011/0020221, каждый из которых включен в данный документ посредством ссылки. Следует дополнительно принимать во внимание, что каждый из вышеуказанных маркеров также может применяться в качестве вторичного антигена-мишени в контексте биспецифических или мультиспецифических антител рассматриваемого изобретения.

Аналогично, неограничивающие примеры фенотипов клеточной поверхности, ассоциированных с раковыми стволовыми клетками некоторых опухолевых типов, включают CD44hiCD24low, ALDH+, CD133+, CD123+, CD34+CD38-, CD44+CD24-, CD46hiCD324+CD66c-, CD133+CD34+CD10-CD19-, CD138-CD34-CD19+, CD133+RC2+, CD44+α2 β1hiCD133+, CD44+CD24+ESA+, CD271+, ABCB5+ а также другие фенотипы клеточной поверхности раковых стволовых клеток, которые известны в области. См., например, Schulenburg et al., 2010, выше, Visvader et al., 2008, PMID: 18784658 и ПАТЕНТЕ США № 2008/0138313, каждая из которых полностью включена в данный документ посредством ссылки. Специалисты в данной области смогут понять, что фенотипы маркеров, такие как приведенные в виде примера непосредственно выше, могут применяться в сочетании со стандартным проточным цитометрическим анализом и методами сортировки клеток для характеризации, выделения, очистки или обогащения клеток TIC и/или TPC или клеточных популяций для дополнительного анализа. По отношению к рассматриваемому изобретению, интерес представляют CD46, CD324 и, необязательно, CD66c, которые либо в высокой степени или гетерогенно экспрессируются на поверхности многих человеческих опухолевых клеток колоректального рака (“CR”), рака молочной железы (“BR”), немелкоклеточного рака легкого (NSCLC), мелкоклеточного рака легкого (SCLC), рака поджелудочной железы (“PA”), меланомы (“Mel”), рака яичника (“OV”), и рака головы и шеи (“HN”), независимо от того, являются ли анализируемые образцы опухоли образцами опухоли от пациента с первичной опухолью или образцами полученной от пациента нетрадиционной кснотрансплантатной (NTX) опухоли.

Применяя любой из указанных выше методов, и выбранные маркеры, известные в данной области, затем является возможным количественно оценить снижение частоты TIC (или TPC в данном документе), предоставляемое раскрытыми модуляторами DLL3 (включая модуляторы, конъюгированные с цитотоксическими средствами) в соответствии с принципами данного документа. В некоторых случаях, соединения рассматриваемого изобретения могут снижать частоту TIC или TPC (посредством различных механизмов, отмеченных выше, включающих устранение, индуцированную дифференциацию, разрушение ниши, сайленсинг, и т.д.) на 10%, 15%, 20%, 25%, 30% или даже на 35%. В других вариантах осуществления, снижение частоты TIC или TPC может иметь порядок 40%, 45%, 50%, 55%, 60% или 65%. В некоторых вариантах осуществления, раскрытые соединения могут снижать частоту TIC или TPC на 70%, 75%, 80%, 85%, 90% или даже 95%. Несомненно, следует принимать во внимание, что любое снижение частоты TIC или TPC вероятно приводит к соответствующему снижению туморогенности, жизнестойкости, повторного проявления и агрессивности неоплазии.

IV. Средства связывания с клеткой

1. Структура антитела

Как указано выше, особенно предпочтительные варианты осуществления рассматриваемого изобретения включают раскрытые конъюгаты DLL3 со средством связывания с клеткой в форме антитела, или его иммунореактивного фрагмента, которое преимущественно ассоциируется с одним или более доменами изоформы белка DLL3 и, необязательно, другими членами семейства DLL. В данной связи антитела, и их варианты и производные, включая принятую номенклатуру и системы нумерации, были всесторонне описанн, например, в Abbas et al. (2010), Cellular and Molecular Immunology (6th Ed.), W.B. Saunders Company; или Murphey et al. (2011), Janeway's Immunobiology (8th Ed.), Garland Science.

“Антитело” или “интактное антитело” обычно относится к Y-образному тетрамерному белку, содержащему две тяжелые (H) и две легкие (L) полипептидные цепи, удерживаемые вместе посредством ковалентных дисульфидных связей и нековалентных взаимодействий. Человеческие легкие цепи содержат вариабельный домен (VL) и константный домен (CL), где константный домен может быть легко классифицирован как каппа или лямбда на основании аминокислотной последовательности и генных локусов. Каждая тяжелая цепь содержит один вариабельный домен (VH) и константную область, которая в случае IgG, IgA, и IgD, содержит три домена, именуемые CH1, CH2, и CH3 (IgM и IgE имеют четвертый домен, CH4). В IgG, IgA, и IgD классы CH1 и CH2 доменов разделены гибкой шарнироной областью, которая представляет собой сегмент, обогащенный пролином и цистеином, с вариабельной длиной (обычно от приблизительно 10 до приблизительно 60 аминокислот в IgG). Вариабельные домены, как в легкой, так и тяжелой цепях объединены с константными доменами посредством “J” области из приблизительно 12 или более аминокислот, и тяжелая цепь также имеет “D” область из приблизительно 10 дополнительных аминокислот. Каждый класс антител дополнительно содержит межцепочечные и внутрицепочечные дисульфидные связи, образованные спаренными цистеиновыми остатками.

Как используют в данном документе, термин ''антитело'' может толковаться в широком смысле, и включает поликлональные антитела, мультиклональные антитела, моноклональные антитела, химерные антитела, гуманизированные и приматизированные антитела, CDR привитые антитела, человеческие антитела, рекомбинантно продуцированные антитела, интраантитела, мультиспецифические антитела, биспецифические антитела, моновалентные антитела, мультивалентные антитела, анти-идиотипические антитела, синтетические антитела, включая мутеины и их варианты, фрагменты иммуноспецифических антител, такие как Fd, Fab, F(ab')2, фрагменты F(ab'), одноцепочечные фрагменты (например, ScFv и ScFvFc); и их производные, включая Fc гибриды и другие модификации, и любую другую иммунореактивную молекулу, при условии, что она проявляет преимущественную ассоциацию или связывание с DLL3 детерминантой. Более того, если не следует иначе по ограничениям контекста, термин дополнительно содержит все классы антител (т.е. IgA, IgD, IgE, IgG, и IgM) и все изотипы (т.е., IgG1, IgG2, IgG3, IgG4, IgA1, и IgA2). Константные домены тяжелой цепи, которые соответствуют различным классам антител обычно обозначают соответствующей малой буквой греческого алфавита α, δ, ε, γ и μ, соответственно. Легкие цепи антител из любых видов позвоночных могут быть отнесены к одному из двух четко отличающихся типов, называемых каппа (κ) и лямбда (λ), на основании аминокислотных последовательностей их константных доменов.

В избранных вариантах осуществления и, как показано в прилагаемых Примерах, CL домен может содержать каппа CL домен. В других вариантах осуществления источник антитела может содержать лямбда CL домен. Так как последовательности всех человеческих IgG CL доменов являются хорошо известными, специалист в данной области может легко анализировать как лямбда, так и каппа последовательности в соответствии с настоящим раскрытием и использовать их для обеспечения совместимых конструкций антител. Аналогично, с целью объяснения и демонстрации последующее обсуждение и прилагаемые Примеры, в первую очередь, будут выделять IgG1 (мышиный или человеческий) тип антител. Как и для константной области легкой цепи, последовательности константных доменов тяжелой цепи из различных изотипов (IgM, IgD, IgE, IgA) и подклассы (IgG1, IgG2, IgG3, IgG4, IgA1, IgA2) являются хорошо известными и охарактеризованными. Соответственно, специалист в данной области может легко использовать анти-DLL3 антитела, содержащие любой изотип или подкласс, и конъюгат каждого из них с раскрытым ПБД, как изложено в данном документе для обеспечения конъюгатов антител с лекарственным средством настоящего изобретения.

Вариабельные домены антител показывают значительную изменчивость в аминокислотном составе от одного антитела к другому, и, являются, в первую очередь, ответственными за распознавание и связывание антигена. Вариабельные области каждой пары легкая/тяжелая цепь образуют участок связывания антитела, таким образом, что интактное IgG антитело имеет два участка связывания (т.е. оно является бивалентным). VH и VL домены содержат три области с крайне высокой вариабельностью, которые называют гипервариабельными областями, или, в большинстве случаев, областями, определяющими комплементарность (CDR), ограниченных и разделенных четырьмя менее вариабельными областями, известными как каркасные области (FRs). Нековалентная ассоциация между VH и VL областями образует Fv фрагмент (т.е. ''фрагмент вариабельный''), который содержит два антиген связывающих участка антитела. ScFv фрагменты (для одноцепочечного вариабельного фрагмента), который может быть получен посредством гентической инженерии, ассоциируются в единственную полипептид цепь, причем VH и VL области антитела разделяются пептидным линкером.

Как используют в данном документе, отнесение аминокислот к каждому домену, каркасной области и CDR может быть проведено в соответствии с обной из схем нумерации, предложенных Kabat et al. (1991) Sequences of proteins of Immunological Interest (5th Ed.), US Dept. of Health and Human Services, PHS, NIH, NIH Publication no. 91-3242;Chothia et al., 1987, PMID: 3681981; Chothia et al., 1989, PMID: 2687698; MacCallum et al.,1996, PMID: 8876650; или Dubel, Ed. (2007) Handbook of Therapeutical Antibodies, 3rd Ed., Wily-VCH Verlag GmbH and Co., если не отмечено иначе. Аминокислотные остатки, которые содержат CDR, как определено Кабат, Чотиа и Маккаллум, полученные из базы данных с вебсайта Abysis (выше), приведены ниже

ТАБЛИЦА 1
Кабат Чотиа Маккаллум
VH CDR1 31-35 26-32 30-35

VH CDR2 50-65 52-56 47-58
VH CDR3 95-102 95-102 93-101
VL CDR1 24-34 24-34 30-36
VL CDR2 50-56 50-56 46-55
VL CDR3 89-97 89-97 89-96

Вариабельная область и CDR в последовательности антитела может быть идентифицирована в соответствии с общими правилами, которые были разработаны в данной области (как приведено выше, такими как, например, Система нумерации Кабат) или посредством выравнивания последовательностей против базы данных известной вариабельной области. Методы идентификации этих областей описаны у Kontermann and Dubel, eds., Antibody Engineering, Springer, New York, NY, 2001 and Dinarello et al., Current Protocols in Immunology, John Wiley и Sons Inc., Hoboken, NJ, 2000. Иллюстративные базы данных последовательностей антител описаны в, и могут быть оценены посредством вебсайта “Abysis'' на сайте www.bioinf.org.uk/abs (поддерживаемого посредством A.C. Martin in Department of Biochemistry & Molecular Biology University College London, London, England) и вебсайта VBASE2 на сайте www.vbase2.org, как описано у Retter et al., Nucl. Acids Res., 33 (Выпуск базы данных): D671-D674 (2005). Предпочтительно, последовательности анализируют, используя базу данных Abysis, которая интегрирует данные последовательностей из Kabat, IMGT and Protein Data Bank (PDB) со структурными данными для ПДБ. См. главу книги Dr. Andrew C. R. Martin's Protein Sequence and Structure Analysis Antibody Variable Domains. В: Antibody Engineering Lab Manual (Ed.: Duebel, S. and Kontermann, R., Springer-Verlag, Heidelberg, ISBN-13: 978-3540413547, также доступную на вебсайте bioinforg.uk/abs). Вебсайт с базой данных Abysis дополнительно включает общие правила, которые были разработаны для идентификации CDR, которые могут использоваться в соответствии с принципами данного документа. Если не указано иначе, все CDR, приведенные в данном документе, получают в соответствии с вебсайтом базы данных Abysis как по Кабат.

Для положений аминокислот константных областей тяжелой цепи, обсуждаемых в изобретении, нумерацию проводят в соответствии с индексом Eu, впервые описанным у Edelman et al., 1969, Proc, Natl. Acad. Sci. USA 63(1): 78-85, при описании аминокислотной последовательности белка миеломы Eu, который по имеющимся данным был первым человеческим секвенированным IgG1. Индекс Eu Эдельмана также приведен в Kabat et al., 1991 (выше.). Таким образом, термины “индекс EU, приведенный в Кабат” или “индекс EU по Кабат” в контексте тяжелой цепи относится к системе нумерации остатков, основанной на человеческом IgG1 Eu антителе из Edelman et al. приведенной в Kabat et al., 1991 (выше.). Система нумерации, используемая для аминокислотных последовательностей константной области легкой цепи аналогично приводится в Kabat et al., 1991. Иллюстративные каппа аминокислотные последовательности константной области тяжелой цепи CL и IgG1, совместимые с рассматриваемым изобретением, приведены в виде SEQ ID NO: 5 и 6 в прилагаемом списке последовательностей. Специалисты в данной области смогут понять, что раскрытые последовательности константных областей могут быть объединены с раскрытыми вариабельными областями тяжелой и легкой цепи с использованием стандартных методов молекулярной биологии для предоставления непроцессированного антитела, которое может быть включено в конъюгаты DLL3 рассматриваемого изобретения.

Антитела или иммуноглобулины изобретения могут содержать любые антитела или быть производными любых антител, которые специфически распознают любую детерминанту DLL3 или ассоциируются с ней. Как используют в данном документе “детерминанта” или “мишень” означает любые обнаруживаемые свойство, маркер или фактор, которые идентифицируемым образом ассоциированы с, или специфически обнаруживаются в или на конкретной клетке, клеточной популяции или ткани. Детерминанты или мишени могут быть морфологическими, функциональными или биохимическими по природе и, предпочтительно, являюся фенотипическими. В некоторых предпочтительных вариантах осуществления, детерминанта представляет собой белок, который дифференцированно экспрессируется (сверх- или недоэкспрессируется) конкретными клеточными типами или клетками при некоторых условиях (например, во время конкретных фаз клеточного цикла или клеток в конкретной нише). Для целей рассматриваемого изобретения, детерминанта, предпочтительно, дифференцированно экспрессируется на аберрантных раковых клетках и может содержать белок DLL3, или любой из его сплайс-вариантов, изоформ или членов семейства, или его специфичных доменов, областей или эпитопов. “Антиген”, “иммуногенная детерминанта”, “антигенная детерминанта” или “иммуноген” означает любой белок (включая DLL3) или любые его фрагмент, область, домен или эпитоп, которые могут стимулировать иммунный ответ при введении в иммунокомпетентное животное, и распознаются антителами, продуцируемыми в результате иммунного ответа животного. Наличие или отсутствие детерминант, предусмотренных в данном документе, может применяться для идентификации клетки, субпопуляции клетки или ткани (например, опухоли, онкогенных клеток или CSC).

Как приведено ниже в Примерах, выбранные варианты осуществления изобретения содержат мышиные антитела, которые иммуноспецифически связываются с DLL3, который может считаться “источником” антитела. В других вариантах осуществления, антитела предусмотренные изобретением, могут являться производными из такого “источника” антител посредством необязательной модификации константной области или связывающихся с эпитопом аминокислотных последовательностей источника антитела. В одном варианте осуществления антитело “является производным” от источника антител, если выбранные аминокислоты в источнике антител изменяются посредством делеции, мутации, замены, интеграци или комбинаци. В еще одном варианте осуществления, “являющееся производным” антитело представляет собой антитело, в котором фрагменты источника антитела (например, одна или более CDR или полная вариабельная область) комбинируются с последовательностью акцепторного антитела или включаются в нее для предоставления производных антител (например, химерных, CDR привитых или гуманизированных антител). Эти “являющиеся производными” (например, гуманизированные или CDR-привитые) антитела могут генерироваться с использованием стандартных методов молекулярной биологии по различным причинам, таким как, например, для улучшения аффинности для детерминанты; для улучшения продуцирования и выхода в клеточной культуре; для снижения иммуногенности in vivo; для снижения токсичности; для облегчения конъюгирования активного фрагмента; или для создания мультиспецифического антитела. Такие антитела могут также являться производными из источника антитела посредством модификации зрелой молекулы (например, схем гликозилирования или пегилирования), химических средств или посттрансляционной модификации.

В контексте рассматриваемого изобретения следует принимать во внимание, что любая из раскрытых CDR легкой и тяжелой цепи, являющаяся производной от аминокислотных последовательностей мышиной вариабельной области, приведенной на ФИГ. 3A или ФИГ. 3B, может комбинироваться с акцепторными антителами или перегруппировываться для предоставления оптимизированных антител против человеческого DLL3 (например, гуманизированных или химерных анти-hDLL3) в соответствии с рассматриваемыми принципами. Таким образом, одна или более из CDR, являющихся производными или полученными из смежных аминокислотных последовательностей вариабельной области легкой цепи, приведенных на ФИГ. 3A или смежных аминокислотных последовательностей вариабельной области тяжелой цепи, приведенных на ФИГ. 3B (вместе SEQ ID NO: 21-387, с нечетными номерами) могут быть включены в модулятор DLL3, и, в особенно предпочтительных вариантах осуществления, в CDR привитые или гуманизированные антитела, которые иммуноспецифически ассоциируются с одной или более изоформами DLL3. Примеры “являющихся производными” аминокислотных последовательностей вариабельных областей легкой и тяжелой цепей таких гуманизированных модуляторов также приведены на ФИГУРАХ. 3A и 3B (SEQ ID NO: 389-407, с нечетными номерами).

На ФИГ. 3A и 3B сокращенные CDR и каркасные последовательности определены по системе Кабат с использованием зарегистрированную базу данных Abysis. Однако, как обсуждается в данном документе, специалист в данной области сможет легко определить, идентифицировать, получить в виде производной и/или пронумеровать CDR, как определено по Kabat et al., Chothia et al. или MacCallum et al. для каждой соответствующей последовательности тяжелой и легкой цепи, приведенной на ФИГ. 3A или ФИГ. 3B. Соответственно, каждое из субъектных CDR и антител, содержащих CDR, посредством всей такой номенклатуры, однозначно включено в объем рассматриваемого изобретения. В более широком смысле, термины “аминокислотный остаток CDR вариабельной области” или упрощенно, “CDR”, включают аминокислоты в CDR, идентифицированные с использованием любого способа на основе последовательности или структуры, приведенных выше. В пределах данного контекста Кабат CDR для иллюстративных гуманизированных антител на ФИГ. 3A и 3B представлены в прилагаемом списке последовательностей как SEQ ID NO: 408-437.

В еще других вариантах осуществления, совместимые DLL3 антитело содержит вариабельные области тяжелой и легкой цепи, содержащие аминокислотные последовательности, которые являются гомологичными аминокислотным последовательностям иллюстративных антител, описанных в данном документе (как гуманизированных, так и мышиных), и, где антитела сохраняют желательные функциональные свойства анти-DLL3 антитела изобретения.

Например совместимые DLL3 антитела могут содержать антитело или его иммунореактивный фрагмент, имеющие вариабельную область легкой цепи и вариабельную область тяжелой цепи, где указанная вариабельная область легкой цепи содержит аминокислотную последовательность, которая по меньшей мере на 60% является гомологичной аминокислотной последовательности, выбранной из группы, состоящей из SEQ ID NO: 21, SEQ ID NO: 25, SEQ ID NO: 29, SEQ ID NO: 33, SEQ ID NO: 37, SEQ ID NO: 41, SEQ ID NO: 45, SEQ ID NO: 49, SEQ ID NO: 53, SEQ ID NO: 57, SEQ ID NO: 61, SEQ ID NO: 65, SEQ ID NO: 69, SEQ ID NO: 73, SEQ ID NO: 77, SEQ ID NO: 81, SEQ ID NO: 85, SEQ ID NO: 89, SEQ ID NO: 93, SEQ ID NO: 97, SEQ ID NO: 101, SEQ ID NO: 105, SEQ ID NO: 109, SEQ ID NO: 113, SEQ ID NO: 117, SEQ ID NO: 121, SEQ ID NO: 125, SEQ ID NO: 129, SEQ ID NO: 133, SEQ ID NO: 137, SEQ ID NO: 141, SEQ ID NO: 145, SEQ ID NO: 149, SEQ ID NO: 153, SEQ ID NO: 157, SEQ ID NO: 161, SEQ ID NO: 165, SEQ ID NO: 169, SEQ ID NO: 173, SEQ ID NO: 177, SEQ ID NO: 181, SEQ ID NO: 185, SEQ ID NO: 189, SEQ ID NO: 193, SEQ ID NO: 197, SEQ ID NO: 201, SEQ ID NO: 205, SEQ ID NO: 209, SEQ ID NO: 213, SEQ ID NO: 217, SEQ ID NO: 221, SEQ ID NO: 225, SEQ ID NO: 229, SEQ ID NO: 233, SEQ ID NO: 237, SEQ ID NO: 241, SEQ ID NO: 245, SEQ ID NO: 249, SEQ ID NO: 253, SEQ ID NO: 257, SEQ ID NO: 261, SEQ ID NO: 265, SEQ ID NO: 269, SEQ ID NO: 273, SEQ ID NO: 277, SEQ ID NO: 281, SEQ ID NO: 285, SEQ ID NO: 289, SEQ ID NO: 293, SEQ ID NO: 297, SEQ ID NO: 301, SEQ ID NO: 305, SEQ ID NO: 309, SEQ ID NO: 313, SEQ ID NO: 317, SEQ ID NO: 321, SEQ ID NO: 325, SEQ ID NO: 329, SEQ ID NO: 333, SEQ ID NO: 337, SEQ ID NO: 341, SEQ ID NO: 345, SEQ ID NO: 349, SEQ ID NO: 353, SEQ ID NO: 357, SEQ ID NO: 361, SEQ ID NO: 365, SEQ ID NO: 369, SEQ ID NO: 373, SEQ ID NO: 377, SEQ ID NO: 381 и SEQ ID NO: 385, и, где указанная вариабельная область тяжелой цепи содержит аминокислотную последовательность, которая по меньшей мере на 60% является гомологичной аминокислотной последовательности, выбранной из группы, состоящей из SEQ ID NO: 23, SEQ ID NO: 27, SEQ ID NO: 31, SEQ ID NO: 35, SEQ ID NO: 39, SEQ ID NO: 43, SEQ ID NO: 47, SEQ ID NO: 51, SEQ ID NO: 55, SEQ ID NO: 59, SEQ ID NO: 63, SEQ ID NO: 67, SEQ ID NO: 71, SEQ ID NO: 75, SEQ ID NO: 79, SEQ ID NO: 83, SEQ ID NO: 87, SEQ ID NO: 91, SEQ ID NO: 95, SEQ ID NO: 99, SEQ ID NO: 103, SEQ ID NO: 107, SEQ ID NO: 111, SEQ ID NO: 115, SEQ ID NO: 119, SEQ ID NO: 123, SEQ ID NO: 127, SEQ ID NO: 131, SEQ ID NO: 135, SEQ ID NO: 139 SEQ ID NO: 143, SEQ ID NO: 147, SEQ ID NO: 151, SEQ ID NO: 155, SEQ ID NO: 159, SEQ ID NO: 163, SEQ ID NO: 167, SEQ ID NO: 171, SEQ ID NO: 175, SEQ ID NO: 179, SEQ ID NO: 183, SEQ ID NO: 187, SEQ ID NO: 191, SEQ ID NO: 195, SEQ ID NO: 199, SEQ ID NO: 203, SEQ ID NO: 207, SEQ ID NO: 211, SEQ ID NO: 215, SEQ ID NO: 219, SEQ ID NO: 223, SEQ ID NO: 227, SEQ ID NO: 231, SEQ ID NO: 235, SEQ ID NO: 239, SEQ ID NO: 243, SEQ ID NO: 247, SEQ ID NO: 251, SEQ ID NO: 255, SEQ ID NO: 259, SEQ ID NO: 263, SEQ ID NO: 267, SEQ ID NO: 271, SEQ ID NO: 275, SEQ ID NO: 279, SEQ ID NO: 283, SEQ ID NO: 287, SEQ ID NO: 291, SEQ ID NO: 295, SEQ ID NO: 299, SEQ ID NO: 303, SEQ ID NO: 307 SEQ ID NO: 311, SEQ ID NO: 315, SEQ ID NO: 319, SEQ ID NO: 323, SEQ ID NO: 327, SEQ ID NO: 331, SEQ ID NO: 335, SEQ ID NO: 339, SEQ ID NO: 343, SEQ ID NO: 347, SEQ ID NO: 351, SEQ ID NO: 355, SEQ ID NO: 359, SEQ ID NO: 363, SEQ ID NO: 367, SEQ ID NO: 371, SEQ ID NO: 375, SEQ ID NO: 379, SEQ ID NO: 383 и SEQ ID NO: 387.

В других вариантах осуществления, аминокислотные последовательности VH и/или VL могут быть на 65%, 70%, 75%, 80%, 85%, 90% или 95% гомологичными с последовательностям, приведенным выше. Антитело, имеющее VH и VL области, имеющие высокую (т.е., 80% или выше) гомологию с VH и VL областями последовательностей, приведенных выше, могут быть получены или произведены использованием стандартных методов молекулярной биологии. Например, как показано в ТАБЛИЦЕ 4 ниже, гуманизированные антитела, полученные, как приведено в Примере 4 из мышиного источника антител, будут содержать вариабельные области тяжелой и легкой цепи, которые приблизительно на 75% - 85% являются гомологичными таких областей источника антител.

Как используют в данном документе, процент гомологии между двумя аминокислотными последовательностями является эквивалентным проценту идентичности между двумя последовательностями. Процент идентичности между двумя последовательностям является функцией числа идентичных положений, являющихся общими для последовательностей (т.е., % гомологии = # идентичных положений/общее # положений × 100), с учетом числа пропусков, и длины каждого пропуска, который необходимо ввести для оптимального выравнивания двух последовательностей. Сравнение последовательностей и определение процента идентичности между двумя последовательностями может выполняться с использованием математического алгоритма, описанного в неограничивающих примерах ниже.

Процент идентичности между двумя аминокислотными последовательностями может быть определен с использованием алгоритма E. Meyers и W. Miller (Comput. Appl. Biosci., 4:11-17 (1988)), который был включен в программу ALIGN (версия 2,0), с использованием таблицы массы PAM120 остатка, штрафа за удлинение пропуска, равного 12, и штрафа за пропуск в последовательности, равного 4. В дополнение, процент идентичности между двумя аминокислотными последовательностями может быть определен с использованием алгоритма Needleman и Wunsch (J. Mol. Biol. 48:444-453 (1970)), который был включен в программу GAP в пакете программного обеспечения GCG (доступном на www.gcg.com), исполязуя либо матрицу Blossum 62 или матрицу PAM250, и штраф за делецию, равный 16, 14, 12, 10, 8, 6 или 4, и штраф за продолжение делеции, равный 1, 2, 3, 4, 5 или 6.

Дополнительно или альтернативно, последовательности белков настоящего изобретения могут дополнительно применяться в качестве “запрашиваемых последовательностей” для выполнения поиска в общедоступных базах данных, чтобы, например, идентифицировать родственные последовательности. Такие поиски могут выполняться с использованием программы XBLAST (версия 2.0) Altschul, et al. (1990) J. Mol. Biol. 215:403-10. Поиски белка по BLAST могут выполняться с помощью программы XBLAST, балльная оценка = 50, длина слова = 3, чтобы получить аминокислотные последовательности, гомологичные молекулам антитела изобретения. Чтобы получить содержащие пробелы выравнивания для целей сравнения, может использоваться Gapped BLAST, как описано в Altschul et al., (1997) Nucleic Acids Res. 25(17):3389-3402. При использовании программ BLAST и Gapped BLAST, могут применяться параметры по умолчанию соответствующих программ (например, XBLAST и NBLAST).

2. Генерация антител

a. Поликлональные антитела

Продуцирование поликлональных антител у различных животных-хозяев, включающих кроликов, мышей, крыс и т.д. является хорошо известным в области. В некоторых вариантах осуществления, сыворотку, содержащую поликлональные анти-DLL3 антитела, получают посредством кровоизвлечения или умерщвления животного. Сыворотка может применяться в исследовательских целях в форме, полученной из животного или, альтернативно, анти-DLL3 антитела могут быть частично или полностью очищаться для получения иммуноглобулиновых фракций или гомогенных препаратов антител.

Вкратце, выбранное животное иммунизируют иммуногеном DLL3 (например, растворимым DLL3 или sDLL3), который может, например, содержать выбранные изоформы, домены и/или пептиды, или живые клетки или препараты клеток, экспрессирующих DLL3 или его иммунореактивные фрагменты. Известные в данной области адъюванты, которые могут применяться для увеличения иммунного ответа, в зависимости от инокулируемого вида, включают, но не ограничиваются перечисленным, адъювант Фрейнда (полный и неполный), минеральные гели, такие как гидроксид алюминия, поверхностно-активные вещества, такие как лизолецитин, плюрониловые полиолы, полианионы, пептиды, масляные эмульсии, гемоцианины лимфы улитки, динитрофенол, и потенциальноприменимые человеческие адъюванты, такие как БЦЖ (бацилла Кальмета-Герена) и парвум коринебактерий. Такие адъюванты могут защищать антиген от быстрого всасывания посредством изолирования его в местном отложении, или они могут содержать вещества, которые стимулируют хозяина секретировать факторы, которые являются хемотаксическими для макрофагов и других компонентов иммунной системы. Предпочтительно протокол иммунизации будет включать два или более введений выбранного иммуногена, распределяемых в течение заданного периода времени.

Аминокислотная последовательность белка DLL3, как показано на ФИГ. 1, может быть проанализирована, чтобы выбрать специфичные области белка DLL3 для генерации антител. Например, анализы гидрофобности и гидрофильности аминокислотной последовательности DLL3 применяют для идентификации гидрофильных областей в структуре DLL3. Области белка DLL3, которые показывают иммуногенную структуру, а также другие области и домены, могут быть легко идентифицированы с использованием различных других методов, известных в данной области, таких как анализ Чоу-Фасмана, Гарнье-Робсона, Кайт-Дулитла, Эйзенберга, Карплуса-Шульца или Джеймсона-Вольфа. Профмли средней эластичности могут быть генерированы, с использованием метода Bhaskaran R., Ponnuswamy P. K., 1988, Int. J. Pept. Protein Res. 32:242-255. Профили бета-изгиба могут генерироваться с использованием метода Deleage, G., Roux B., 1987, Protein Engineering 1:289-294. Таким образом, каждая область DLL3, каждый домен или мотив, идентифицированный посредством любой из этих программ или любого из этих методов, находится в пределах объема настоящего изобретения, и могут быть выделены или сконструированы для обеспечения иммуногенов, приводящих к образованию модуляторов, содержащих желательные свойства. Предпочтительные методы генерации антител к DLL3 дополнительно иллюстрируются путем Примеров, предоставленных в данном документе. Методы получения белка или полипептида для применения в качестве иммуногена являются хорошо известными в данной области. Также хорошо известны в области методы получения иммуногенных конъюгатов белка с носителем, таким как BSA, KLH или другой белок-носитель. При некоторых обстоятельствах, применяют прямое конъюгирование с использованием, например, карбодиимидных реагентов; в других случаях являются эффективными связующие реагенты. Введение иммуногена DLL3 часто проводят посредством инъекции в течение подходящего периода времени и с применением подходящего адъюванта, как понимают в данной области. Во время протокола иммунизации, могут быть взяты титры антител, как описано в Примерах ниже, для определения соответствия образования антитела.

b. Моноклональные антитела

В дополнение, изобретение предусматривает применение моноклональных антител. Как известно в данной области, термин ''моноклональное антитело'' (или mAb) относится к антителу, полученному из популяции по существу гомогенных антител, т.е., индивидуальные антитела, составляющие популяцию, являются идентичными за исключением возможных мутаций (например, природных мутаций), которые могут присутствовать в минорных количествах. В некоторых вариантах осуществления, такое моноклональное антитело включает антитело, содержащее полипептидную последовательность, которая связывается или ассоциируется с антигеном, где антиген-связывающая полипептидная последовательность была получена посредством процесса, который включает выбор единственной мишени, связывающей полипептидную последовательность из множества полипептидных последовательностей.

В более общем виде, и в приведенных в Примерах в данном документе, моноклональные антитела могут быть получены с использованием самых различных методов, известных в области, включающих методы получения гибридом, рекомбинантные методы, технологии фагового отображения, трансгенных животных (например, XenoMouse®) или их некоторых комбинаций. Например, моноклональные антитела могут продуцироваться с использованием гибридомных методов и признанных биохимических методов и методов и генетической инженерии, таких как описаны более подробно в An, Zhigiang (ed.) Therapeutic Monoclonal Antibodies: From Bench to Clinic, John Wiley и Sons, 1st ed. 2009; Shire et. al. (eds.) Current Trends Monoclonal Antibody Development and Manufacturing, Springer Science+Business Media LLC, 1st ed. 2010; Harlow et al., Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press, 2nd ed. 1988; Hammerling, et al., in: Monoclonal Antibodies and T-Cell Hybridomas 563-681 (Elsevier, N.Y., 1981), каждая из которых полностью включены в данный документ посредством ссылки. Следует понимать, что выбранная связывающая последовательность может быть дополнительно изменена, например, чтобы улучшить аффинность к мишени, для гуманизации целевой связывающей последовательности, чтобы улучшить ее продуцирование в клеточной культуре, чтобы снизить ее иммуногенность in vivo, для создания мультиспецифического антитела и т.д., и то, что антитело, содержащее измененную целевую связывающую последовательность также является антителом данного изобретения.

c. Химерные и гуманизированные антитела

В еще одном варианте осуществления, антитела изобретения может содержать химерные антитела, полученные из ковалентно соединенных белковых сегментов из по меньшей мере двух различных видов или классов антител. Термин ''химерные'' антитела направлен на конструкции, в которых часть тяжелой и/или легкой цепи является идентичной или гомологичной соответствующим последовательностям в антителах, полученным из конкретного вида, или принадлежащих к конкретному классу или подклассу антител, в то время как оставшаяся часть цепи(цепей) является идентичной или гомологичной соответствующим последовательностям в антителах, полученных из еще одного вида или принадлежащих к еще одному классу или подклассу антител, а также фрагментам таких антител (патент США № 4,816,567; Morrison et al., 1984, PMID: 6436822).

В одном варианте осуществления, химерное антитело может содержать мышиные VH и VL аминокислотные последовательности и константные области, полученные их человеческих источников, например, гуманизированные антитела, как описано ниже. В некоторых вариантах осуществления, антитела могут являться ''CDR-привитыми'', где антитело содержит одну или более CDR из конкретного вида или принадлежащих к конкретному классу или подклассу антител, в то время как оставшаяся часть цепи(цепей) является идентичной или гомологичной соответствующим последовательностям в антителах, полученных из еще одного вида или принадлежащих к еще одному классу или под