×
10.04.2019
219.017.088c

СПОСОБ ОПРЕДЕЛЕНИЯ ПРОЗРАЧНОСТИ АТМОСФЕРЫ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области метеорологии и может быть использовано при определении характеристик атмосферы. Сущность: осуществляют посылку в атмосферу световых импульсов из точек, разнесенных в пространстве. Осуществляют прием эхо-сигналов в точках посылки по пересекающимся трассам зондирования. Причем пересекающиеся трассы проходят не менее чем по трем неколлинеарным направлениям. Пересекающиеся трассы образуют две области зондирования. Причем области образуются посредством отрезков между точками их пересечения, имеющих общий рассеивающий объем. Накапливают эхо-сигналы на отрезках, образующих области. Определяют характеристики атмосферы по эхо-сигналам, принятым из точек пересечения трасс и накопленным. Используя расчетные формулы, уменьшают обе области зондирования и повторяют процедуру до задаваемого уровня совпадения двух последовательно полученных результатов определения характеристик атмосферы. Находят прозрачность атмосферы по двум совпавшим, последовательно полученным результатам. Технический результат - повышение точности определения прозрачности атмосферы. 1 ил.
Реферат Свернуть Развернуть

Изобретение относится к области метеорологии, а более конкретно - к способам определения характеристик атмосферы, и может использоваться, например, для измерения прозрачности атмосферы лидарными системами при определении наклонной дальности видимости на аэродромах.

Известен способ определения прозрачности атмосферы [1], при котором осуществляют посылку в атмосферу светового импульса малой длительности и регистрацию рассеянного в обратном направлении света, преобразованного в электрические сигналы. Эти сигналы накапливают в течение заданного промежутка времени в зависимости от общей протяженности исследуемого участка. При этом обеспечивают усиление принятых сигналов пропорционально квадрату текущего времени, отсчитываемого с момента посылки импульса в атмосферу.

Этот известный способ обладает низкой точностью, поскольку он основан на предположении о постоянстве отношения коэффициента обратного рассеяния к коэффициенту ослабления на исследуемой трассе зондирования. Это предположение не выполняется в условиях реальной атмосферы.

Наиболее близким к предлагаемому изобретению является известный способ определения прозрачности атмосферы [2], при котором осуществляют посылку в атмосферу световых импульсов из точек, разнесенных в пространстве, по пересекающимся трассам зондирования, проходящим не менее чем по трем неколлинеарным направлениям; с образованием области зондирования отрезками между точками их пересечения, осуществляют прием эхо-сигналов в точках посылки, а прозрачность атмосферы определяют по мощностям этих сигналов с использованием расчетных формул, уменьшают область зондирования и повторяют процедуру до задаваемого уровня совпадения двух последовательно полученных результатов определения прозрачности атмосферы.

В этом известном решении повышена точность определения характеристик атмосферы благодаря использованию не менее чем трех точек посылки в атмосферу световых импульсов. Однако в дифференциальном решении [2] не учитывается возможность существования значительной горизонтальной неоднородности атмосферы в пределах исследуемой области зондирования в процессе измерений.

Техническим результатом изобретения является повышение точности определения характеристик атмосферы за счет корректного учета атмосферной неоднородности.

В предлагаемом способе используют некоторые существенные признаки прототипа, а именно: в нем осуществляют посылку в атмосферу световых импульсов из точек, разнесенных в пространстве, по пересекающимся трассам зондирования, проходящим не менее чем по трем неколлинеарным направлениям; с образованием области зондирования отрезками между точками их пересечения, осуществляют прием эхо-сигналов в точках посылки, а прозрачность атмосферы определяют по мощностям этих сигналов с использованием расчетных формул.

Существенными отличительными признаками предлагаемого способа является то, что осуществляют посылку в атмосферу световых импульсов по дополнительным трассам с образованием дополнительной области зондирования, имеющей общий рассеивающий объем с первой областью, накапливают эхо-сигналы на отрезках, образующих области, определяют характеристики атмосферы по эхо-сигналам, принятым из точек пересечения трасс и накопленным, уменьшают обе области зондирования и повторяют процедуру до задаваемого уровня совпадения двух последовательно полученных результатов определения характеристик атмосферы, по которым находят ее прозрачность.

Оптические характеристики атмосферы, в частности,

находят из системы уравнений, записанной для многоугольников, образованных пересечением трасс зондирования по неколлинеарным направлениям

где

причем определяется и постоянная с в степенной связи коэффициента обратного рассеяния с коэффициентом ослабления

мощность сигнала обратного рассеяния, скорректированная на геометрический фактор лидара,

Pi,j - мощность сигнала обратного рассеяния,

- геометрический фактор лидара,

А - постоянная лидара,

β - коэффициент обратного рассеяния,

σ - коэффициент ослабления,

- радиус-вектор точки посылки световых импульсов и приема сигналов обратного рассеяния (i-й точке расположения приемопередатчика соответствует радиус-вектор , i=1, 2, …),

- радиус-вектор зондируемого рассеивающего элемента,

- текущий радиус-вектор точки прямой, проходящей через точки i, j,

сi - отрезок , по которому вычисляются интегралы (2),

dr - элемент длины отрезка.

Сущность изобретения пояснена на чертеже. На чертеже представлена схема посылок зондирующих импульсов и приема эхо-сигналов для примера трех приемопередатчиков (лидаров).

Способ реализуют следующим образом.

Приемопередатчики, например лидары 1, 2 и 3, располагают с разнесением в пространстве в точках , и .

Осуществляют посылку световых импульсов в направлении области зондирования, которая ограничена точками (i=1, 2, 3) и в направлении области зондирования, которая ограничена точками (i=1, 4, 5). Эти области зондирования имеют общий рассеивающий объем .

Посылают импульс из точки в направлении на точку по трассе, проходящей также через точки , .

Посылают импульс из точки в направлении на точку по трассе, проходящей также через точку .

Посылают импульс из точки в направлении на точку по трассе, проходящей также через точку .

Посылают импульс из точки в направлении на точку по трассе, проходящей также через точки , .

В точках посылки осуществляют прием эхо-сигналов от отрезков образованных областей зондирования атмосферы.

Принимают сигналы в точке от отрезков, ограниченных точками: , и , . Принимают сигналы в точке от отрезков, ограниченных точками: , и , . Принимают сигналы в точке от отрезков, ограниченных точками: , и , . Принятые эхо-сигналы, скорректированные на геометрический фактор лидара, накапливают. Результат пропорционален:

b1 на отрезке, ограниченном точками , ;

b2 на отрезке, ограниченном точками , ;

b3 на отрезке, ограниченном точками , ;

b4 на отрезке, ограниченном точками , ;

b5 на отрезке, ограниченном точками , ;

b6 на отрезке, ограниченном точками , .

Величину z1, а следовательно, и коэффициент ослабления, а также величину m находят на основании общего подхода (2) из двух систем уравнений:

Повторяют процедуру определения величин z1, m. Осуществляют дополнительно посылку световых импульсов в направлении дополнительной области зондирования, которая ограничена точками (i=1, 6, 7).

Посылают импульс из точки в направлении на точку по трассе, проходящей также через точку . Точка расположена на участке, ограниченном точками: , , точка расположена на отрезке, ограниченном точками: , . Принимают сигналы в точке от отрезка, ограниченного точками: , . Принимают сигналы в точке от отрезка, ограниченного точками: , . Принимают сигналы в точке от отрезка, ограниченного точками: , . Принятые эхо-сигналы накапливают. Результат пропорционален:

b7 на отрезке, ограниченном точками , ;

b8 на отрезке, ограниченном точками , ;

b9 на отрезке, ограниченном точками , .

Величину z1, а также величину m находят из двух систем уравнений: системы (5) и системы

Повторяют процедуру до задаваемого уровня совпадения двух последовательно полученных результатов определения величины z1. По этой величине, используя формулы (1) и (3), находят коэффициент ослабления, которым определяется прозрачность атмосферы. При этом учитывается, что параметр D сокращается и выпадает из соотношения, определяющего коэффициент ослабления, как это показано в работе [3] (формула (8)).

Указанные существенные отличия позволяют повысить точность из-за учета возможной неоднородности атмосферы в пределах исследуемого объема, включая изменчивость величины m.

Физические принципы, на которых основаны измерения предлагаемым способом, состоят в том, что измеренные мощности эхо-сигналов связаны с оптическими характеристиками атмосферы известным лидарным уравнением. На основе этого уравнения разработаны новые, ранее не использовавшиеся расчетные алгоритмы для определения оптических характеристик. В этих алгоритмах корректно учтены влияющие факторы.

Пример реализации способа.

В пунктах , и , находящихся на одной прямой, размещают лидары 1, 2 и 3 типа ЛИВО. Излучение зондирующих импульсов осуществляется на рабочей длине волны 0,69 мкм в окне прозрачности водяного пара. Энергия в импульсе 0.07-0.1 Дж. Длительность импульса 30 нс. Расстояние между лидарами 1, 2 и 2, 3 не превышает 0.5 км. Зондирование атмосферы осуществляется в вертикальной плоскости, проходящей через линию размещения лидаров. Осуществляют посылку световых импульсов лидаром 1 по трассе, проходящей через точки , , лидаром 2 - через точки , ; лидаром 3 - через точки , с образованием треугольной области зондирования. Осуществляют посылку световых импульсов лидаром 1 по трассе, проходящей через точки , , лидаром 2 - через точки , , лидаром 3 - через точки , с образованием дополнительной треугольной области зондирования. Эти две треугольные области зондирования имеют общий рассеивающий объем . Осуществляют прием эхо-сигналов в точках посылки, их накопление на отрезках, ограниченных точками , ; , ; …, . По расчетным формулам находят коэффициенты обратного рассеяния и ослабления в точке и степень связи между ними.

Осуществляют посылку световых импульсов лидаром 2 по трассе, проходящей через точки , ; тогда область с вершинами , , , уменьшенная область с вершинами , , ; область с вершинами , , - уменьшенная область с вершинами , , .

Измерения заканчивают полностью после того, как результаты, полученные по расчетным формулам, перестают отличаться друг от друга в пределах величины заданной погрешности, в данном случае ±30%.

Обоснование существенности признаков. Как следует из описания, каждый из указанных признаков необходим, а вся их неразрывная совокупность достаточна для достижения технического результата - повышения точности измерений за счет более корректного учета влияющих факторов.

Обоснование изобретательского уровня. Заявляемый способ был проанализирован на соответствие критерию «изобретательский уровень». Для этого были исследованы близкие признаки известных решений как в данной, так и в смежных областях техники. Так, по источнику [4] был выявлен признак приема эхо-сигналов от общего рассеивающего объема атмосферы. Однако в этом известном решении [4] общий рассеивающий объем атмосферы принадлежит трассам зондирования, проходящим не менее чем по трем неколлинеарным направлениям. Именно благодаря такому осуществлению посылок в атмосферу световых импульсов из точек, разнесенных в пространстве, достигается технический результат способа [4]. В заявляемом же способе общий рассеивающий объем атмосферы принадлежит двум областям зондирования, образованным отрезками трасс между точками их пересечения. Общий для трасс рассеивающий объем атмосферы, например, на чертеже, может не быть общим для областей объемом, например, для областей, ограниченных точками (i=1, 2, 3) и ограниченных точками (i=1, 4, 5).

Таким образом, по мнению заявителя и авторов, предлагаемое техническое решение способа определения прозрачности атмосферы в своей неразрывной совокупности признаков является новым, явным образом не следует из уровня техники и позволяет получить важный технический результат - повышение точности определений за счет более корректного учета влияющих факторов.

Источники информации

1. А.С. №390401. Способ определения прозрачности атмосферы / Ковалев В.А. - Бюллетень изобретений №30, 1973.

2. А.С. №1597815 А1. МКИ 5 G01W 1/00. Способ определения показателя ослабления атмосферы // Егоров А.Д., Емельянова В.Н. - Опубл. 07.10.90, Бюллетень изобретений №37 (прототип).

3. Егоров А.Д., Потапова И.А. Лидарные исследования прозрачности атмосферы // Труды НИЦ ДЗА (филиал ГГО), 2004, вып.5 (Тр. ГГО им. А.И.Воейкова, вып.553), с.131-142.

4. А.С. №966639. Способ определения оптических характеристик рассеивающих сред / Сергеев Н.М., Кугейко М.М. Ашкинадзе Д.А. Бюллетень изобретений №38, 1982.

Способ определения прозрачности атмосферы, при котором осуществляют посылку в атмосферу световых импульсов из точек, разнесенных в пространстве, по пересекающимся трассам зондирования, проходящим не менее чем по трем неколлинеарным направлениям, с образованием области зондирования отрезками между точками их пересечения, осуществляют прием эхо-сигналов в точках посылки, а прозрачность атмосферы определяют по мощностям этих сигналов с использованием расчетных формул, отличающийся тем, что осуществляют посылку в атмосферу световых импульсов по дополнительным трассам с образованием дополнительной области зондирования, имеющей общий рассеивающий объем с первой областью, накапливают эхо-сигналы на отрезках, образующих области, определяют характеристики атмосферы по эхо-сигналам, принятым из точек пересечения трасс и накопленным, уменьшают обе области зондирования и повторяют процедуру до задаваемого уровня совпадения двух последовательно полученных результатов определения характеристик атмосферы, по которым находят ее прозрачность.
Источник поступления информации: Роспатент

Показаны записи 1-1 из 1.
10.07.2019
№219.017.ac90

Способ определения прозрачности атмосферы

Изобретение относится к области метеорологии и может быть использовано для определения прозрачности атмосферы. Сущность: формируют зондирующие посылки световых импульсов в равнонаправленных коллинеарных направлениях из пунктов расположения двух приемопередатчиков излучения, например лидаров,...
Тип: Изобретение
Номер охранного документа: 0002395106
Дата охранного документа: 20.07.2010
Показаны записи 1-10 из 15.
27.01.2013
№216.012.20ee

Способ оптического зондирования неоднородной атмосферы

Изобретение относится к области метеорологии, а более конкретно к способам определения характеристик загрязнения атмосферы, и может использоваться, например, для измерения прозрачности атмосферы лидарными системами при определении аэрозольного загрязнения воздуха. Задача, на которую направлено...
Тип: Изобретение
Номер охранного документа: 0002473931
Дата охранного документа: 27.01.2013
10.10.2013
№216.012.7463

Способ дистанционного оптического зондирования слабо рассеивающей атмосферы

Изобретение относится к области метеорологии, а более конкретно - к способам определения характеристик слабо рассеивающей атмосферы. Согласно способу осуществляют посылку в атмосферу световых импульсов из точек, разнесенных в пространстве, по пересекающимся трассам зондирования, проходящим по...
Тип: Изобретение
Номер охранного документа: 0002495452
Дата охранного документа: 10.10.2013
10.01.2015
№216.013.19c8

Способ многопозиционного определения оптических характеристик атмосферы

Изобретение относится к области метеорологии, а более конкретно к способам определения характеристик загрязнения атмосферы, и может быть использовано для измерения прозрачности неоднородной атмосферы лидарными системами при определении аэрозольного загрязнения воздуха. Согласно способу в...
Тип: Изобретение
Номер охранного документа: 0002538028
Дата охранного документа: 10.01.2015
10.04.2015
№216.013.3e72

Способ дистанционного зондирования неоднородной атмосферы

Изобретение относится к области метеорологии и может быть использовано для определения прозрачности атмосферы. Сущность: осуществляют посылку в неоднородную атмосферу световых импульсов малой длительности. Принимают эхо-сигналы. Обеспечивают коррекцию эхо-сигналов на геометрический фактор...
Тип: Изобретение
Номер охранного документа: 0002547474
Дата охранного документа: 10.04.2015
20.08.2015
№216.013.6f28

Способ дистанционного определения прозрачности участка неоднородной атмосферы

Изобретение относится к области метеорологии и может быть использовано для определения прозрачности атмосферы. Сущность: осуществляют посылку в неоднородную атмосферу световых импульсов малой длительности. Принимают эхо-сигналы. Обеспечивают коррекцию эхо-сигналов на геометрический фактор...
Тип: Изобретение
Номер охранного документа: 0002560026
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.6f9c

Способ аспирационной оптической спектрометрии дисперсной среды

Изобретение относится к области метеорологии, а более конкретно - к способам определения характеристик загрязнения атмосферы, и может использоваться, например, для измерения размеров частиц атмосферного аэрозоля. Поляризованное излучение направляют на область, не пропускающую направленное...
Тип: Изобретение
Номер охранного документа: 0002560142
Дата охранного документа: 20.08.2015
25.08.2017
№217.015.a34e

Способ определения дисперсного состава аэрозоля

Изобретение относится к области метеорологии и касается способа определения дисперсионного состава аэрозоля. При проведении измерений поляризованное излучение разделяют и одну из частей отклоняют и измеряют. Другую часть поляризованного излучения направляют на области, не пропускающие...
Тип: Изобретение
Номер охранного документа: 0002607050
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.c5ca

Способ аспирационной оптической спектрометрии аэрозоля

Изобретение относится к области метеорологии. Способ аспирационной оптической спектрометрии аэрозоля включает направление поляризованного излучения на задерживающую область, перед которой его экранируют. Направленное излучение фокусируют в счетном объеме, находящемся перед экраном, и измеряют...
Тип: Изобретение
Номер охранного документа: 0002618597
Дата охранного документа: 04.05.2017
26.08.2017
№217.015.dddf

Способ дистанционного оптического зондирования неоднородной атмосферы

Способ дистанционного оптического зондирования неоднородной атмосферы содержит этап посылки в атмосферу световых импульсов из точек, разнесенных в пространстве, по трассам, пересекающимся в заданной точке, и по дополнительным трассам, пересекающим эти трассы с образованием областей...
Тип: Изобретение
Номер охранного документа: 0002624834
Дата охранного документа: 07.07.2017
10.05.2018
№218.016.3ba6

Способ определения содержания витамина к в продуктах растительного происхождения

Изобретение относится к способам количественного определения биологически активных веществ в растительном сырье и получаемых на его основе продуктах питания, а именно к способу определения содержания витамина К в продуктах растительного происхождения, и может быть использовано в химической,...
Тип: Изобретение
Номер охранного документа: 0002647451
Дата охранного документа: 15.03.2018
+ добавить свой РИД