×
10.04.2019
219.017.07ff

Результат интеллектуальной деятельности: СПОСОБ СОЗДАНИЯ НАНОЧАСТИЦ В БИОЦЕМЕНТЕ - ГИДРОКСИЛАПАТИТЕ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области медицины. Описан гидроксилапатит с частицами наноразмеров, который может быть использован в качестве костезамещающего материала при осуществлении различного рода операций, связанных с поломкой или утратой больным кости или ее частей. Изобретение направлено на создание в готовых изделиях гидроксилапатита частиц наноразмеров без применения термообработки. Указанный результат достигается тем, что готовые изделия при комнатной температуре подвергают воздействию тормозного излучения, генерируемого в гидроксилапатите быстрыми электронами, испускаемыми радиоизотопным источником Sr+Y, в интервале поглощенных доз излучения от 3,3 до 66 рад. Результат изобретения это уменьшение хрупкости костезамещающего материала. 1 табл.

Изобретение относится к области медицины. Гидроксилапатит с частицами наноразмеров может быть использован в качестве костезамещающего материала при осуществлении различного рода операций, связанных с поломкой или утратой больным кости или ее частей.

Наиболее близким к заявляемому способу является способ создания в гидроксилапатите частиц наноразмеров [1]. Недостатками прототипа являются: во-первых, использование микроволнового излучения, которое позволяет получить частицы со средним размером 220 нм, не являющиеся наночастицами, во-вторых, необходимость термообработки для получения частиц наноразмеров, в-третьих, получение наночастиц в исходном материале, а не в готовых изделиях.

Заявляемое изобретение направлено на создание в готовых изделиях гидроксилапатита частиц наноразмеров без применения термообработки.

Указанный результат достигается тем, что готовые изделия при комнатной температуре подвергают воздействию тормозного излучения, генерируемого в гидроксилапатите быстрыми электронами, испускаемыми радиоизотопным источником 90Sr+90Y, в интервале поглощенных доз излучения от 3,3 до 66 рад.

Отличительными признаками заявляемого изобретения являются:

- облучение готовых изделий, выполненных из гидроксилапатита;

- облучение готовых изделий при комнатной температуре;

- использование радиоизотопного источника быстрых электронов 90Sr+90Y;

- значение нижнего предела поглощенной дозы излучения, равное 3,3 рад;

- значение верхнего предела поглощенной дозы излучения, равное 66 рад.

Экспериментально установлено, что средние размеры блоков (кристаллитов) гидроксилапатита превышают 100 нм, если значения поглощенной дозы излучения менее 3,3 рад.

Экспериментально установлено, что средние размеры блоков гидроксилапатита превышают 100 нм, если значения поглощенной дозы излучения более 66 рад.

Экспериментально установлено, что средние размеры блоков гидроксилапатита составляют менее 100 нм, если значения поглощенной дозы излучения лежат в интервале 3,3-66 рад.

Сущность заявляемого изобретения поясняется нижеследующим описанием.

В качестве эмиттера электронов использовался радиоизотопный источник 90Sr+90Y, содержащий смесь радиоактивных изотопов стронция 90 и иттрия 90 [2]. Этот источник электронов обладает рядом преимуществ по сравнению с обычно используемыми ускорителями электронов, главными из которых являются: отсутствие потребления электроэнергии, большой срок службы, малые габариты и простота эксплуатации. Энергетический спектр электронов источника Sr90Y90 весьма широк: он простирается от практически нулевых энергий до Е0=2,27 МэВ. Кривая распределения бета-частиц по энергиям имеет максимум Е≈1/3Е0=0,76 МэВ.

Средние размеры блоков (кристаллитов)) определялись методом рентгеновской дифрактометрии [3] при помощи автоматизированного рентгеновского дифрактометра марки "ДРОН-4". Использовалось излучение CoKα, монохроматизированное отражением от пирографита на дифрагированном пучке. Применялось шаговое сканирование: шаг 0,1 угл. град, время регистрации τ в точке 10 с, интервал 30-100 (в брегговских углах 2θ).

Для определения среднего размера блоков использовались программы OUTSET и PROFILE [4], а также аналитический метод [5].

Программа PROFILE основана на мозаичной модели кристалла [3]. Расчет размеров мозаичных блоков связан с некоторыми ограничениями, обусловленными принципиальными возможностями метода аппроксимации [3]. Так, этот метод не способен определить размер блоков мозаики, если он превышает 250 нм [6].

Проверка достижения заявленного технического результата осуществлялась следующим образом. Из гидроксилапатита Са5[(PO4)3ОН] [7] изготавливались образцы, имеющие форму цилиндров ⌀ 9 мм и высотой ≈9 мм. С одной из плоских поверхностей они облучались быстрыми электронами от радиоизотопного источника 90Sr+90Y. Один из образцов, находящийся в исходном состоянии, и облученные образцы исследовались методом рентгеновской дифрактометрии. Исследования облученных образцов проводилось на плоских поверхностях, противоположных облученным электронами, т.е. на эти поверхности действовало только тормозное излучение, генерируемое электронами.

В таблице приведены результаты экспериментов.

Средние размеры блоков мозаики в образцах гидроксилапатита, определенные при помощи двух методов расчета на поверхностях, противоположных облученным электронами

Dпогл.γ,рад D, нм
Метод расчета
PROFILE [4] Аналитический метод [5]
0 227±59 144,2±63,4
3,3+0,7 116±21 75,2±23,2
6,6+0,7 96±10 64,7±13,0
13,2±0,7 49±2 36,9±5,6
66±1,3 112±24 74,5±26,6
660±1,3 220±61 138,4±63,3

Из таблицы очевидно, что в интервале поглощенных доз излучения от 3,3 до 66 рад значение средних размеров блоков (кристаллитов) D составляет менее 100 нм, причем при Dпогл=13,2 рад достигается минимальный средний

размер блоков. За пределами интервала 3,3-66 рад значения D превосходят 100 нм. Согласно общепринятому в научной литературе определению [8], к наночастицам относятся частицы, размер которых не превышает 100 нм. Таким образом, только в интервале поглощенных доз излучения 3,3-66 рад при облучении образцов гидроксилапатита тормозным излучением образуются наночастицы.

Заметим, что при анализе результатов, помещенных в табл.1, мы пользуемся данными, полученными при помощи метода [5], а не метода [4], поскольку метод [5] более адекватно отражает реальность [5].

Заметим также, что, хотя при рентгеновском измерении образцу гидроксилапатита передается поглощенная доза излучения, равная 16,1±0,5 кГр, что на 3-5 порядков больше доз, представленных в табл.1, она не сказывается на результатах измерения.

Образцы гидроксилапатита с минимальными размерами блоков (кристаллитов) обладают уникальными механическими характеристиками:

модуль упругости уменьшается в 6 раз, деформация сжатия при максимальном механическом напряжении возрастает в 2 раза, предельная деформация сжатия - ≈ в 1,75 раза по сравнению с образцами, находящимися в исходном состоянии.

Источники информации

1. Заявка США US 2005/226939 А1 от 13.10.2005. INt.Cl7 A61E 5/055, A61К 33/42; US C1 424/602, 423/308 "Production of nano-sized hydroxyapatite particles" Заявитель National University of Singapore (Прототип).

2. Яворский Б.М., Детлаф А.А. Справочник по физике. // М.: Физматгиз, 1963-848 с.

3. Горелик С.С., Расторгуев Л.Н., Скаков Ю.А. Рентгенографический и электронно-оптический анализ. Изд. 4-е. - М.: МИСиС, 2002. - 360 с.

4. Шелехов Е.В., Свиридова Т.А. Программы для рентгеновского анализа поликристаллов. // Металловедение и термическая обработка металлов. - 2000. - №8. - С.16-19.

5. Коршунов А.Б. Аналитический метод определения параметров тонкой кристаллической структуры по уширению рентгеновских линий. // Заводская лаборатория. Диагностика материалов. - 2004. - Т.70, №2. - С.27-32.

6. Кристаллография, рентгенография и электронная микроскопия. / Я.С.Уманский, Ю.А.Скаков, А.Н.Иванов, Л.Н.Расторгуев. - М.: Металлургия, 1982. - 632 с.

7. Получение гидроксилапатита гидролизом α-Са3(PO4)2 / Синицына О.В., Вересов А.Г., Ковалева Е.С. и др. // Известия Академии Наук. Серия химическая, 2005, №1. - С.78-85.

8. Гуткин М.Ю., Овидько И.А. Предел текучести и пластическая деформация нанокристаллических материалов. // Успехи механики. - 2003. - №1. - С.68-125.

Способ создания наночастиц в изделии из гидроксилапатита посредством радиационной обработки, заключающийся в том, что изделие при комнатной температуре подвергают воздействию тормозного излучения, генерируемого быстрыми электронами, испускаемыми радиоизотопным источником Sr+Y, в интервале поглощенных доз излучения от 3,3 до 66 рад.
Источник поступления информации: Роспатент

Показаны записи 1-1 из 1.
19.04.2019
№219.017.3299

Нанобиоцемент и способ его получения в готовых изделиях из гидроксилапатита

Изобретение относится к области медицины. Описан нанобиоцемент, который может быть использован в качестве костезамещающего материала при осуществлении различного рода операций, связанных с поломкой или утратой больным кости или ее частей. В готовых изделиях гидроксилапатита, облученных быстрыми...
Тип: Изобретение
Номер охранного документа: 0002409393
Дата охранного документа: 20.01.2011
Показаны записи 11-20 из 68.
10.01.2015
№216.013.1845

Применение гидроксида кобальта в качестве износостойкого покрытия

Изобретение относится к области металлургии, преимущественно к модификации изделий из твердых сплавов, применяемой для холодной и горячей механической обработки металлов и сплавов, например обработки резанием. Предложено применение гидроксида кобальта в качестве износостойкого покрытия,...
Тип: Изобретение
Номер охранного документа: 0002537641
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1b5e

Способ создания покрытия

Изобретение относится к области металлургии, преимущественно к способам модификации изделий из твердых сплавов или сталей, применяемых для холодной и горячей механической обработки металлов и сплавов, например обработки резанием. Предложен способ формирования износостойкого покрытия из...
Тип: Изобретение
Номер охранного документа: 0002538434
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1c09

Способ получения нитевидных кристаллов активного материала положительного электрода литий-воздушного аккумулятора

Изобретение относится к активному материалу положительного электрода литий-воздушного аккумулятора в виде нитевидных кристаллов состава KMnO(x=0,1-0,15) длиной от 0,1 мкм до 2 мм и диаметром от 20 до 30 нм для обратимого восстановления кислорода на положительном электроде. А также относится к...
Тип: Изобретение
Номер охранного документа: 0002538605
Дата охранного документа: 10.01.2015
27.01.2015
№216.013.2052

Твердосплавная кобальтсодержащая пластина съемной накладки для армирования шнеков центрифуг

Изобретение относится к области металлургии, преимущественно к способам модификации изделий из твердых сплавов, применяемых для холодной и горячей механической обработки неметаллов, металлов и металлических сплавов, например шнеков армированных твердосплавными пластинами центрифугальных машин,...
Тип: Изобретение
Номер охранного документа: 0002539722
Дата охранного документа: 27.01.2015
27.01.2015
№216.013.2066

Шар из кобальтсодержащего твердого сплава для шаровых и вибрационных мельниц

Изобретение относится к области горного дела и металлургии, преимущественно к шарам из твердосплавного кобальтсодержащего материала для шаровых и вибрационных мельниц. Шар снабжен износостойким приповерхностным слоем, содержащим соединения кобальта с водородом и кислородом. В качестве указанных...
Тип: Изобретение
Номер охранного документа: 0002539742
Дата охранного документа: 27.01.2015
10.04.2015
№216.013.389d

Способ волочения труб (варианты)

Группа изобретений относится к области производства труб волочением на монолитной самоустанавливающейся оправке и может быть использована при изготовлении труб из различных материалов, предназначенных для машиностроения. Способ включает формирование головки на трубной заготовке, нанесение...
Тип: Изобретение
Номер охранного документа: 0002545981
Дата охранного документа: 10.04.2015
27.04.2015
№216.013.4761

Конусная дробилка

Изобретение относится к устройствам для дробления и измельчения различных материалов и может быть использовано в горно-обогатительной, строительной, дорожной и других отраслях промышленности. Конусная дробилка содержит корпус 3 с дебалансными вибраторами 5 и коническим кольцом 4, внутри...
Тип: Изобретение
Номер охранного документа: 0002549777
Дата охранного документа: 27.04.2015
20.05.2015
№216.013.4b9d

Штамп для морфологической модификации полимеров, способ его получения и способ формирования супергидрофильных и супергидрофобных самоочищающихся покрытий с его использованием

Изобретение относится к области нанотехнологий и касается штампа для морфологической модификации полимеров, способа его получения и способа формирования супергидрофильных и супергидрофобных самоочищающихся покрытий с его использованием. Штамп представляет собой пленку пористого анодного оксида...
Тип: Изобретение
Номер охранного документа: 0002550871
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4d73

Твердосплавное сверло из кобальтсодержащего материала для перфоратора с износостойким приповерхностным слоем

Изобретение относится к области металлургии и горного дела, преимущественно к способам модификации изделий из твердых сплавов, применяемых в горном деле и при холодной и горячей механической обработке металлов и металлических сплавов, например, резанием. Сверло имеет износостойкий...
Тип: Изобретение
Номер охранного документа: 0002551341
Дата охранного документа: 20.05.2015
27.06.2015
№216.013.5a11

Дифракционный способ измерения угловых перемещений и устройство для его осуществления

Изобретение относится к области измерительной техники, а именно к оптическим устройствам для измерения малых угловых перемещений объекта. Дифракционный способ измерения угловых перемещений состоит в том, что объект с установленным на нем отражателем освещают излучением лазера и направляют...
Тип: Изобретение
Номер охранного документа: 0002554598
Дата охранного документа: 27.06.2015
+ добавить свой РИД