×
10.04.2019
219.017.05ed

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ФТОРИДОВ МЕТАЛЛОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к нанотехнологии по разработке оптически прозрачной нанокерамики на основе простых и сложных фторидов. Изобретение касается способа получения фторидов металлов, заключающегося во взаимодействии газообразного фтористого водорода с соединениями щелочных, щелочноземельных и редкоземельных металлов в форме порошков микронных размеров с получением нанопорошков фторидов металлов. Гидрофторирование проводят при температуре 150-200°С в течение 1-2 часов. В качестве соединений используют гидриды, нитраты и оксиды вышеуказанных металлов. Заявленный способ позволяет получить тонкие порошки фторидов металлов. Также заявленный способ возможно проводить при более низкой температуре по сравнению с известными способами, и с меньшим расходом фтористого водорода. 4 з.п. ф-лы, 2 табл.

Изобретение относится к нанотехнологии по разработке оптически прозрачной нанокерамики на основе простых и сложных фторидов с низкими (10-2-10-3 см-1) оптическими потерями для создания на ее основе активных и пассивных элементов фотоники.

Для производства нанокерамики необходимо иметь нанопорошки фторидов металлов, активированных редкоземельными элементами. Элементы оптической керамики должны обладать повышенной, по сравнению с монокристаллами соответствующих соединений, лучевой прочностью, спектром пропускания от 0,2 до 6 мкм и оптическими потерями не хуже 10-2 см-1 на длине волны генерации.

Также общеизвестно, что технология получения оптической керамики по сравнению с выращиванием монокристаллических материалов для оптических целей менее трудоемка и экономически более выгодна.

В настоящее время порошкообразные неорганические фториды получают различными методами, которые условно можно подразделить на две основные группы. Первая объединяет методы, основанные на осаждении фторидов из растворимых солей соответствующих металлов плавиковой кислотой (водные методы) с последующим термическим разложением полученных гидратированных фторидов до безводного состояния. Ко второй группе относятся методы, основанные на фторировании (HF, F2 и другими фторирующими агентами) при повышенных температурах различных соединений (оксидов, гидроксидов, карбонатов, оксалатов и т.д.) соответствующих металлов. Всем методам присущи свои достоинства и недостатки.

Методы, относящиеся ко второй группе, обладают по сравнению с водным рядом существенных преимуществ:

- полученные фториды являются безводными;

- исключаются операции осаждения, отмывки, декантации, фильтрации фторидов, их сушки и прокаливания;

- легче организовать непрерывные полностью автоматизированные процессы;

- отпадает необходимость переработки маточных растворов;

- занимают меньшие производственные площади.

Только применение безводных процессов позволяет получать фториды с минимальным содержанием кислорода в них. Исходным материалом служат оксиды соответствующих металлов, которые получают термическим разложением карбонатов, гидроксидов, оксалатов и т.д.

При получении безводных РЗ-фторидов сухим методом используют достаточно высокие температуры 600-700°С и время обработки оксидов фтористым водородом составляет 8-10 ч. Расход HF достигает 200-250% к стехиометрии (Спеддинг Ф., Даан А. Получение иттрия и некоторых тяжелых РЗМ. // Редкоземельные металлы. - М.: Изд-во иностр. лит., 1957. с.325-328.) При этом отмечены коррозионные проблемы, трудности при выборе конструкционных материалов для оборудования.

Температурные условия и время процесса могут быть значительно снижены за счет подготовки исходного сырья (Маширев В.П. и др. Разработка пирометаллургических методов и оборудования для получения безводных фторидов металлов. // Докл. на 9-м Международном конгрессе по химическим процессам и оборудованию. ХИСА-87. Прага, 1987, с.46). Общеизвестно, что реакционная способность или активность твердофазных реагентов в большей степени зависит от состояния кристаллической решетки, обусловленного, в частности, способом приготовления или обработки реагентов.

Одним из наиболее распространенных методов получения активных порошкообразных препаратов является термическое разложение исходных веществ.

Известны методы получения фторидов РЗЭ и щелочноземельных элементов путем воздействии газообразным фтористым водородом на оксиды, полученные термическим разложением исходных веществ (патент №2104934, МКИ С01F 3/00, патент №2107029, МКИ C01F 17/00). Недостатком этих методов является невозможность получения тонких порошков.

Наиболее близким по существу является способ получения фторидов редкоземельных металлов и иттрия (патент №2038310, C01F 17/10), заключающийся в том, что гидрофторированию подвергали оксиды, оксалаты, карбонаты и гидроксиды при температуре 380-550°С.

Недостатком данного способа также является невозможность получения тонких порошков.

Техническим результатом предложенного изобретения является получение нанопорошков фторидов щелочных, щелочноземельных и редкоземельных элементов.

Технический результат достигается тем, что нанопорошки фторидов щелочных, щелочноземельных и редкоземельных элементов получают воздействием фтористого водорода на порошки их соединений микронных размеров. В качестве соединений использовали оксид, гидрид и нитрат вышеуказанных элементов.

Гидрофторирование проводили при температуре 150-250°С в течение 1-2 часов. Расход фтористого водорода находится в пределах 120-150% к стехиометрии.

Пример 1. Безводные образцы LiF были получены из гидрида лития. Гидрид лития представляет собой бесцветные кристаллы с кубической гранецентрированной решеткой (а=0,4083 нм). При измельчении порошок приобретает белый цвет. Взаимодействию с HF был подвергнут порошок гидрида гранулометрического состава, представленного ниже (Табл.1). Температура гидрофторирования была 150°С.

Табл.1
радиус, мкм<22-44-66-88-1010-20>20
мас.%26172232525

Время взаимодействия образцов порошка гидрида лития с фтористым водородом составляло 45 мин при расходе HF до 125% к стехиометрии. Степень фторирования составила 99,9%. Рентгенофазовый анализ показал только фазу LiF с кубической решеткой (а=0,403 нм). Средний радиус размера частиц был порядка 20 нм.

Пример 2. Порошки Y(NO3)3×Н2О были переведены взаимодействием с газообразным фтористым водородом в YF3 при температурах 200°С и при избытке HF 25% к стехиометрии. Время взаимодействия - 60 мин. Степень фторирования порошков YF3 была в пределах 99,91-99,98%. Рентгенофазовый анализ показал, что образцы содержат одну фазу трифторида иттрия с ромбической решеткой типа FeC (а=0,637 нм, в=0.686 нм, с=0,439, z=4, пространственная группа Pnma; рентгеновская плотность 5,069 г/см3). Образцы YF3 имели площадь удельной поверхности в пределах 22-65 м2/г и средний диаметр размера частиц в пределах 30-70 нм.

Пример 3. Порошки Nd(NO3)3 также были переведены взаимодействием с газообразным фтористым водородом в NdF3 при температуре 250°С и при избытке HF - 50% к стехиометрии. Время взаимодействия - 120 мин. Степень фторирования порошков NdF3 была в пределах 99,83-99,93%. Площадь удельной поверхности находилась в пределах 8-35 м2/г. Средний диаметр частиц составлял 40-100 нм. Образцы имеют тригональную решетку (а=0,702 нм, с=720 нм).

Пример 4. В качестве исходного материала для получения порошка CeF3 были использованы образцы оксида церия, полученные термическим разложением кислородсодержащих соединений церия. Гидрофторирование образцов проводили при температуре 150°С с избытком фтористого водорода 15-25% к стехиометрии. Степень фторирования образцов представлен в табл.2.

Табл.2
№ образцаИсх. веществоТемпература гидрофторированияВремя процесса, минСтепень фторирования
1Оксид церия, полученный из нитрата150120 мин95,2
25097,0
2Оксид церия, полученный из карбоната150120 мин94,5
25098,5
3Оксид церия, полученный из гидроксида150120 мин95,3
25098,8

Рентгенофазовый анализ полностью профторированных образцов показал наличие только гексагональной структуры (а=0,711 нм, с=0,727 нм) с расчетной плотностью 6,13 г/см3. Площадь удельной поверхности образцов в пределах 13-47 м2/г.

Пример 5. Нанопорошки CaF2 были синтезированы взаимодействием газообразного HF с СаО, полученным из Са(ОН)3 термическим разложением при температурах до 450°С, при его расходе в пределах 140% к стехиометрии. Температура фторирования была 250°С. Степень фторирования находилась в пределах 99,91-100%. Время взаимодействия составляло 90 мин. Рентгенофазовый анализ указал, что образцы представляют одну фазу с кубической решеткой (а=0,546 нм) с плотностью 3,18 г/см3. Образцы имели площадь удельной поверхности в пределах 12-46 м2/г. Диаметр частиц был равен порядка 50 нм.

Указанные выше примеры показали, что нанопорошки безводных фторидов могут быть синтезированы из оксидов, гидридов и нитратов этих элементов при температуре гидрофторирования 150-250°С. Средний диаметр размеров порошков колеблется в пределах до 100 нм. Порошки имеют хорошо развитую площадь удельной поверхности. Расход HF для синтеза фторидов находился в пределах 125-150% к стехиометрии.

1.Способполученияфторидовметалловдействиемгазообразногофтористоговодороданаихсоединенияпринагревании,отличающийсятем,чтопривзаимодействиигазообразногофтористоговодородаспорошкамисоединенийщелочных,щелочноземельныхиредкоземельныхметалловмикронныхразмеровполучаютнанопорошкифторидовметаллов.12.Способпоп.1,отличающийсятем,чтогидрофторированиепроводятпритемпературе150-250°Свтечение1-2ч.23.Способпоп.1,отличающийсятем,чтовкачествесоединенийиспользовалигидридыщелочных,щелочноземельныхиредкоземельныхэлементов.34.Способпоп.1,отличающийсятем,чтовкачествесоединенийиспользовалинитратыщелочных,щелочноземельныхиредкоземельныхэлементов45.Способпоп.1,отличающийсятем,чтовкачествесоединенийиспользовалиоксидыщелочных,щелочноземельныхиредкоземельныхэлементов.5
Источник поступления информации: Роспатент

Показаны записи 1-5 из 5.
23.02.2019
№219.016.c75f

Способ получения фторбериллата аммония

Изобретение может быть использовано для получения фторбериллата аммония в производстве фторида бериллия. Способ получения фторбериллата аммония включает воздействие на бериллийсодержащее сырье водным раствором бифторида аммония при мольном отношении фтора к бериллию, равном 10÷15, и рН 7,5÷9,0...
Тип: Изобретение
Номер охранного документа: 0002310605
Дата охранного документа: 20.11.2007
17.04.2019
№219.017.15cc

Устройство для регистрации ионизирующего излучения

Предложенное изобретение относится к области ядерного приборостроения и может быть использовано при поиске, разведке и обогащении полезных ископаемых, в медицине, дефектоскопии и других областях, где используется регистрация ионизирующего излучения. Техническим результатом от реализации данного...
Тип: Изобретение
Номер охранного документа: 0002312373
Дата охранного документа: 10.12.2007
17.04.2019
№219.017.1617

Способ покусковой сепарации минерального сырья

Изобретение относится к области обогащения полезных ископаемых и, в частности, его можно использовать в методах покусковой сепарации как радиоактивных, так и нерадиоактивных руд. Техническим результатом изобретения является оптимизация условий измерения для всех рудных кусков независимо от их...
Тип: Изобретение
Номер охранного документа: 0002302906
Дата охранного документа: 20.07.2007
09.05.2019
№219.017.4c77

Способ получения гетерогенных ионообменных мембран

Изобретение относится к технологии получения армированных мембран и может быть применено в химической промышленности - в процессе электродиализа и электролиза. Согласно способу получения гетерогенной ионообменной мембраны получают пленку путем вальцевания смеси ионита и полимерного связующего -...
Тип: Изобретение
Номер охранного документа: 0002314322
Дата охранного документа: 10.01.2008
24.05.2019
№219.017.5fb0

Собиратель для флотации флюоритовых руд

Изобретение относится к обогащению полезных ископаемых, в частности к флотации флюоритовых руд, и предназначено для промышленного использования на обогатительных фабриках. Позволяет сократить число перечисток, осуществить процесс флотации в холодной пульпе, существенно упростить технологическую...
Тип: Изобретение
Номер охранного документа: 0002319550
Дата охранного документа: 20.03.2008
Показаны записи 11-20 из 53.
27.04.2015
№216.013.4689

Способ визуализации двухмикронного лазерного излучения в видимый свет

Изобретение относится к области оптики и касается способа визуализации двухмикронного лазерного излучения. Визуализация осуществляется путем облучения двухмикронным лазерным излучением образца, имеющего спектральную полосу поглощения, близкую к спектральной полосе лазерного излучения. В...
Тип: Изобретение
Номер охранного документа: 0002549561
Дата охранного документа: 27.04.2015
27.05.2015
№216.013.4e19

Способ получения моносилана и устройство для его осуществления

Изобретение может быть использовано в области химической технологии. Способ получения моносилана включает взаимодействие гидрида кальция с тетрафторидом кремния в эвтектическом расплаве хлоридов лития и калия при 360-390°C и очистку моносилана. Устройство для получения моносилана включает...
Тип: Изобретение
Номер охранного документа: 0002551511
Дата охранного документа: 27.05.2015
10.06.2015
№216.013.5530

Устройство для осуществления трансмиокардиальной лазерной реваскуляризации

Изобретение относится к области клинической лазерной медицины и может быть использовано при проведении трансмиокардиальной лазерной реваскуляризации миокарда (ТМЛР), как самостоятельно, так и в сочетании с аортокоронарным шунтированием (АКШ). Технический результат заключается в повышении...
Тип: Изобретение
Номер охранного документа: 0002553329
Дата охранного документа: 10.06.2015
27.07.2015
№216.013.6747

Антиоксидантное средство с гепатопротекторным эффектом на основе наноструктурированного селена и способы его получения и применения

Изобретение относится к фармацевтической промышленности, а именно, к нанокомпозитам селена на основе природных гепатотропных галактозосодержащих полисахаридных матриц, представляющим собой водорастворимые порошки оранжево-красного цвета, содержащие наночастицы нуль-валентного селена (Se) с...
Тип: Изобретение
Номер охранного документа: 0002557992
Дата охранного документа: 27.07.2015
10.08.2015
№216.013.6a0e

Способ изготовления футеровки разливочного ковша

Изобретение относится к области металлургии. В металлическом кожухе 2 монтируют футеровку 3, состоящую из огнеупорной кирпичной кладки и верхнего рабочего слоя 1, затем футеровку отжигают. На кирпичную кладку устанавливают сетчатый электрод 5, который используют в качестве анода, и наносят на...
Тип: Изобретение
Номер охранного документа: 0002558703
Дата охранного документа: 10.08.2015
20.08.2015
№216.013.70e9

Устройство для комбинированного волочения сплошных и полых профилей.

Изобретение относится к области комбинированной обработки металлов давлением и резанием, а именно к устройствам для волочения сплошных и полых профилей. Устройство содержит две сопрягаемые торцами калибрующие фильеры с регулярным микрорельефом, запрессованные в обойму, имеющую полости для...
Тип: Изобретение
Номер охранного документа: 0002560475
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.70eb

Способ изготовления деформирующего элемента протяжки

Изобретение относится к машиностроению, в частности к методам изготовления инструмента, и может быть использовано в процессе обработки металлов протягиванием с помощью деформирующих элементов протяжки. Способ изготовления деформирующего элемента протяжки включает нанесение на заборный конус,...
Тип: Изобретение
Номер охранного документа: 0002560477
Дата охранного документа: 20.08.2015
10.02.2016
№216.014.c4bd

Способ получения порошка фторида стронция, активированного фторидом неодима, для лазерной керамики

Изобретение может быть использовано при изготовлении сырья для горячего прессования фторидной лазерной керамики. Способ получения порошка фторида стронция, активированного фторидом неодима, включает взаимодействие раствора фторида аммония с раствором, содержащим нитрат стронция и нитрат...
Тип: Изобретение
Номер охранного документа: 0002574264
Дата охранного документа: 10.02.2016
25.08.2017
№217.015.a116

Способ получения моноиодида индия высокой чистоты

Изобретение относится к неорганической химии и касается получения моноиодида индия высокой чистоты. Способ получения моноиодида индия высокой чистоты не требует исходных материалов высокой чистоты. Способ включает взаимодействие металлического индия, взятого с 10% стехиометрическим избытком, с...
Тип: Изобретение
Номер охранного документа: 0002606450
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.ac63

Нанокомпозит серебра на основе конъюгата арабиногалактана и флавоноидов, обладающий антимикробным и противоопухолевым действием, и способ его получения

Изобретение относится к медицине и представляет собой нанокомпозит нуль-валентного серебра, обладающий одновременно антимикробными свойствами и противоопухолевой активностью в виде стабильных водорастворимых порошков, сохраняющий свои свойства в течение длительного времени, содержащий в...
Тип: Изобретение
Номер охранного документа: 0002611999
Дата охранного документа: 01.03.2017
+ добавить свой РИД