×
10.04.2019
219.017.00cc

ИНДИКАТОР ТОКСИЧЕСКИХ ГАЗОВ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002208225
Дата охранного документа
10.07.2003
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к измерительной и индикаторной технике и может быть использовано как в измерительных устройствах, так и без них, в качестве визуального индикатора для контроля окружающей среды, измерения концентраций и нахождения течей вредных и дорогостоящих газов, контроля герметичности изделий, содержащих вредные химические вещества, и других устройств, применяемых в метрологии, в сельском хозяйстве, различных отраслях промышленности, в научных исследованиях. Индикатор токсических газов представляет собой пористый материал, в который внесены мелкодисперсные фрагменты пленки, состоящей из смеси двух проводящих полимеров: политиофена и полисиланоанилина в массовом соотношении 4-3:1,5-1, которые соответственно синтезируются в режиме потенциостатического циклирования при потенциалах от -2.0 до -3.4 в режиме катода и от +5.7 до +7.2 в режиме анода относительно противоэлектрода, который представляет собой графитовый стержень с обвитой вокруг него хромовой проволкой. Достигается повышение селективности и надежности анализа. Данный индикатор может быть использован без измерительной аппаратуры.
Реферат Свернуть Развернуть

Изобретение относится к измерительной и индикаторной технике и может быть использовано как в измерительных устройствах, так и без них, в качестве визуального индикатора для контроля окружающей среды, измерения концентраций и нахождения течей вредных и дорогостоящих газов, контроля герметичности изделий, содержащих вредные химические вещества, и других устройств, применяемых в метрологии, в сельском хозяйстве, различных отраслях промышленности, в научных исследованиях.

Известно устройство - сенсор для анализа газообразных веществ (Патент РФ 2088914).

Конструктивно сенсор представляет собой диэлектрическую подложку (ситалл, сапфир, окисленный кремний) с нанесенными на нее взаимопроникающими гребенчатыми электродами. В качестве материалов электродов используются золото, платина, хром.

На гребенчатые электроды наносится из раствора мономеров анилина и силаноанилина методом электрополимеризации пленка, состоящая из двух проводящих полимеров - полисиланоанилина и полианилина в соотношении 9:1. Полученная пленка может быть модифицирована различными химическими добавками. Работа такого сенсора основана на протекании обратимых окислительно-восстановительных реакций и других взаимодействий в чувствительном слое пленки, в ходе которых меняется проводимость и другие электрофизические параметры.

Недостатком такого сенсора являются:
быстрая "отравляемость" при длительном воздействии больших концентраций агрессивных газообразных веществ,
сложный метод синтеза, в котором необходимо жестко контролировать процентное содержание полисиланоанилина и анилина 9:1,
изготовление специальной подложки с гребенчатыми электродами с использованием ряда сложных технологических операций,
невозможность использования сенсора даже без простой измерительной аппаратуры,
точностные характеристики для более сложного анализа газообразных веществ.

Известен химический сенсор для анализа токсических газов и паров (Патент РФ 2169359).

Сенсор может представлять собой ткань или иной пористый материал, пропитанный полианилином, который относится к классу проводящих полимеров, легированных комплексами переходных металлов или комплексами ароматических соединений. Принцип действия сенсора основан на обратимом изменении цвета при контакте с анализируемым газом.

Недостатком такого сенсора является повышенная чувствительность к влаге и температуре, что может приводить к изменению его спектральных свойств при длительном использовании. Кроме того, органические полимеры имеют свойство стареть со временем, а нежесткость квазиодномерной решетки приводит к локализации инжектированного как при окислении, так и при восстановлении заряда в области вызванного им искажения геометрии решетки, из-за этого химический сенсор, основанный на полианилине, будет иметь малый срок годности при использовании его в качестве сенсора на газообразные вещества в больших концентрациях, являющиеся сильными окислителями, такими как фтор, хлор, озон.

Наиболее близким по технической сущности к изобретению является "Чувствительный элемент для идентификации газообразных веществ" (Патент РФ 2155958).

Чувствительный элемент представляет собой пористый материал (ткань, пористая бумага, кремниевые фильтры), в который внесены мелкодисперсные фрагменты пленки, состоящей из смеси двух проводящих полимеров: полисиланоанилина и полианилина, где процентное содержание полианилина не превышает 40% от общей массы пленки.

Недостатком такого чувствительного элемента является непригодность его использования на газообразный фтор и пары фтороводорода при их большом процентном содержании из-за высокого процентного содержания кремнийсодержащего полимера. Кроме того, полимерная смесь полианилина с полисиланоанилином при взаимодействии с каким-либо анализируемым химическим компонентом не дает большой контрастности при изменении своей цветовой гаммы.

Техническая задача заключается в создании универсального селективного индикатора токсических газов, устойчиво работающего в сильно окислительной газовой среде длительное время, и увеличении контрастности при обратимом химическом взаимодействии анализируемого газа с активным веществом индикатора.

Технический результат достигается за счет синтеза активного вещества индикатора с оптимальным содержанием кремнийсодержащего проводящего полимера полисиланоанилина и химически достаточно стойкого и хорошо подверженного модифицированию различными химическими добавками политиофена (Электрохимия полимеров, Москва: Наука, 1990, М.Р. Тарасевич, Е.И. Хрущева, Электрохимия политиофена, гл. 9, стр.146, 148).

Процесс изготовления производят следующим образом.

Сначала приготавливают смесь растворов, состоящую из 1,1-1,7 молярного раствора соляно-кислого силаноанилина и от 0,1 до 0,8 молярного раствора тиофена в тетрагидрофуране.

Первый раствор готовят путем растворения мономерного порошка силаноанилина в одномолярном водном растворе соляной кислоты, второй - растворением жидкого тиофена при температуре 10-25oС в тетрагидрофуране.

Далее растворы тщательно перемешивают между собой в соотношении 1:1 с использованием магнитной мешалки, а полученную смесь добавляют в водорастворимые модифицирующие добавки 1-5 грамм на 1 литр полученного раствора.

Модифицирующие добавки подбираются в зависимости от газообразного вещества, на которое изготовляется индикатор по следующим признакам.

На газы-восстановители используются добавки с окислительными свойствами. Так, например, на сероводород могут быть использованы гетерополикислоты 2-18 ряда. Их общую формулу можно записать следующим образом:
НnxМеyОz],
где Me может быть одним из переходных металлов (например, вольфрам), а числа n, x, y, z соответственно определяют число атомов в молекуле.

На газы-галогены используются соли галогенов, обладающие меньшей реакционной способностью и с большим порядковым номером. Как известно, галогены с меньшим порядковым номером вытесняют галогены с большими порядковыми номерами из их солей. Поэтому для определения хлора и фтора оптимально подходят бромиды и йодиды, например LiBr, Kl, NaBr, Lil.

Для определения паров неорганических кислот, таких как HCl, HF, которые имеют хорошую растворимость в воде, целесообразно использовать гидрофильные добавки, делая поверхность индикатора с хорошими сорбционными свойствами. Для этого оптимально использовать такие неорганические соли, как LiCl, LiBr.

Для определения аммиака модифицируют полимерную пленку оптимально анионными комплексами: [СuСl4] 2- и [NiCl4]2-. Соответственно в качестве модифицирующих добавок используются CuCl2 и NiCl2.

Модифицирующие добавки придают избирательность работе индикатора по отношению к определяемому компоненту.

Процесс активного вещества и самого изготовления чувствительного элемента производят следующим образом. Полоску пористого материала (например, капроновая ткань или нить) пропитывают смесью растворов с модифицирующими добавками, способ приготовления которых был описан выше. Далее пропитанный материал опускают в гальваническую ванну с таким же по составу раствором, каким пропитан и сам материал. Далее последний выполняет роль одного из электродов, в котором происходит рост пленки в режиме потенциостатического циклирования при потенциалах от -2.0 до -3.4 в режиме катода и от +5.7 до +7.2 в режиме анода относительно противоэлектрода, который представляет собой графитовый стержень с обвитой вокруг него хромовой проволкой. В результате электрохимического синтеза образуется активное, но достаточно стабильное вещество, которое состоит из смеси двух проводящих полимеров, модифицированных химическими добавками политиофена и полисиланоанилина в массовом соотношении 4-3:1,5-1.

Разработаны методы получения и изготовлены индикаторы на следующие вещества: HF, F2, Cl2, H2S, HCl, NН3, пары воды.

Пример. Определение наличия газообразного фтора и паров плавиковой кислоты в воздухе.

Приготовили раствор, состоящий из 1,2 молярного раствора соляно-кислого силаноанилина путем растворения монолитного порошка силаноанилина в одномолярном растворе соляной кислоты. Далее приготовили 0,2 молярный раствор тиофена в тетрагидрофуране путем растворения жидкого тиофена при температуре 20oС в тетрагидрофуране. Растворы тщательно перемешали между собой в соотношении 1:1 с использованием магнитной мешалки. Общий объем растворов составил 1 литр. В полученную смесь добавили 2 грамма бромида лития до его полного растворения. После этого полученным раствором пропитали полоску капроновой ткани с размерами 55х20х2 мм, а затем опустили в гальваническую ванну с этим же раствором. Синтезировали в режиме потенциостатического циклирования при потенциалах от -2.0 до -3.4 в режиме катода и от +5.7 до +7.2 в режиме анода относительно противоэлектрода, который представлял собой графитовый стержень с обвитой вокруг него хромовой проволокой. В ходе электрохимического синтеза была получена смесь, состоящая из двух проводящих полимеров: политиофена и полисиланоанилина в соотношении 3:1, модифицированных бромидом лития. Далее ткань высушили, цвет ткани при этом стал серый. Ткань поместили к источнику микропотока фтора с концентрацией 1 мг/м3, цвет ткани при этом изменился на розовый. При обдувке чистым воздухом цвет вернулся опять в первоначальное состояние, то есть стал серым.

Затем эту же ткань поместили в сосуд с парами плавиковой кислоты с концентрацией паров 40 мг/м3, ткань изменила свой цвет на синий. Ткань продержали в этой концентрации 48 часов, а затем обдули чистым воздухом - цвет опять стал серый.

Изготовленный индикатор показал свою селективность, универсальность и работоспособность в агрессивной среде длительное время.

Индикатортоксическихгазов,выполненныйввидепористойматрицы,устойчивойкагрессивнымхимическимсредам,чувствительныйэлементкоторогосостоитизсмесимодифицированныхразличнымихимическимидобавкамидвухпроводящихполимеров,содержащийполисиланоанилин,отличающийсятем,чтосмесьдвухпроводящихполимеровсодержитполитиофенпримассовомсоотношенииполитиофенаиполисиланоанилина4:3-1,5-1,которыесинтезируютсяврежимепотенциостатическогоцитированияприпотенциалахот-2,0до-3,4Вврежимекатодаиот+5,7до7,2Вврежимеанодаотносительнопротивоэлектрода,которыйпредставляетсобойграфитовыйстерженьсобвитойвокругнегохромовойпроволокой.
Источник поступления информации: Роспатент

Показаны записи 1-3 из 3.
10.04.2019
№219.017.00c1

Чувствительный элемент концентрации газов

Изобретение относится к области аналитического приборостроения, а именно к чувствительным элементам состава газов. Технический результат изобретения заключается в обеспечении возможности определения концентрации газов и газообразных сложных веществ в воздухе и в среде инертных газов как при...
Тип: Изобретение
Номер охранного документа: 0002209424
Дата охранного документа: 27.07.2003
19.04.2019
№219.017.2c2a

Гальванический источник постоянного тока

Изобретение относится к области электротехники и может быть использовано при производстве гальванических источников постоянного тока. Техническим результатом изобретения является увеличение тока разряда и повышение электрической емкости. Согласно изобретению в источнике тока в качестве...
Тип: Изобретение
Номер охранного документа: 0002282917
Дата охранного документа: 27.08.2006
19.04.2019
№219.017.2d9a

Способ получения метана и его производных

Использование: получение углеводородов. Сущность: 10-80% водный раствор гетерополикислоты 2-18 ряда H[PWO] нагревают до температуры 70-140С, далее в раствор погружают свинцовую или медную пластину и выжидают 3-15 мин до начала процесса восстановления анионного комплекса [PW0], после чего через...
Тип: Изобретение
Номер охранного документа: 02218320
Дата охранного документа: 10.12.2003
Показаны записи 1-3 из 3.
20.03.2019
№219.016.ea19

Способ получения шаровых молний

Использование: в области физики и химии для получения искусственных шаровых молний в необходимых количествах с целью удобства изучения этого природного явления. Сущность изобретения: в воздушном пространстве через водяную пленку раствора солей или водный раствор соединений с гетерокомплексами,...
Тип: Изобретение
Номер охранного документа: 02168289
Дата охранного документа: 27.05.2001
10.04.2019
№219.017.00c1

Чувствительный элемент концентрации газов

Изобретение относится к области аналитического приборостроения, а именно к чувствительным элементам состава газов. Технический результат изобретения заключается в обеспечении возможности определения концентрации газов и газообразных сложных веществ в воздухе и в среде инертных газов как при...
Тип: Изобретение
Номер охранного документа: 0002209424
Дата охранного документа: 27.07.2003
19.04.2019
№219.017.2d9a

Способ получения метана и его производных

Использование: получение углеводородов. Сущность: 10-80% водный раствор гетерополикислоты 2-18 ряда H[PWO] нагревают до температуры 70-140С, далее в раствор погружают свинцовую или медную пластину и выжидают 3-15 мин до начала процесса восстановления анионного комплекса [PW0], после чего через...
Тип: Изобретение
Номер охранного документа: 02218320
Дата охранного документа: 10.12.2003
+ добавить свой РИД