×
08.04.2019
219.016.fe67

Результат интеллектуальной деятельности: Способ охлаждения ротора турбины высокого давления (ТВД) газотурбинного двигателя (ГТД), ротор ТВД и лопатка ротора ТВД, охлаждаемые этим способом, узел аппарата закрутки воздуха ротора ТВД

Вид РИД

Изобретение

Аннотация: Способ охлаждения ротора турбины высокого давления газотурбинного двигателя осуществляют путем того, что ротор охлаждают вторичным потоком воздуха из камеры сгорания газогенератора двигателя, имеющим температуру более низкую, чем температура первичного потока рабочего тела из жаровой трубы камеры сгорания. Поток воздуха на входе в тракт воздушного охлаждения ротора турбины высокого давления подают через совмещенный с указанным трактом входной узел тракта воздушного охлаждения соплового аппарата в узел аппарата закрутки воздуха, включающий две перекрестно ориентированные кольцевые конические полости и аппарат закрутки воздуха. На выходе из второй полости охлаждающий воздух попадает в аппарат закрутки и через систему конфузорных цилиндроконических сопел, отклоненных в направлении к выходу из двигателя и в сторону вращения рабочего колеса турбины высокого давления, поступает в кольцевой канал, образованный смежными стенками диска рабочего колеса турбины высокого давления и напорного диска. Далее под напором воздух направляют в систему диффузорных каналов в ободе диска, из которых воздух поступает в канал в хвостовике лопаток, попадая в раздаточный коллектор в полости лопатки. В коллекторе охлаждающий воздух трансформируют в два потока. Фронтальную часть потока направляют через радиально ориентированный ряд отверстий в разделительной стенке в канал циклонного охлаждения входной кромки пера, охлаждая ее изнутри, и через другой ряд отверстий в спинке пера лопатки охлаждающий воздух выводят из полости и выполняют настильное охлаждение снаружи спинки пера лопатки. Тыльная большая часть потока из раздаточного коллектора поступает в вихревую матрицу, дополненную турбулизатором, охлаждая заднюю часть пера лопатки, и через щель в выходной кромке пера отработанный воздух выходит в поток рабочего тела проточной части турбины. Изобретение направлено на повышение эффективности охлаждения теплонапряженных элементов турбины высокого давления, надежности и ресурса турбины высокого давления и двигателя в целом. 4 н. и 3 з.п. ф-лы, 5 ил.

Группа изобретений относится к области авиадвигателестроения, а именно, к способу охлаждения ротора турбины высокого давления стационарного газотурбинного двигателя авиационного типа в составе газоперекачивающих агрегатов.

Известен способ охлаждения ротора турбины высокого давления газотурбинного двигателя, включающего вал и рабочее колесо с трактом воздушного охлаждения теплонапряженных элементов - диска и лопаток рабочего колеса. Ротор турбины выполнен с безлопаточным аппаратом закрутки охлаждающего воздуха, подаваемого в полости лопаток (RU 2614909 С1, опубл. 30.03.2017).

Известен способ охлаждения ротора турбины высокого давления газотурбинного двигателя, включающего вал и рабочее колесо с трактом воздушного охлаждения теплонапряженных элементов - диска и лопаток рабочего колеса. Ротор турбины выполнен с безлопаточным аппаратом закрутки охлаждающего воздуха, подаваемого в полости лопаток. В ободе диска и ножках лопаток выполнены пазы под замки фиксации лопаток. Каналы подвода воздуха в лопатку выполнены в виде паза в диске под замком лопаток. Охлаждающие полости лопаток последовательно сообщены с каналами подвода воздуха в лопатку (RU 2614453 С1, опубл. 30.03.2017).

Известен способ охлаждения рабочих лопаток ротора турбины ГТД, включающий отбор охлаждающего воздуха из камеры сгорания, его транспортировку в аппарат закрутки, последующий подвод охлаждающего воздуха во внутренние полости рабочих лопаток через воздушные каналы в рабочем колесе турбины. Внутреннюю полость каждой рабочей лопатки, расположенную у входной кромки, отделяют от остальной полости перегородкой, направленной вдоль входной кромки, образованную полость сообщают перфорационными отверстиями в стенке с проточной частью турбины (RU 2387846 С1, опубл. 27.04.2010).

К недостаткам известных решений относятся повышенная конструктивная сложность турбины, недостаточная конструктивная проработанность системы охлаждения наиболее теплонапряженных участков рабочего колеса турбины, неадаптированность конкретно к техническим решениям ГТД газоперекачивающего агрегата, сложность получения компромиссного сочетания повышенных значений КПД и ресурса двигателя с одновременным повышением компактности и снижением материало- и энергоемкости.

Задача, решаемая группой изобретений, объединенных единым творческим замыслом, состоит в повышении эффективности охлаждения элементов рабочего колеса ротора ТВД, ресурса и надежности турбины и двигателя в целом, используемого в составе газоперекачивающих агрегатов.

Поставленная задача решается тем, что способе охлаждения ротора турбины высокого давления (ТВД) газотурбинного двигателя (ГТД) в составе газотурбинной установки (ГТУ) газоперекачивающего агрегата (ГПА), согласно изобретению ротор ТВД охлаждают вторичным потоком воздуха из камеры сгорания (КС) газогенератора двигателя, имеющем температуру, более низкую температуры первичного потока рабочего тела из жаровой трубы КС, при этом поток воздуха на входе в тракт воздушного охлаждения ротора ТВД подают через совмещенный с указанным трактом входной узел тракта воздушного охлаждения соплового аппарата (СА) ТВД, а именно через входные отверстия в наружной полке СА поток воздуха направляют в снабженную открытым на проток дефлектором заднюю полость лопатки СА ТВД с пропуском при минимальном нагреве большей части потока воздуха для охлаждения ротора ТВД, откуда через транзитную полость малой полки соплового блока СА и выходные патрубки внутреннего кольца СА охлаждающий воздух последовательно подают в две перекрестно ориентированные кольцевые конические полости узла аппарата закрутки воздуха, сопряженные конструктивно и по транзитному потоку воздуха тракта охлаждения ротора ТВД; на выходе из второй из указанных полостей охлаждающий воздух попадает в аппарат закрутки и через систему конфузорных цилиндроконических каналов - сопел, отклоненных в направлении к выходу из двигателя и в сторону вращения рабочего колеса ТВД, охлаждающий воздух поступает в кольцевой канал, образованный смежными стенками диска рабочего колеса ТВД и напорного диска, и далее под действием центробежных сил под напором воздух направляют в систему входных диффузорных каналов, выполненных в переходной зоне полотна и в ободе диска рабочего колеса по числу лопаток, размещенных в диске рабочего колеса ТВД с угловой частотой γл.=Nл./2π=(12,1÷17,2) [ед/рад], из которых воздух поступает в хвостовик лопаток, последовательно проходит участки канала тракта в замке, ножке и полке хвостовика, попадая в расположенный в передней части полости лопатки радиально ориентированный раздаточный коллектор, образованный передней частью спинки и корыта пера лопатки; в коллекторе охлаждающий воздух трансформируют в два потока фронтальный и тыльный в соотношении (1):(1,42÷1,94), при этом фронтальную часть потока направляют через радиально ориентированный ряд отверстий во внутренней разделительной стенке с шагом, превышающим диаметры отверстий не менее чем в 4,2 раза, тангенциальными струями подают в параллельно расположенный с коллектором и вписанный частью периметра во входную кромку пера лопатки фронтальный канал циклонного охлаждения кромки, где настильными струями охлаждают изнутри входную кромку и через другой ряд отверстий, выведенных в переднюю часть спинки пера лопатки с шагом превышающем диаметры отверстий не менее чем в 2,15 раза и с осями, отклоненными по потоку рабочего тела, охлаждающий воздух выводят из полости и выполняют настильное охлаждение снаружи спинки пера лопатки; а тыльная большая часть потока из раздаточного коллектора поступает во внутреннюю вихревую матрицу, примыкающую к коллектору, и охлаждает заднюю часть пера лопатки посредством встречно наклоненных ребер двух полуматриц, выполненных на внутренних поверхностях выходной части спинки и корыта пера лопатки, с образованием перекрестной решетки с углом ϕр.м., между осями каналов, определенным в диапазоне значений ϕр.м.=(1,12÷1,48) [рад]; из матрицы охлаждающий воздух преодолевает на выходе из полости лопатки турбулизатор, образованный не менее чем одним параллельным выходной кромке пера рядом направляющих ребер, пространственно отклоненных от оси двигателя для увеличения отбора избыточной теплоты, и через щель в выходной кромке пера отработанный воздух выходит в поток рабочего тела проточной части турбины.

При этом в вихревой матрице ребра полуматрицы корыта пера лопатки могут выполнять с восхождением к выходу из матрицы оси каналов, образующей с базовой плоскостью в проекции на условную осевую плоскость, совмещенную с радиальной осью лопатки, угол αр.к.л., определенный в диапазоне значений αр.к.л.=(0,66÷0,95) [рад], а в ответной полуматрице в спинке пера лопатки ребра в проекции на ту же осевую плоскость, совмещенную с осью лопатки, на угол αр.с.л., определенный в диапазоне значений αр.с.л.=(0,84÷1,26) [рад] с нисходящим к выходу из матрицы направлением.

Поставленная задача в части ротора ТВД газотурбинного двигателя в составе ГТУ ГПА решается тем, что согласно изобретению в процессе работы ГТД теплонапряженные элементы ротора ТВД охлаждают описанным выше способом.

Поставленная задача в части лопатки ротора ТВД газотурбинного двигателя в составе ГТУ ГПА решается тем, что согласно изобретению лопатка выполнена полой, охлаждаемой, при этом в процессе работы ГТД лопатку ротора ТВД охлаждают описанным выше способом.

Поставленная задача решается также тем, что узел аппарата закрутки воздуха тракта воздушного охлаждения ротора ТВД газогенератора ГТД в составе ГТУ ГПА, согласно изобретению включает две последовательно перекрестно ориентированные кольцевые конические полости, сопряженные конструктивно и по транзитному потоку воздуха тракта охлаждения ротора ТВД, аппарат закрутки воздуха с системой конфузорных цилиндроконические каналов - сопел, выполненных с угловой частотой γс.а.з., определенной в диапазоне значений γс.а.з.=(4,62÷7,17) [ед/рад], а также образованный фронтальным напорным диском, разъемно соединенным с диском ротора через цилиндрический фланец, выполненный за одно целое с полотном в радиальной зоне, примыкающей к ободу диска, и образующий совместно с диском ротора кольцевой канал для подвода к входным каналам тракта охлаждения лопаток закрученного потока охлаждающего воздуха через конфузорные сопла аппарата закрутки, при этом сопла отклонены от оси двигателя в тыльную сторону по направлению потока рабочего тела в проекции на условную осевую плоскость двигателя, проведенную через двойную точку пересечения оси канала указанной плоскостью и касательной к окружности центров выходного контура каналов на угол ξ1к.а.з., определенный в диапазоне значений ξ1к.а.з.=(0,4440,62) [рад] и кроме того ось канала сопла отклонена в сторону вращения диска ТВД на угол ξ2к.а.з., образующий в проекции на плоскость, нормальную к оси двигателя, считая от вертикальной плоскости симметрии двигателя, определенный в диапазоне значений ξ2к.а.з.=(0,15÷0,21) [рад], а на выходе потока воздуха кольцевой канал сообщен с системой входных каналов тракта воздушного охлаждения лопаток, расположенных с частотой лопаток ротора непосредственно под замком каждой лопатки с диффузорным участком подачи воздуха в полость замка и через участок тракта, пересекающий внутри хвостовика ножку и полку лопатки, во внутреннюю полость пера лопатки.

При этом сопла аппарата закрутки могут быть выполнены с диаметром на входе, превышающим диаметр на выходе не менее чем на 22,5%.

Первая из указанной пары конических полостей может быть ограждена двумя установленными соосно, полифункциональными усеченными коническими оболочками, имеющими общую кольцевую вершину и выполненными с разным наклоном образующих и величинами периметров раструбных торцов, разнесенных в осевом направлении двигателя с интервалом, достаточным для равнорадиусного опорного сопряжения с внутренним кольцом СА ТВД, причем внутренняя из указанных оболочек с меньшим раструбом снабжена системой пропускных отверстий тракта охлаждения ротора ТВД, а пара конических кольцевых оболочек, ограждающих другую из указанных коническую полость, перекрестно сопряженно смонтирована на внутренней оболочке первой пары с охватом кольцевого ряда пропускных отверстий тракта, и в зоне схождения к вершине непосредственно под свободным торцом напорного диска выполнена примыкающей к аппарату закрутки.

Технический результат, достигаемый приведенной совокупностью признаков группы изобретений, объединенных единых творческих замыслом, состоит в повышении эффективности охлаждения ротора ТВД и лопатки рабочего колеса ротора ТВД за счет проработанности узла аппарата закрутки воздуха, подаваемого на охлаждение ротора ТВД и конструктивных аэродинамических параметров лопатки ротора ТВД, достигая тем самым расширения температурного диапазона эксплуатации лопаток и повышения эффективности охлаждения ротора ТВД в процессе работы двигателя, и как следствие, повышение надежности и ресурса турбины и двигателя в целом.

Сущность группы изобретений поясняется чертежами, где:

на фиг. 1 изображен турбина высокого давления с сопловым аппаратом ТВД, продольный разрез;

на фиг. 2 - лопатка рабочего колеса ТВД, в аксонометрии;

на фиг. 3 - лопатка рабочего колеса ТВД, продольный разрез;

на фиг. 4 - фрагмент аппарата закрутки с конфузорным соплом, поперечный разрез;

на фиг. 5 - лопатка рабочего колеса ТВД, поперечный разрез.

Ротор турбины 1 высокого давления ГТД группы изобретений содержит рабочее колесо, включающее диск 2 и лопаточный венец с системой рабочих лопаток 3, размещенных с угловой частотой γл.=Nл./2π=(12,1÷17,2) [ед/рад], где Nл. - число лопаток в лопаточном венце рабочего колеса ТВД.

Диск 2 рабочего колеса выполнен в виде моноэлемента и включает ступицу 4 с центральным отверстием и полотно 5 с ободом 6. Вал РВД образован сочетанием выполненных за одно целое с диском консольных кольцевых элементов 7 и 8 для разъемного фланцевого соединения с валом 9 КВД и носком 10 задней опоры ТВД. Ротор ТВД включает фронтальный напорный диск 11, который разъемно соединен с диском 2 ротора через цилиндрический фланец 12, выполненный за одно целое с полотном 5 с фронтальной стороны последнего в радиальной зоне, примыкающей к ободу 6 диска 3. Напорный диск 11 образует совместно с диском 2 ротора кольцевой канал 13 для подвода потока охлаждающего воздуха из аппарата 14 закрутки воздуха к тракту воздушного охлаждения лопаток ТВД. Лопатка 3 рабочего колеса ротора ТНД содержит хвостовик 15 и перо 16 с выпукло-вогнутым профилем, образованным выпуклой спинкой 17 и вогнутым корытом 18, сопряженными входной и выходной кромками 19 и 20 соответственно.

В способ охлаждения ротора турбины 1 высокого давления ротор ТВД охлаждают вторичным потоком воздуха из камеры сгорания 21 (КС) газогенератора двигателя, имеющем температуру, более низкую температуры первичного потока рабочего тела из жаровой трубы 22 КС.

Поток воздуха на входе в тракт воздушного охлаждения ротора ТВД подают через совмещенный с указанным трактом входной узел 23 тракта воздушного охлаждения соплового аппарата 24 ТВД. Через входные отверстия в наружной полке 25 соплового аппарата 24 поток воздуха направляют в снабженную открытым на проток дефлектором заднюю полость сопловой лопатки 26 ТВД с пропуском при минимальном нагреве большей части потока воздуха для охлаждения ротора ТВД.

Из полости сопловой лопатки 26 через транзитную полость 27 малой полки 28 соплового блока СА соплового аппарата 24 и выходные патрубки 29 внутреннего кольца 30 СА охлаждающий воздух последовательно подают в две перекрестно ориентированные кольцевые конические полости 31 и 32 узла аппарата 14 закрутки воздуха. Полости 31 и 32 выполняют сопряженными конструктивно и по транзитному потоку воздуха тракта охлаждения ротора ТВД. На выходе из второй полости 32 охлаждающий воздух попадает в аппарат 14 закрутки. Проходя через систему конфузорных каналов - сопел 33 аппарата 14 закрутки охлаждающий воздух поступает в кольцевой канал 13. Далее под действием центробежных сил под напором воздух направляют в систему диффузорных входных каналов 34, выполненных в переходной зоне полотна 5 и в ободе 6 диска 2 рабочего колеса по числу лопаток 3. Из входных каналов 24 воздух поступает в хвостовик 20 лопаток, последовательно проходит участки тракта в елочном замке 35, ножке 36 и полке 37 хвостовика 20, попадая в расположенный в передней части полости лопатки радиально ориентированный раздаточный коллектор 38, образованный передней частью спинки 17 и корыта 18 пера лопатки. В коллекторе 38 охлаждающий воздух трансформируют в два потока фронтальный и тыльный в соотношении (1):(1,42÷1,94).

Фронтальную часть потока направляют через радиально ориентированный ряд отверстий 39 во внутренней разделительной стенке 40 с шагом, превышающим диаметры отверстий не менее чем в 4,2 раза, тангенциальными струями подают во фронтальный канал 41 циклонного охлаждения, параллельно расположенный с коллектором 38 и вписанный частью периметра во входную кромку 19 пера лопатки. В канале 41 настильными струями охлаждают изнутри входную кромку 19 и через другой ряд отверстий 42, выведенных в переднюю часть спинки 17 пера лопатки с шагом, превышающем диаметры отверстий не менее чем в 2,15 раза и с осями, отклоненными по потоку рабочего тела, охлаждающий воздух выводят из полости и выполняют настильное охлаждение снаружи спинки 17 пера лопатки.

Тыльная большая часть потока охлаждающего воздуха из раздаточного коллектора 38 поступает во внутреннюю вихревую матрицу 43, примыкающую к коллектору 38, и охлаждает заднюю часть пера лопатки посредством встречно наклоненных ребер 44 и 45 двух полуматриц. Ребра 44 и 45 выполнены на внутренних поверхностях выходной части спинки 17 и корыта 18 пера лопатки, с образованием перекрестной решетки с углом ϕр.м., между осями каналов, определенным в диапазоне значений ϕр.м.=(1,12÷1,48) [рад]. Из матрицы 43 охлаждающий воздух преодолевает на выходе из полости лопатки турбулизатор 46. Турбулизатор 46 образован не менее чем одним параллельным выходной кромке 20 пера рядом направляющих ребер 47, пространственно отклоненных от оси двигателя для увеличения отбора избыточной Теплоты, и через щель 48 в выходной кромке 20 пера отработанный воздух выходит в поток рабочего тела проточной части турбины. Ребра 45 полуматрицы корыта 19 выполняют с восхождением к выходу из матрицы 43 оси каналов образующей относительно базовой плоскости в проекции на условную осевую плоскость, совмещенную с радиальной осью лопатки, на угол αр.к.л., определенный в диапазоне значений αр.к.л.=(0,66÷0,95) [рад]. В ответной полуматрице в спинке 18 пера 16 лопатки ребра 44 в проекции на ту же осевую плоскость, совмещенную с осью лопатки, наклонены на угол αр.с.л., определенный в диапазоне значений αр.с.л.=(0,84÷1,26) [рад] и выполнены с нисходящим к выходу из матрицы направлением.

В процессе работы ГТД теплонапряженные элементы ротора ТВД охлаждают описанным выше способом.

Лопатка ротора ТВД газотурбинного двигателя выполнена полой, охлаждаемой. При этом в процессе работы ГТД лопатку ротора ТВД охлаждают описанным выше способом.

Узел аппарата 14 закрутки воздуха тракта воздушного охлаждения ротора ТВД включает две последовательно перекрестно ориентированные кольцевые конические полости 31 и 32, аппарат 14 закрутки воздуха с системой конфузорных цилиндроконических сопел 33 и кольцевой канал 19 для подвода к входным каналам 34 тракта охлаждения лопаток потока охлаждающего воздуха через конфузорные сопла 33 аппарата закрутки, выполненные с угловой частотой γс.а.з., определенной в диапазоне значений γс.а.з.=(4,62÷7,17) [ед/рад].

Сопла 33 аппарата закрутки отклонены в направлении к выходу из двигателя и в сторону вращения рабочего колеса ТВД. Сопла отклонены от оси двигателя в тыльную сторону по направлению потока рабочего тела в проекции на условную осевую плоскость двигателя, проведенную через двойную точку пересечения оси канала указанной плоскостью и касательной к окружности центров выходного контура каналов на угол ξ1к.а.з., определенный в диапазоне значений ξ1к.а.з.=(0,44÷0,62) [рад]. Ось канала сопла отклонена в сторону вращения диска ТВД на угол ξ2к.а.з., образующий в проекции на плоскость, нормальную к оси двигателя, считая от вертикальной плоскости симметрии двигателя, определенный в диапазоне значений ξ2к.а.з.=(0,15÷0,21) [рад]. При этом конфузорные сопла 33 аппарата 14 закрутки выполнены с диаметром на входе, превышающим диаметр на выходе не менее чем на 22,5%.

На выходе потока воздуха кольцевой канал аппарата закрутки сообщен с системой входных каналов 34 тракта воздушного охлаждения лопаток, расположенных с частотой лопаток ротора непосредственно под замком 35 каждой лопатки с диффузорным вводом воздуха в полость замка 35 и через участок тракта, пересекающий внутри хвостовика ножку 36 и полку 37 лопатки, во внутреннюю полость пера лопатки.

Коническая полость 31 узла аппарата 14 закрутки воздуха ограждена двумя установленными соосно, полифункциональными усеченными коническими оболочками 49 и 50, имеющими общую кольцевую вершину. Конические оболочки 49 и 50 выполненными с разным наклоном образующих и величинами периметров раструбных торцов, разнесенных в осевом направлении двигателя с интервалом, достаточным для равнорадиусного опорного сопряжения с внутренним кольцом 30 СА ТВД. Внутренняя оболочка 50 с меньшим раструбом снабжена системой пропускных отверстий 51 транзитного тракта охлаждения ротора ТВД. Коническая полость 32 ограждена другой парой конических кольцевых оболочек 52 и 53, перекрестно сопряженно смонтирована на внутренней оболочке 50 первой пары с охватом кольцевого ряда пропускных отверстий 51 тракта. В зоне схождения к вершине непосредственно под свободным торцом 54 напорного диска 11 коническая полость 32 выполнена примыкающей к аппарату 14 закрутки.

Таким образом, за счет проработанности узла аппарата закрутки подаваемого на охлаждение ротора ТВД воздуха, снабженного цилиндроническими сопла с заявленными количеством сопел и параметрами их конфузорности и пространственных углов наклона в аппарате, достигают повышение эффективности охлаждения ротора. Выход за пределы интервала в большую или меньшую сторону приводит к неоправданному снижению эффективности работы аппарата закрутки за счет снижения подачи охлаждаемого воздуха в лопатки при резком росте аэродинамического сопротивления воздуха, подаваемого ко входу в каналы тракта охлаждения лопаток. Технический результат достигают также за счет разделения потока охлаждающего воздуха в раздаточном коллекторе полости лопатки на два части, первую из которых подают в циклонный канал охлаждения входной кромки, где настильными струями охлаждают изнутри входную кромку с последующим вывода воздуха из полости лопатки через отверстий в спинке пера, осуществляя настильное охлаждение снаружи спинки пера лопатки. Вторая большая часть потока воздуха из раздаточного коллектора поступает во внутреннюю вихревую матрицу, выполненную из встречно наклоненных ребер двух полуматриц, выполненных на спинки и корыте пера лопатки, с образованием перекрестной решетки с наклоном ребер матрицы в заявленном диапазоне. Выход за пределы интервала наклона ребер матрицы в большую или меньшую сторону приводит к резкому снижению эффективности охлаждения лопатки, либо к увеличению необходимого расхода воздуха. Охлаждая заднюю часть пера лопатки воздух поступает в дополнительный турбулизатор и через щель в выходной кромке пера отработанный воздух выходит в поток рабочего тела проточной части турбины, чем достигают расширения температурного диапазона эксплуатации лопаток и повышения эффективности охлаждения ротора ТВД в процессе работы двигателя.

Охлаждают ротор ТВД газотурбинного двигателя следующим образом. В процессе работы ГТД охлаждающий воздух поступает из камеры сгорания 21 газогенератора двигателя. Поток воздуха на входе в тракт воздушного охлаждения ротора ТВД подают через входной узел 23 тракта воздушного охлаждения соплового аппарата 24 ТВД и направляют в заднюю полость сопловой лопатки 26 ТВД с пропуском при минимальном нагреве большей части потока воздуха для охлаждения ротора ТВД. Из полости сопловой лопатки 26 через транзитную полость 27 и выходные патрубки 29 внутреннего кольца 30 СА охлаждающий воздух последовательно подают в две конические полости 31 и 32. На выходе из второй полости 32 охлаждающий воздух попадает в аппарат 14 закрутки. Проходя через систему сопел 33 аппарата 14 закрутки охлаждающий воздух поступает в кольцевой канал 13. Далее под действием центробежных сил под напором воздух направляют в систему диффузорных входных каналов 34, из которых поступает в хвостовик 20 лопаток, последовательно проходит участки тракта в елочном замке 35, ножке 36 и полке 37 хвостовика 20, попадая в раздаточный коллектор 38. В коллекторе 38 фронтальную часть потока охлаждающий воздух направляют через ряд отверстий 39 в разделительной стенке 40 и тангенциальными струями подают во фронтальный канал 41 циклонного охлаждения входной кромки 19 пера лопатки. В канале 41 настильными струями охлаждают изнутри входную кромку 19 и через другой ряд отверстий 42 в спинке 17 пера лопатки воздух выводят из полости и выполняют настильное охлаждение снаружи спинки 17 пера лопатки. Тыльная большая часть потока охлаждающего воздуха из раздаточного коллектора 38 поступает во внутреннюю вихревую матрицу 43, охлаждая заднюю часть пера лопатки. Из матрицы 43 охлаждающий воздух преодолевает на выходе из полости лопатки турбулизатор 46 и через щель 48 в выходной кромке 20 пера отработанный воздух выходит в поток рабочего тела проточной части турбины.

Таким образом, за счет улучшения конструктивных и аэродинамических параметров элементов ротора ТВД достигают повышение эффективности охлаждения теплонапряженных элементов ТВД, надежности и ресурса ТВД и двигателя в целом, используемого в составе ГТУ ГПА, в том числе на компрессорных станциях нефтегазовой и энергетической промышленности.


Способ охлаждения ротора турбины высокого давления (ТВД) газотурбинного двигателя (ГТД), ротор ТВД и лопатка ротора ТВД, охлаждаемые этим способом, узел аппарата закрутки воздуха ротора ТВД
Способ охлаждения ротора турбины высокого давления (ТВД) газотурбинного двигателя (ГТД), ротор ТВД и лопатка ротора ТВД, охлаждаемые этим способом, узел аппарата закрутки воздуха ротора ТВД
Источник поступления информации: Роспатент

Показаны записи 41-50 из 110.
12.12.2018
№218.016.a592

Стенд для проверки на герметичность мест заделки измерительных линий датчиков температуры

Изобретение относится к области исследования устройств на герметичность и может быть использовано для проверки на герметичность мест заделки измерительных линий датчиков температуры. Сущность: стенд содержит ванну (1) с жидкостью (2), площадку (3), установленную с возможностью перемещения...
Тип: Изобретение
Номер охранного документа: 0002674412
Дата охранного документа: 07.12.2018
14.12.2018
№218.016.a6c1

Ротор осевой газовой турбины

Ротор осевой газовой турбины содержит диск с охлаждаемыми рабочими лопатками и штифтами, покрывной диск, образующий каналы подвода охлаждающего воздуха к хвостовой части лопаток, оба диска снабжены кольцевыми фланцами для крепления штифтов, установленными с радиальным зазором относительно друг...
Тип: Изобретение
Номер охранного документа: 0002674852
Дата охранного документа: 13.12.2018
24.01.2019
№219.016.b371

Ионизационный датчик сигнализации наличия высотемпературной агрессивной среды

Использование: для автоматической сигнализации наличия высокотемпературной агрессивной среды. Сущность изобретения заключается в том, что ионизационный датчик сигнализации наличия высокотемпературной агрессивной среды содержит средство закрепления на корпус объекта контроля, центральный...
Тип: Изобретение
Номер охранного документа: 0002677979
Дата охранного документа: 22.01.2019
26.01.2019
№219.016.b49a

Поворотное осесимметричное сопло турбореактивного двигателя

Изобретение относится к турбореактивным двигателям для авиационной техники, в частности к конструкции реактивных сопел. Поворотное осесимметричное сопло турбореактивного двигателя содержит неподвижный корпус со сферической законцовкой на нем и подвижное относительно нее поворотное устройство, а...
Тип: Изобретение
Номер охранного документа: 0002678235
Дата охранного документа: 24.01.2019
26.01.2019
№219.016.b49e

Способ эксплуатации турбореактивного двигателя

Способ эксплуатации турбореактивного двигателя относится к области авиадвигателестроения, а именно к методам обеспечения газодинамической устойчивости турбореактивных двигателей в экстремальных условиях эксплуатации. Предварительно для данного типа двигателя проводят испытания на максимальном и...
Тип: Изобретение
Номер охранного документа: 0002678237
Дата охранного документа: 24.01.2019
26.01.2019
№219.016.b4af

Кронштейн крепления агрегата на обечайке корпуса турбомашины

Изобретение относится к области турбомашиностроения, преимущественно к авиадвигателестроению, а именно к узлам соединения агрегатов с обечайкой корпуса турбомашины. Кронштейн крепления агрегата на обечайке корпуса турбомашины содержит бобышку, расположенную между обечайкой корпуса и агрегатом,...
Тип: Изобретение
Номер охранного документа: 0002678187
Дата охранного документа: 24.01.2019
16.02.2019
№219.016.bb24

Способ определения погасания камеры сгорания газотурбинного двигателя

Изобретение относится к газотурбинным двигателям (ГТД), а именно к способам определения погасания камеры сгорания ГТД, преимущественно, наземных установок, например, на газоперекатывающих агрегатах. При осуществлении способа измеряют частоту вращения n ротора высокого давления турбокомпрессора,...
Тип: Изобретение
Номер охранного документа: 0002680019
Дата охранного документа: 14.02.2019
16.02.2019
№219.016.bb26

Охлаждаемая турбина двухконтурного газотурбинного двигателя

Охлаждаемая турбина двухконтурного газотурбинного двигателя содержит коллектор с узлом для соединения с источником высокотемпературного воздуха, коллектор с узлом для соединения с источником низкотемпературного воздуха, междисковую полость, рабочие колеса турбин высокого и низкого давления с...
Тип: Изобретение
Номер охранного документа: 0002680023
Дата охранного документа: 14.02.2019
17.03.2019
№219.016.e275

Газотурбинный двигатель твердого топлива

Газотурбинный двигатель твердого топлива содержит твердотопливный заряд и корпус, образующий газовоздушный тракт двигателя, в котором последовательно размещены компрессор, камера сгорания, турбина, выходное устройство. Твердотопливный заряд размещен вне газовоздушного тракта двигателя и...
Тип: Изобретение
Номер охранного документа: 0002682224
Дата охранного документа: 15.03.2019
17.03.2019
№219.016.e2a0

Способ регулирования авиационного турбореактивного двигателя

Изобретение относится к области авиадвигателестроения, а именно к способам регулирования авиационных турбореактивных двигателей (ТРД). В способе предварительно на нескольких экземплярах двигателей во всей эксплуатационной области определяют диапазоны частот вращения ротора низкого давления с...
Тип: Изобретение
Номер охранного документа: 0002682226
Дата охранного документа: 15.03.2019
Показаны записи 41-50 из 397.
20.02.2014
№216.012.a1b7

Пульт управления закрылками и предкрылками крыла летательного аппарата (варианты)

Группа изобретений относится к области авиационной техники. Пульт управления закрылками и предкрылками крыла летательного аппарата включает панель управления с командным блоком основного управления, блоками переключателей резервного управления и кнопочного переключателя режимов управления....
Тип: Изобретение
Номер охранного документа: 0002507114
Дата охранного документа: 20.02.2014
20.03.2014
№216.012.acac

Химический вертикальный электронасосный агрегат с рабочим колесом закрытого типа и способ перекачивания химически агрессивных жидкостей

Изобретение относится к насосостроению, а именно к химическим вертикальным центробежным электронасосным агрегатам. Агрегат включает привод - электродвигатель, переходник с силовой муфтой и центробежный полупогружной насос. Корпус насоса выполнен сборным и включает размещенный над опорной...
Тип: Изобретение
Номер охранного документа: 0002509919
Дата охранного документа: 20.03.2014
20.03.2014
№216.012.acad

Конструктивно-технологический модельный ряд химических вертикальных насосов (варианты)

Изобретение относится к насосостроению, а именно к химическим вертикальным центробежным насосам. Каждый репрезентативный насос из конструктивно-технологического модельного ряда содержит однотипную конструктивную систему. Каждый насос выполнен центробежным, полупогружным, снабжен опорной плитой....
Тип: Изобретение
Номер охранного документа: 0002509920
Дата охранного документа: 20.03.2014
20.03.2014
№216.012.acae

Химический горизонтальный насос с рабочим колесом открытого типа

Изобретение относится к насосостроению, а именно к конструкциям химических горизонтальных центробежных насосов с рабочим колесом открытого типа, предназначенных для перекачивания химически агрессивных жидкостей. Предлагаемый насос выполнен одноступенчатым, консольного типа, содержит ходовую и...
Тип: Изобретение
Номер охранного документа: 0002509921
Дата охранного документа: 20.03.2014
20.03.2014
№216.012.acaf

Химический вертикальный насос с рабочим колесом закрытого типа

Изобретение относится к насосостроению, а именно к вертикальным насосам для перекачивания химически агрессивных жидкостей. Насос выполнен центробежным полупогружным, содержит корпус, в котором установлен ротор с валом и рабочим колесом закрытого типа, и снабжен опорной плитой. Корпус насоса...
Тип: Изобретение
Номер охранного документа: 0002509922
Дата охранного документа: 20.03.2014
20.03.2014
№216.012.acb0

Химический вертикальный электронасосный агрегат с рабочим колесом открытого типа и способ перекачивания химически агрессивных жидкостей

Изобретение относится к насосостроению. Агрегат включает привод в виде электродвигателя, переходник с силовой муфтой и центробежный полупогружной насос. Корпус насоса выполнен сборным и включает размещенный над опорной плитой корпус ходовой части, а также прикрепленный к опорной плите снизу...
Тип: Изобретение
Номер охранного документа: 0002509923
Дата охранного документа: 20.03.2014
20.03.2014
№216.012.acb1

Вертикальный пульповый насос с рабочим колесом открытого типа (варианты)

Изобретение относится к пульповым насосам вертикального типа. Насос выполнен центробежным, консольным, полупогружным, содержит корпуса ходовой и проточной части. Корпус ходовой части оснащен корпусами подшипников и корпусом удлиняющей вставки. Корпуса ходовой части выполнены совместно...
Тип: Изобретение
Номер охранного документа: 0002509924
Дата охранного документа: 20.03.2014
20.03.2014
№216.012.acb2

Способ производства химического вертикального электронасосного агрегата и электронасосный агрегат, выполненный этим способом (варианты)

Изобретение относится к насосостроению. Способ производства включает изготовление сборного корпуса насоса из соединяемых с опорной плитой корпуса ходовой части с подшипниковыми опорами, корпуса подвески и корпуса проточной части, изготовление вала ротора насоса, рабочего колеса, корпуса...
Тип: Изобретение
Номер охранного документа: 0002509925
Дата охранного документа: 20.03.2014
20.03.2014
№216.012.acb3

Способ изготовления электронасосного агрегата модельного ряда и модельный ряд электронасосных агрегатов, изготовленных этим способом

Изобретение относится к способу изготовления пульпового электронасосного агрегата вертикального типа и его конструкции. Способ изготовления агрегата включает сборку насоса. Насос включает корпусы ходовой и проточной частей. Рабочее колесо изготавливают в виде крыльчатки закрытого типа с дисками...
Тип: Изобретение
Номер охранного документа: 0002509926
Дата охранного документа: 20.03.2014
10.04.2014
№216.012.af61

Конструктивно-технологический модельный ряд химических горизонтальных насосов и способ перекачивания химических жидкостных сред насосами конструктивно-технологического модельного ряда (варианты)

Группа изобретений относится к насосостроению, а именно к химическим горизонтальным центробежным насосам. Конструктивно-технологический модельный ряд химических насосов включает совокупность насосов. Каждый насос ряда выполнен по однотипной системе центробежным, одноступенчатым, содержащим вал...
Тип: Изобретение
Номер охранного документа: 0002510612
Дата охранного документа: 10.04.2014
+ добавить свой РИД