×
04.04.2019
219.016.fce2

Результат интеллектуальной деятельности: УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ МАССОВОГО РАСХОДА ВЕЩЕСТВА

Вид РИД

Изобретение

№ охранного документа
0002433376
Дата охранного документа
10.11.2011
Аннотация: Изобретение относится к области измерительной техники и может быть использовано в системах управления технологическими процессами. Устройство для измерения массового расхода вещества, протекающего по трубопроводу, содержит первый и второй генераторы электромагнитных колебаний, первый и второй чувствительные элементы, коррелятор, соединенный с первым входом умножителя. Дополнительно в устройство для измерения массового расхода вещества введены тройник, первый и второй детекторы, первый и второй измерители амплитудно-частотных характеристик, элемент ввода в трубопровод электромагнитных колебаний, элемент вывода из трубопровода электромагнитных колебаний и измеритель поворота плоскости поляризации и выполнены в виде тороидальных резонаторов и сочленены с трубопроводом в разных его сечениях. Причем выход первого генератора электромагнитных колебаний соединен с первым плечом тройника, второе плечо которого подключено к входу первого тороидального резонатора, а третье плечо тройника подключено к входу второго тороидального резонатора. Технический результат - повышение точности измерения массового расхода вещества. 1 ил.

Изобретение относится к области измерительной техники и может быть использовано в системах управления технологическими процессами.

Известно устройство, реализуемое доплеровским микроволновым измерителем массового расхода криогенных жидких сред, протекающих по диэлектрическому трубопроводу (см. В.А. Викторов и др. «Радиоволновые измерения параметров технологических процессов». М.: Энергоатомиздат, 1989, стр.141-142), в котором по преобразованию амплитуды рассеянного неоднородностями в потоке сигнала, зависящего от плотности материала, и частоты доплеровского сигнала, связанного со средней скоростью твердых включений (шуги) в потоке, определяют массовый расход контролируемого вещества.

Недостатком этого известного устройства является ненадежность, связанная с нестабильностью амплитуды рассеянного сигнала.

Наиболее близким техническим решением к предлагаемому является принятое автором за прототип устройство для определения массового расхода вещества, протекающего по трубопроводу (см. авторское свидетельство №1753281, бюл. №29, 1992 г.). Это устройство содержит две пары антенн, расположенных в разных сечениях вдоль измерительного участка трубопровода диаметрально противоположно в каждой паре. Данные конструкции антенн образуют два кольцевых резонатора, которые включены в частозадающие цепи автогенераторов. Их выходные сигналы в виде частот, зависящих от собственных частот электромагнитных колебаний соответствующих кольцевых резонаторов, поступают на вычислитель скорости потока вещества. Одновременно выходной сигнал одного из автогенераторов поступает на вычислитель плотности. В вычислителе скорости потока по временному положению максимума взаимокорреляционной функции частот автогенераторов получают информацию о скорости потока вещества. Выходной сигнал вычислителя плотности в виде частоты одного из автогенераторов служит для определения плотности вещества. В результате по умножению выходных сигналов вычислителей скорости потока и плотности вещества определяют массовый расход контролируемой среды в трубопроводе.

Недостатком этого устройства следует считать низкую точность из-за изменения высоты слоя вещества в трубопроводе.

Задачей заявляемого технического решения является повышение точности измерения.

Поставленная задача достигается тем, что в устройство для измерения массового расхода вещества, протекающего по трубопроводу, содержащее первый и второй генераторы электромагнитных колебаний, первый и второй чувствительные элементы, коррелятор, соединенный выходом с первым входом умножителя, введены тройник, первый и второй детекторы, первый и второй измерители амплитудно-частотных характеристик, элемент ввода в трубопровод электромагнитных колебаний, элемент вывода из трубопровода электромагнитных колебаний и измеритель поворота плоскости поляризации, первый и второй чувствительные элементы выполнены в виде тороидальных резонаторов и сочленены с трубопроводом в разных его сечениях, элементы ввода в трубопровод и вывода из трубопровода электромагнитных колебаний расположены диаметрально на наружной поверхности трубопровода, при этом выход первого генератор электромагнитных колебаний соединен с первым плечом тройника, второе плечо которого подключено к входу первого тороидального резонатора, выход которого через первый детектор соединен со входом первого измерителя амплитудно-частотных характеристик, выход которого подключен к первому входу коррелятора и второму входу умножителя, второй вход коррелятора подключен к выходу второго измерителя амплитудно-частотных характеристик, вход которого через второй детектор соединен с выходом второго тороидального резонатора, вход второго тороидального резонатора подключен к третьему плечу тройника, третий вход умножителя соединен с выходом измерителя поворота плоскости поляризации, выход которого соединен с элементом вывода из трубопровода электромагнитных колебаний, элемент ввода в трубопровод электромагнитных колебаний соединен с выходом второго генератора электромагнитных колебаний.

Существенными отличительными признаками указанной выше совокупности является наличие тройника, измерителя поворота плоскости поляризации и элементов ввода в трубопровод и вывода из трубопровода электромагнитных колебаний.

В заявляемом техническом решении благодаря свойствам перечисленных признаков определение максимума взаимокорреляционной функции резонансных частот двух тороидальных резонаторов, резонансной частоты одного из них и угла поворота плоскости поляризации, прошедшей через контролируемое вещество волны, дает возможность решить поставленную задачу: обеспечить высокую точность измерения массового расхода вещества, протекающего по трубопроводу.

Устройство содержит (см. чертеж) первый генератор электромагнитных колебаний 1, второй генератор электромагнитных колебаний 2, тройник 3, первый тороидальный резонатор 4, второй тороидальный резонатор 5, первый детектор 6, второй детектор 7, первый измеритель амплитудно-частотных характеристик 8, второй измеритель амплитудно-частотных характеристик 9, элемент ввода в трубопровод электромагнитных колебаний 10, элемент вывода из трубопровода электромагнитных колебаний 11, соединенный со входом измерителя поворота плоскости поляризации 12, коррелятор 13, подключенный выходом к первому входу умножителя 14. На чертеже цифрой 15 обозначен трубопровод.

Устройство работает следующим образом. С выходом первого генератора электромагнитных колебаний 1 сигнал поступает на первое плечо тройника 3. Здесь по принципу действия тройника (волноводный) сигнал делится поровну между вторым и третьим плечами. После этого сигналы, снимаемые со второго и третьего плеч тройника, вводят соответственно в резонансные полости первого 4 и второго 5 тороидальных резонаторов. В рассматриваемом случае первый и второй тороидальные резонаторы сочленены с трубопроводом 15 резонансными полостями в разных его сечениях. При этом в местах сочленения сечение трубопровода должно соответствовать сечениям резонансных полостей первого и второго тороидальных резонаторов, т.е. контролируемое вещество должно перемещаться по трубопроводу и резонансным полостям беспрепятственно и с одной и той же скоростью.

При отсутствии вещества в трубопроводе (резонансных полостях) возбуждают электромагнитные колебания в первом и втором резонаторах (при возбуждении колебаний в резонаторах первый генератор должен иметь возможность перестроить свою частоту). В данном случае наличие резонанса контролируется сигналами, выведенными из резонансных полостей первого и второго резонаторов с помощью первого 6 и второго 7 детекторов. Эти сигналы далее передаются на соответствующие входы первого 8 и второго 9 измерителей амплитудно-частотных характеристик. В этих измерителях определяют собственные резонансные частоты тороидальных резонаторов и отслеживают их изменение.

Наличие вещества в трубопроводе и резонансных полостях приводит к тому, что резонансные частоты тороидальных резонаторов меняются и они могут быть определены как (см. И.В. Лебедев. Техника и приборы СВЧ. М.: Высшая школа, 1970, стр.349-350):

где ω10 и ω20 - резонансные частоты первого и второго тороидальных резонаторов соответственно; r10 и r20 - радиусы резонансных полостей первого и второго тороидальных резонаторов соответственно; R1 и R2 - соответственно наружные радиусы первого и второго тороидальных резонаторов; d1 и d2 - высоты резонансных полостей первого и второго тороидальных резонаторов соответственно; ε и µ - диэлектрическая и магнитная проницаемости вещества соответственно; ε0 и µ0 - диэлектрические и магнитные проницаемости вакуума соответственно.

Пусть рассматриваемые тороидальные резонаторы идентичны по конструкции, т.е. r10=r20=r0; R1=R2=R0; d1=d2=d. Тогда при µ≈1 для одного из тороидальных резонаторов можно принимать, что

где ω0 - резонансная частота одного из тороидальных резонаторов.

Из формулы (1) видно, что при постоянных значениях r0, R, d, µ0 и ε0 по резонансной частоте ω0 можно судить о диэлектрической проницаемости вещества в трубопроводе.

Известно, что для измерения массового расхода вещества в трубопроводе необходимо определить скорость потока вещества и его плотность при известном сечении трубопровода.

Согласно предлагаемому техническому решению определение плотности вещества основывается на ее зависимости от диэлектрической проницаемости вещества. Эту зависимость, например, для слабополярных диэлектрических веществ можно выразить формулой Клаузиуса-Моссоти

где N - число Авогадро; α - поляризуемость молекул вещества; ρ - плотность вещества; М - молекулярный вес вещества. Отсюда следует, что если подставить значение ε из уравнения (2) в уравнение (1), то по частоте ω0 при известных значениях М, α и N можно определить плотность вещества. В данном устройстве определение частоты ω0 можно произвести с помощью первого измерителя амплитудно-частотных характеристик.

Ввиду того, что тороидальные резонаторы сочленены с трубопроводом в разных его сечениях, их амплитудно-частотные характеристики (АЧХ), наблюдаемые на экранах соответственно первого и второго измерителей амплитудно-частотных характеристик, при перемещении вещества по трубопроводу, должны быть смещены во времени. Если принимать, что поток вещества сначала проходит резонансную полость первого резонатора, а затем - второго, то АЧХ первого резонатора должна опережать во времени АЧХ второго резонатора, и наоборот. При этом запаздывание по времени τ3 АЧХ второго резонатора относительно АЧХ первого резонатора может быть определено отношением расстояния l между центрами тороидальных резонаторов к скорости потока вещества в трубопроводе. Таким образом, в рассматриваемом случае определение скорости потока вещества υn предусматривает (при постоянном расстоянии l) оценку времени задержки τ3 АЧХ второго резонатора от АЧХ первого. Для этого выходные сигналы первого и второго измерителей амплитудно-частотных характеристик, соответствующие АЧХ первого и второго тороидальных резонаторов, поступают на соответствующие входы коррелятора 13. Здесь для оценки τ3 используется максимум взаимокорреляционной функции двух входных сигналов коррелятора (частотные сигналы двух тороидальных резонаторов). Согласно теории взаимокорреляционной функции задержкой опережающего сигнала (АЧХ первого резонатора) на время τ и равенством τ=τ3 можно добиться максимума корреляционно обрабатываемых сигналов. Следовательно, измеряя время, при котором достигается максимум взаимокорреляционной функции частотных сигналов тороидальных резонаторов, можно определить скорость потока вещества в трубопроводе.

Итак, при известном сечении трубопровода информацию о скорости потока вещества в виде максимума взаимокорреляционной функции частотных сигналов двух тороидальных резонаторов и плотности вещества в виде резонансной частоты одного из тороидальных резонаторов можно использовать для измерения массового расхода вещества, протекающего по трубопроводу.

Как показывает практика, этот подход эффективно работает при полном потоке вещества в трубопроводе, т.е. когда сечение потока соответствует сечению трубопровода.

Изменение сечения потока вещества (высоты слоя материала) в трубопроводе может привести к погрешности.

В данном устройстве для исключения такого рода погрешности предлагается отслеживать (оценить) изменение высоты слоя материала в трубопроводе. Для этого выходной сигнал второго генератора электромагнитных колебаний 2 с помощью элемента ввода в трубопровод электромагнитных колебаний 10 направляется в поток вещества. Далее прошедший через поток сигнал улавливается элементом вывода из трубопровода электромагнитных колебаний 11 и переносится на вход измерителя поворота плоскости поляризации 12.

Если по трубопроводу протекает вещество, обладающее способностью поворачивать направление поляризации проходящей через вещество волны, то эта волна окажется повернутой этим веществом на некоторый угол. На практике существуют оптически активные вещества, обладающие этой способностью, и оптически неактивные вещества, не обладающие этой способностью.

Допустим, по трубопроводу протекает оптически активное вещество, тогда для угла поворота плоскости поляризации прошедшей через это вещество волны φ можно записать

где l - длина волны в веществе, αоп - постоянная вращения, зависящая от природы вещества и длины волны.

В рассматриваемом случае можно принимать, что длина пути волны l соответствует высоте слоя материла (вещества) h, например, в горизонтальном трубопроводе.

В соответствии с этим решение уравнения (3) по l(h) позволяет записать

.

Из этой формулы видно, что если известен параметр αоп, измерением угла поворота плоскости поляризации прошедшей через слой вещества волны можно вычислить высоту слоя материала. Следовательно, выходным сигналом измерителя поворота плоскости поляризации можно оценить параметр h.

Принимая во внимание, что высота слоя вещества в трубопроводе может изменяться от нуля до величины, равной внутреннему диаметру трубопровода, для определения сечения потока вещества в трубопроводе может быть использовано соотношение

,

где Д - внутренний диаметр трубопровода.

В предлагаемом устройстве для измерения массового расхода контролируемой среды с учетом изменения сечения потока вещества выходные сигналы измерителя поворота плоскости поляризации, первого измерителя амплитудно-частотных характеристик и коррелятора поступают на соответствующие входы умножителя 14. Здесь по умножению указанных информативных сигналов получают результат о массовом расходе вещества, протекающего по трубопроводу.

Таким образом, на основе проведения одновременно определения скорости потока вещества, плотности вещества и сечения потока вещества можно обеспечить высокую точность измерения массового расхода.

Устройство для измерения массового расхода вещества, протекающего по трубопроводу, содержащее первый и второй генераторы электромагнитных колебаний, первый и второй чувствительные элементы, коррелятор, соединенный выходом с первым входом умножителя, отличающееся тем, что в него введены тройник, первый и второй детекторы, первый и второй измерители амплитудно-частотных характеристик, элемент ввода в трубопровод электромагнитных колебаний, элемент вывода из трубопровода электромагнитных колебаний и измеритель поворота плоскости поляризации, первый и второй чувствительные элементы выполнены в виде тороидальных резонаторов и сочленены с трубопроводом в разных его сечениях, элементы ввода в трубопровод и вывода из трубопровода электромагнитных колебаний расположены диаметрально на наружной поверхности трубопровода, причем выход первого генератора электромагнитных колебаний соединен с первым плечом тройника, второе плечо которого подключено ко входу первого тороидального резонатора, выход которого через первый детектор соединен со входом первого измерителя амплитудно-частотных характеристик, выход которого подключен к первому входу коррелятора и второму входу умножителя, второй вход коррелятора подключен к выходу второго измерителя амплитудно-частотных характеристик, вход которого через второй детектор соединен с выходом второго тороидального резонатора, вход второго тороидального резонатора подключен к третьему плечу тройника, третий вход умножителя соединен с выходом измерителя поворота плоскости поляризации, выход которого соединен с элементом вывода из трубопровода электромагнитных колебаний, элемент ввода электромагнитных колебаний в трубопровод соединен с выходом второго генератора электромагнитных колебаний.
Источник поступления информации: Роспатент

Показаны записи 11-20 из 101.
10.02.2013
№216.012.2499

Высокопараллельный спецпроцессор для решения задачи о выполнимости булевых формул

Изобретение относится к вычислительной технике, в частности к специализированным процессорам с высокой степенью параллелизма. Технический результат заключается в снижении сложности спецпроцессора за счет упрощения структуры процессорного блока, в расширении функциональных возможностей за счет...
Тип: Изобретение
Номер охранного документа: 0002474871
Дата охранного документа: 10.02.2013
10.02.2013
№216.012.24a5

Тренажер для освоения интервенционных методов диагностики и лечения заболеваний сосудов сердца

Изобретение относится к медицине и медицинской технике. Тренажер для освоения интервенционных методов диагностики и лечения заболеваний сосудов сердца содержит блок (АБ) с двумя датчиками фиксации линейного перемещения катетера, тросика со сменными инструментами и блоки: сопряжения (БС),...
Тип: Изобретение
Номер охранного документа: 0002474883
Дата охранного документа: 10.02.2013
27.02.2013
№216.012.2be1

Устройство для пожаротушения

Изобретение относится к противопожарной технике и может быть использовано в качестве средства пожаротушения с высокоточным определением массы огнетушащего вещества, в частности диоксида углерода, в баллоне и ее уменьшения вследствие возможной утечки из баллона. Предлагаемое устройство для...
Тип: Изобретение
Номер охранного документа: 0002476760
Дата охранного документа: 27.02.2013
20.03.2013
№216.012.2f84

Прямоточный движитель для водного транспорта

Изобретение относится к судостроению и может быть использовано в качестве движителя для судов различного назначения. Прямоточный движитель для водного транспорта содержит трубопроводы и устройство, создающее струю воды за счет формирования в трубопроводе бегущих водяных волн. Трубопроводы...
Тип: Изобретение
Номер охранного документа: 0002477699
Дата охранного документа: 20.03.2013
27.03.2013
№216.012.316d

Устройство для определения высоты слоя вещества

Устройство для определения высоты слоя вещества, протекающего по аэрожелобу, содержит источник излучения, соединенный выходом с элементом ввода излучения, элемент вывода излучения, подключенный ко входу измерителя угла поворота плоскости поляризации, и обмотку. В устройство введены...
Тип: Изобретение
Номер охранного документа: 0002478191
Дата охранного документа: 27.03.2013
27.05.2013
№216.012.4529

Способ измерения расхода газа

Способ измерения расхода газа, при котором выделяют элементарный измерительный объем газа в потоке, проводят его через измерительную схему струйного генератора, измеряют частоту колебаний давления элементарного объема в приемных каналах одного любого струйного элемента и по частоте колебаний...
Тип: Изобретение
Номер охранного документа: 0002483282
Дата охранного документа: 27.05.2013
27.05.2013
№216.012.4537

Способ определения сплошности потока жидкости в трубопроводе

Предлагаемое техническое решение относится к измерительной технике. Способ определения сплошности потока жидкости в трубопроводе, при котором воздействуют на поток жидкости электрическим полем, зондируют контролируемый поток электромагнитной волной и принимают прошедшую через поток...
Тип: Изобретение
Номер охранного документа: 0002483296
Дата охранного документа: 27.05.2013
27.05.2013
№216.012.4598

Магниторезистивный преобразователь

Изобретение относится к измерительной технике. Технический результат - уменьшение потребляемой мощности и нагрева. Сущность: преобразователь содержит подложку с диэлектрическим слоем, на котором расположены соединенные в мостовую схему четыре параллельно расположенные тонкопленочные...
Тип: Изобретение
Номер охранного документа: 0002483393
Дата охранного документа: 27.05.2013
10.06.2013
№216.012.47d9

Способ управления движением судна по заданной траектории

Изобретение относится к области судовождения. Автоматическое управление движением судна по заданной траектории осуществляют путем управления по заданному углу курса с использованием кормовых рулей. Для обеспечения движения судна с углом дрейфа, близким к нулю, в предложенном способе применяют...
Тип: Изобретение
Номер охранного документа: 0002483973
Дата охранного документа: 10.06.2013
10.09.2013
№216.012.689b

Счетчик-расходомер газа

Изобретение относится к измерительным устройствам и может быть использовано в технологических трубопроводах для измерения количества газа или жидкости, в ЖКХ и производственных процессах, а также в узлах учета энергоресурсов для коммерческого расчета. Счетчик-расходомер газа содержит...
Тип: Изобретение
Номер охранного документа: 0002492426
Дата охранного документа: 10.09.2013
Показаны записи 11-20 из 49.
20.10.2014
№216.012.fe9b

Устройство для определения высоты полого древесного цилиндрического изделия

Предлагаемое техническое решение относится к измерительной технике. Техническим результатом заявляемого устройства является повышение стабильности измерения контролируемого параметра. Технический результат достигается тем, что в устройство для определения высоты полого древесного...
Тип: Изобретение
Номер охранного документа: 0002531035
Дата охранного документа: 20.10.2014
20.03.2015
№216.013.346a

Способ определения диаметра диэлектрического полого цилиндрического изделия

Изобретение относится к измерительной технике и представляет собой способ определения диаметра диэлектрического полого цилиндрического изделия. При реализации способа контролируемое изделие предварительно помещают в электрическое поле, облучают изделие электромагнитной волной, принимают...
Тип: Изобретение
Номер охранного документа: 0002544893
Дата охранного документа: 20.03.2015
10.04.2015
№216.013.36bb

Способ определения наружного объема цилиндрического изделия

Предлагаемое техническое решение относится к измерительной технике. Техническим результатом заявляемого решения является расширение диапазона измерения. Технический результат достигается тем, в способе определения наружного объема цилиндрического изделия, использующим взаимодействие...
Тип: Изобретение
Номер охранного документа: 0002545499
Дата охранного документа: 10.04.2015
20.05.2015
№216.013.4b6c

Устройство для обезвоживания нефтепродукта путем выпаривания водяных капелек

Изобретение относится к обезвоживанию нефтепродукта. Изобретение касается устройства обезвоживания нефтепродукта, протекающего по магистральному трубопроводу, путем выпаривания из него водяных капелек. Устройство содержит источник энергии электромагнитного поля, соединенный выходом с элементом...
Тип: Изобретение
Номер охранного документа: 0002550822
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4dac

Способ определения толщины льда

Изобретение относится к способам определения толщины льда и может быть использовано в системах управления технологическими процессами и рыболовстве. Сущность: в основу способа положено использование взаимодействия льда и полой герметичной цилиндрической эластичной оболочки с рабочей средой (1)...
Тип: Изобретение
Номер охранного документа: 0002551398
Дата охранного документа: 20.05.2015
10.07.2015
№216.013.6084

Способ контроля процесса плавки в вакуумной дуговой печи

Изобретение относится к области измерительной техники. Техническим результатом заявляемого решения является отслеживание длины дуги в процессе плавки в вакуумной дуговой печи. Технический результат достигается тем, что в способе контроля процесса плавки в вакуумной дуговой печи, включающем...
Тип: Изобретение
Номер охранного документа: 0002556249
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.60d3

Устройство для определения внешнего объема цилиндрического полого изделия

Изобретение относится к области измерительной техники. Техническим результатом заявляемого решения является упрощение процедуры обработки информационных сигналов о геометрических параметрах цилиндрического изделия. Устройство для определения внешнего объема цилиндрического полого изделия...
Тип: Изобретение
Номер охранного документа: 0002556329
Дата охранного документа: 10.07.2015
10.10.2015
№216.013.81c9

Сверхвысокочастотный способ определения плотности древесины

Предлагаемое техническое решение относится к измерительной технике. Сверхвысокочастотный способ определения плотности древесины включает зондирование образца древесины электромагнитными волнами. Затем принимают пару ортогонально поляризованных волн, вычисляют скорости распространения этих волн...
Тип: Изобретение
Номер охранного документа: 0002564822
Дата охранного документа: 10.10.2015
10.11.2015
№216.013.8bfa

Способ цифрового измерения электрических величин

Изобретение относится к измерительной технике. Способ включает преобразование измеряемой электрической величины и отсчет измеренной электрической величины. При этом возбуждают открытый резонатор электромагнитными колебаниями, воздействуют преобразованной электрической величиной на открытый...
Тип: Изобретение
Номер охранного документа: 0002567441
Дата охранного документа: 10.11.2015
27.04.2016
№216.015.3801

Устройство для определения концентрации кислорода

Изобретение относится к измерительной технике и аналитическому приборостроению и может быть использовано в системах управления технологическими процессами. Устройство для определения концентрации кислорода содержит первичный преобразователь, представляющий собой магнитную систему с рабочим и...
Тип: Изобретение
Номер охранного документа: 0002582487
Дата охранного документа: 27.04.2016
+ добавить свой РИД