×
04.04.2019
219.016.fca0

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ СВЕРХТОНКИХ ПЛЕНОК КРЕМНИЯ НА САПФИРЕ

Вид РИД

Изобретение

Аннотация: Изобретение относится к микроэлектронике. Сущность изобретения: в способе получения сверхтонких пленок кремния на сапфире в объектах, содержащих сапфировую подложку и исходный слой кремния, толщина которого значительно больше толщины получаемых тонких пленок кремния, производят аморфизацию большей части слоя кремния, после чего производят твердофазную рекристаллизацию этого слоя, при которой используют оставшуюся часть слоя кремния, не затронутую аморфизацией, в качестве затравочного слоя, причем рекристаллизацию производят с использованием затравочного слоя, примыкающего к границе раздела кремний-сапфир, а толщину этого затравочного слоя делают в процессе аморфизации минимально возможной без ухудшения качества рекристаллизованного слоя. Технический результат: уменьшение энергии имплантации при аморфизации, недопущение радиационных дефектов в сапфировой подложке и вследствие этого недопущение автолегирования кремниевого слоя атомами алюминия в процессе рекристаллизации.

Область техники, к которой относится изобретение

Изобретение относится к микроэлектронике, более точно к полупроводниковому материаловедению, используемому в микроэлектронике, еще точнее к способам получения сверхтонких (толщиной ~100 нм и менее) пленок кремния на сапфире.

Изобретение может быть использовано для изготовления быстродействующих полупроводниковых приборов и микросхем и может найти применение в различных областях, в частности в космической и атомной областях.

Уровень техники

Известен способ получения низкодефектных пленок кремния на сапфире в объектах, содержащих сапфировую подложку и исходный слой кремния, толщина которого значительно больше толщины получаемых тонких пленок кремния, состоящий в том, что производят аморфизацию большей части слоя кремния, после чего производят твердофазную рекристаллизацию этого слоя, при которой используют оставшуюся часть слоя кремния, не затронутую аморфизацией, в качестве затравочного слоя (см. патент США №4,177,084 от 1978 г. по классу США 148/1.5, «Method for Producting a Low Defect Layer of Silicon-on-Sapphire Wafer»). В этом способе в результате аморфизации образуют затравочный слой, прилегающий к поверхности объекта, и аморфный слой, прилегающий к границе раздела кремний-сапфир.

Рекристаллизацию в этом способе осуществляют в два этапа. На первом этапе производят первый отжиг объекта при повышенной температуре. На втором этапе производят второй отжиг образца в инертной, или, иначе говоря, нейтральной, среде при более высокой температуре, чем при первом отжиге.

Недостаток этого способа заключается в том, что он не позволяет получить сверхтонких пленок кремния вследствие того, что затравочный слой прилегает к поверхности объекта, и при этом второй отжиг производят в инертной среде.

Известен также способ получения сверхтонких пленок кремния на сапфире в объектах, содержащих сапфировую подложку и исходный слой кремния, толщина которого значительно больше толщины получаемых тонких пленок кремния, также состоящий в том, что производят аморфизацию большей части слоя кремния, после чего производят твердофазную рекристаллизацию этого слоя, при которой используют оставшуюся часть слоя кремния, не затронутую аморфизацией, в качестве затравочного слоя. Этот способ представлен в патенте США №4,588,447 от 1984 г. по классу США 148/1.5, «Method of Eliminating P-Type Electrical Activity and Increasing Channel Mobility of Si-Implanted and Recrystallized SOS Films»). В этом способе также в результате аморфизации образуют затравочный слой, прилегающий к поверхности объекта, и аморфный слой, прилегающий к границе раздела кремний-сапфир. Рекристаллизацию в этом способе также осуществляют в два этапа. На первом этапе производят первый отжиг объекта при повышенной температуре. На втором этапе производят второй отжиг образца при более высокой температуре, чем при первом отжиге. Но в отличие от предыдущего способа (см. патент США №4,177,084) второй отжиг производят в окислительной среде и в результате этого окисляется затравочный слой. После второго отжига удаляют окисленный слой, расположенный на месте затравочного слоя.

Недостаток этого способа заключается в том, что он позволяет получать только недостаточно тонкие пленки кремния: толщиной не менее чем ~150 нм, и не позволяет получать сверхтонкие пленки. Кроме того, недостаток этого способа заключается в том, что наличие электрически неактивных комплексов кислорода и кремния в слое кремния приводит к дополнительному рассеиванию на них носителей тока, что ухудшает электрические свойства кремниевого слоя.

Известно получение кремниевого слоя толщиной 100-250 нм на сапфировой подложке (П.А.Александров и др. Особенности процесса твердофазной рекристаллизации аморфизованных ионами кислорода структур кремний-на-сапфире, «Физика и техника полупроводников», т.43, вып.5, с.627-629). Данный способ не позволяет обеспечить высокое качество электрофизических свойств пленки из-за примесей кислорода.

Прототипом предлагаемого изобретения является способ получения сверхтонких пленок кремния на сапфире в объектах, содержащих сапфировую подложку и исходный слой кремния, толщина которого значительно больше толщины получаемых тонких пленок кремния, также состоящий в том, что производят аморфизацию большей части слоя кремния, после чего производят твердофазную рекристаллизацию этого слоя, при которой используют оставшуюся часть слоя кремния, не затронутую аморфизацией, в качестве затравочного слоя (см. патент США №5,416,043 от 1993 г. по классу США 438/479, «Minimum charge FET fabrication on an ultrathin silicon on sappfire wafer»). В этом способе также в результате аморфизации образуют затравочный слой, прилегающий к поверхности объекта, и аморфный слой, прилегающий к границе раздела кремний-сапфир.

Рекристаллизацию в этом способе также осуществляют в два этапа. На первом этапе производят первый отжиг объекта при повышенной температуре. Рекристаллизация проходит в направлении к границе раздела кремний-сапфир. В результате первого отжига образуется рекристаллизованный слой кремния с дефектами. На втором этапе в окислительной среде производят второй отжиг объекта при более высокой температуре, чем при первом отжиге. В результате второго отжига образуется слой окисла кремния, или, иначе говоря, окисный слой, и рекристаллизованный слой кремния более высокого качества (то есть с меньшим количеством дефектов или без дефектов), примыкающий к границе раздела кремний-сапфир. Этот рекристаллизованный слой представляет собой сверхтонкую пленку кремния толщиной не более 100 нм. Окисный слой содержит часть, расположенную на месте затравочного слоя, и еще некоторую его часть, примыкающую к рекристаллизированному слою кремния высокого качества.

После этого с помощью химического травления удаляют окисный слой. Таким образом, в прототипе в отличие от указанного выше способа по патенту США №4,588,447 удаляемый окисный слой содержит часть, расположенную на месте затравочного слоя, и еще некоторую часть окисного слоя, примыкающую к сверхтонкой пленке кремния.

В прототипе имплантацию ионов кремния при аморфизации проводят энергией 185÷200 кэВ, дозой 5·1014÷7·1014 Si+/см2 при температуре 0°С в слой кремния толщиной 250÷270 нм, примыкающий к границе раздела кремний-сапфир. Первый отжиг для рекристаллизации проводят при температуре 500÷600°С, а второй (высокотемпературный) отжиг в окислительной среде производят при температуре 900÷950°С.

После удаления окисного слоя получают низкодефектную сверхтонкую пленку кремния на сапфире, имеющую толщину 50÷110 нм.

Существенные недостатки прототипа обусловлены тем, что затравочный слой примыкает к поверхности объекта. Эти недостатки заключаются, в первую очередь, в необходимости использования достаточно высоких энергий имплантации при аморфизации, что в свою очередь из-за наличия страглинга (разброса глубины пробега ионов, внедряемых в твердое тело) приводит к радиационным дефектам в сапфировой подложке и при рекристаллизации - к автолегированию кремниевого слоя атомами алюминия, проникающими из сапфировой подложки в процессе рекристаллизации. При автолегировании кремниевого слоя комплексы кислорода и алюминия, возникшие после второго отжига в окислительной среде, приводят к рассеиванию носителей тока и, следовательно, к уменьшению подвижности носителей электрического заряда в кремниевом слое. Это приводит к ухудшению характеристик полупроводниковых приборов, создаваемых на основе кремниевых пленок, полученных способом-прототипом.

Раскрытие изобретения

Настоящее изобретение направлено на разработку способа получения сверхтонких пленок кремния на сапфире, позволяющего уменьшить энергию имплантации при аморфизации, не допустить радиационных дефектов в сапфировой подложке, не допустить автолегирования кремниевого слоя атомами алюминия в процессе твердофазной рекристаллизации и вследствие этого обеспечить возможность использования его для изготовления быстродействующих полупроводниковых приборов и микросхем.

Технический результат - уменьшение энергии имплантации при аморфизации, недопущение радиационных дефектов в сапфировой подложке и автолегирования кремниевого слоя атомами алюминия, достигается благодаря предлагаемому способу получения сверхтонких пленок кремния на сапфире в объектах, содержащих сапфировую подложку и исходный слой кремния, толщина которого значительно больше толщины получаемых тонких пленок кремния, состоящему в том, что производят аморфизацию большей части слоя кремния, после чего производят твердофазную рекристаллизацию этого слоя, при которой используют оставшуюся часть слоя кремния, не затронутую аморфизацией, в качестве затравочного слоя, и в отличие от прототипа рекристаллизацию производят с использованием затравочного слоя, примыкающего к границе раздела кремний-сапфир, а толщину этого затравочного слоя делают в процессе аморфизации минимально возможной без ухудшения качества рекристаллизованного слоя.

Это позволяет обеспечить указанный выше технический результат благодаря тому, что в предлагаемом способе затравочный слой располагают на границе раздела кремний-сапфир, а толщину затравочного слоя делают в процессе аморфизации минимально возможной без ухудшения качества рекристаллизованного слоя.

Осуществление изобретения

Предлагаемый способ получения сверхтонких пленок кремния на сапфире применяется к объектам, содержащим сапфировую подложку и исходный кремниевый слой, толщина которого значительно больше толщины получаемых тонких пленок кремния, и заключается в следующем.

Сначала производят аморфизацию подавляющей части исходного слоя кремния в указанном объекте, примыкающей к поверхности этого объекта. В результате эта подавляющая часть становится аморфной. Оставшуюся часть исходного слоя кремния, незатронутую аморфизацией, используют при последующей рекристаллизации как затравочный слой. Этот затравочный слой примыкает к границе раздела кремний-сапфир. Толщину этого затравочного слоя делают в процессе аморфизации настолько минимально возможной, чтобы не ухудшилось качество рекристаллизованного слоя кремния, то есть слоя, полученного при последующей рекристаллизации. Например, толщина исходного слоя кремния составляет ~300 нм, толщина части исходного слоя кремния, затронутого аморфизацией, немного меньше чем 300 нм, а толщина затравочного слоя составляет 10÷20 нм.

Аморфизацию осуществляют путем имплантации ионов кремния энергией 130÷150 кэВ, дозой 5·1014÷9·1014 Si+/см2 при температуре 0°С в слой кремния толщиной ~300 нм, примыкающий к границе раздела кремний-сапфир.

Для каждой толщины исходного слоя кремния выбирается такая энергия ионов кремния, что не происходит аморфизация прилегающего к границе раздела тонкого слоя кремния, являющегося затравкой при рекристаллизации.

После аморфизации производят твердофазную рекристаллизацию этого слоя, при которой используют оставшуюся часть слоя кремния, не затронутую аморфизацией, в качестве затравочного слоя, примыкающего к границе раздела кремний-сапфир.

Рекристаллизацию осуществляют в два этапа. На первом этапе производят первый отжиг объекта при повышенной температуре. Рекристаллизация проходит в направлении от границы раздела кремний-сапфир, то есть в направлении к поверхности объекта. В результате первого отжига образуется рекристаллизованный слой кремния с дефектами. На втором этапе в окислительной среде производят второй отжиг объекта при более высокой температуре, чем при первом отжиге. В результате второго отжига образуется слой окисла кремния, или, иначе говоря, окисный слой, примыкающий к поверхности объекта, и расположенный рядом с ним рекристаллизованный слой кремния более высокого качества (то есть с меньшим количеством дефектов или без дефектов), примыкающий к границе раздела кремний-сапфир. Этот кристаллизованный слой и является сверхтонкой пленкой кремния.

Например, первый отжиг проводят при температуре ~550°С в течение 30 минут, а второй отжиг проводят при температуре 900÷1000°С в течение одного часа.

В результате рекристаллизации образуется сверхтонкая пленка кремния, примыкающая к границе раздела кремний-сапфир. Толщина этой сверхтонкой пленки составляет не более ~100 нм.

На этом процесс получения сверхтонкой пленки кремния заканчивается.

Однако в ряде случаев применения предлагаемого способа может потребоваться удаление окисного слоя, расположенного между поверхностью объекта и полученной сверхтонкой пленкой кремния. В этих случаях производят удаление этого окисного слоя путем химического травления.

Таким образом, изобретение позволяет получать сверхтонкие кремниевые пленки на сапфире с улучшенными электрическими свойствами для изделий микроэлектроники.

Способ получения сверхтонких пленок кремния на сапфире в объектах, содержащих сапфировую подложку и исходный слой кремния, толщина которого значительно больше толщины получаемых тонких пленок кремния, состоящий в том, что производят аморфизацию большей части слоя кремния, после чего производят твердофазную рекристаллизацию этого слоя, при которой используют оставшуюся часть слоя кремния, не затронутую аморфизацией, в качестве затравочного слоя, отличающийся тем, что рекристаллизацию производят с использованием затравочного слоя, примыкающего к границе раздела кремний - сапфир, а толщину этого затравочного слоя делают в процессе аморфизации минимально возможной без ухудшения качества рекристаллизованного слоя.
Источник поступления информации: Роспатент

Показаны записи 111-120 из 259.
13.01.2017
№217.015.7b7b

Способ получения радиоизотопа тербий-149

Изобретение относится к способу получения радионуклида Tb, используемого в ядерной медицине. Способ включает облучение на ускорителе заряженных частиц легкими ядрами Не (или Не) мишени из металлического европия или его соединений и наработку в мишени в результате ядерных реакций Eu(He,n)Tb и...
Тип: Изобретение
Номер охранного документа: 0002600324
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.7c1f

Способ и устройство локализации расплава активной зоны ядерного реактора

Изобретение относится к системам локализации аварии на АЭС для улавливания кориума. В расположенной ниже корпуса реактора и предназначенной для охлаждающей жидкости камере установлено средство для приема расплава, выполненное в виде вертикальных труб. Расплав в процессе заполнения камеры...
Тип: Изобретение
Номер охранного документа: 0002600552
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.80eb

Способ получения водорода из биомассы

Изобретение относится к способу получения водорода из биомассы и может быть использовано для получения водородсодержащих продуктов путем получения водорода из продуктов пиролиза растительного биотоплива, а также в системах аккумулирования и транспорта энергии, в системах производства топлива...
Тип: Изобретение
Номер охранного документа: 0002602150
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.8296

Способ эксплуатации ядерного реактора в топливном цикле с расширенным воспроизводством делящихся изотопов

Изобретение относится к способам эксплуатации ядерных реакторов, предназначенных для наработки делящихся химических элементов. Способ эксплуатации ядерного реактора в топливном цикле с расширенным воспроизводством делящихся изотопов включает первоначальную загрузку активной зоны топливными...
Тип: Изобретение
Номер охранного документа: 0002601558
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.83af

Способ получения оксида урана из раствора уранилнитрата и устройство для его осуществления

Изобретение относится к технологии и аппаратурному оформлению процесса конверсии отхода ядерного производства уранилнитрата. Способ получения оксида урана из раствора уранилнитрата включает генерирование потока азотной плазмы с помощью электродуговых плазмотронов плазменного реактора, введение...
Тип: Изобретение
Номер охранного документа: 0002601765
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.8649

Способ флокуляции биомассы микроводорослей

Изобретение относится к биотехнологии и может применяться в коммунальном (водоподготовка и водоотведение) и сельском хозяйстве, горнодобывающей промышленности, медицине, биотехнологическом производстве. Предложен способ флокуляции биомассы микроводорослей из суспендирующей среды. Способ...
Тип: Изобретение
Номер охранного документа: 0002603733
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.894a

Способ оттаивания мерзлых горных пород и грунтов

Изобретение относится к химической, горнодобывающей промышленности, в частности к искусственному оттаиванию мерзлых пород в горном деле и строительстве, и может быть использовано при разработке россыпных месторождений, в том числе с применением внешних энергоисточников, в особенности ядерных....
Тип: Изобретение
Номер охранного документа: 0002602460
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.8a2a

Способ аккумулирования водорода

Изобретение относится к способу аккумулирования водорода и может быть использовано в химической промышленности для переработки углеводородных газов, а также в системах транспорта и водородных технологий. Нагретый поток, содержащий водяной пар и низшие алканы, имеющие от одного до четырех атомов...
Тип: Изобретение
Номер охранного документа: 0002604228
Дата охранного документа: 10.12.2016
25.08.2017
№217.015.96b1

Устройство для получения монокристаллов тугоплавких фторидов

Изобретение относится к устройствам для получения монокристаллов тугоплавких фторидов горизонтальной направленной кристаллизацией из расплава. Устройство содержит вакуумную камеру 1 с размещенным в ней тепловым узлом 2, состоящим из углеграфитовых теплоизолирующих модулей 3, верхнего 4 и...
Тип: Изобретение
Номер охранного документа: 0002608891
Дата охранного документа: 26.01.2017
25.08.2017
№217.015.9a8c

Способ получения метанола и углеводородов бензинового ряда из синтез-газа

Изобретение относится к способу получения метанола и углеводородов бензинового ряда (УБР) из синтез-газа. Способ проводят в каскаде из трех и более проточных каталитических реакторов (ПКР), при этом синтез-газ (СГ) с первоначальным соотношением водород-оксид углерода 1,5≤Н:СО≤2, последовательно...
Тип: Изобретение
Номер охранного документа: 0002610277
Дата охранного документа: 08.02.2017
Показаны записи 11-11 из 11.
29.06.2020
№220.018.2c89

Способ косвенного измерения отказоустойчивости облучаемых испытательных цифровых микросхем, построенных различными способами постоянного поэлементного резервирования, и функциональная структура испытательной микросхемы, предназначенной для реализации этого способа

Изобретение относится к способам косвенного измерения отказоустойчивости облучаемых цифровых испытательных микросхем, построенных различными способами постоянного поэлементного резервирования, и к испытательным микросхемам для реализации этих способов измерения. Технический результат - создание...
Тип: Изобретение
Номер охранного документа: 0002724804
Дата охранного документа: 25.06.2020
+ добавить свой РИД