×
04.04.2019
219.016.fc27

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ВЫСОТЫ СЛОЯ СЫПУЧЕГО МАТЕРИАЛА

Вид РИД

Изобретение

№ охранного документа
0002395789
Дата охранного документа
27.07.2010
Аннотация: Предлагаемое изобретение относится к области измерительной техники. Заявлен способ определения высоты слоя сыпучего материала, перемещаемого по аэрожелобу. При этом зондируют материал электромагнитной волной и принимают отраженную от поверхности слоя материала волну. Воздействуют на контролируемый в аэрожелобе материал продольным относительно распространения зондирующей волны магнитным полем, принимают прошедшую через слой материала волну. Измеряют угол поворота плоскости поляризации этой волны и высоту слоя сыпучего материала в аэрожелобе 1 определяют по формуле где λ - угол поворота плоскости поляризации, прошедшей через слой материала волны, V - постоянная Верде, Н - напряженность магнитного поля. Технический результат направлен на упрощение процедуры получения информации о высоте слоя сыпучего материала, перемещаемого по аэрожелобу. 1 ил.

Изобретение относится к области измерительной техники и может быть использовано в системах управления технологическими процессами.

Известен способ, реализуемый радиоволновым устройством измерения уровня сыпучих материалов в желобах (см. В.А.Викторов, Б.В.Лункин, А.С.Совлуков «Радиоволновые измерения параметров технологических процессов», М.: Энергоатомиздат, 1989, с.142), при котором об уровне (степени заполнения) сыпучего материала в желобе судят по характеристикам отраженного от зондируемого объекта радиоволнового сигнала.

Недостатком этого известного способа является неточность в измерении уровня из-за возникновения эффекта интерференции между зондирующим и отраженным радиоволновыми сигналами.

Наиболее близким техническим решением к предлагаемому является принятый автором за прототип способ определения высоты слоя материала в аэрожелобе (см. А.В.Степанов. «Инновационные микроволновые приборы измерения расхода сыпучих веществ в аэрожелобах», Автоматизация в промышленности, №11, 2008, с.29-30). Этот способ, реализуемый микроволновым датчиком высоты слоя материала в аэрожелобе, выполненным в виде измерительной пластины, основан на зондировании материала микроволновым сигналом и оценке амплитуды отраженного от слоя материала сигнала, связанной с высотой слоя материала в аэрожелобе.

Недостатком данного способа можно считать сложность процедуры получения информации о высоте слоя из-за необходимого выбора размера измерительной пластины и ее сменности в зависимости от геометрических размеров аэрожелоба.

Задачей заявляемого технического решения является упрощение процедуры получения информации о высоте слоя сыпучего материала в аэрожелобе.

Поставленная задача решается тем, что в способе определения высоты слоя сыпучего материала, перемещаемого по аэрожелобу, использующем электромагнитные волны для зондирования слоя сыпучего материала и прием отраженных от слоя материала волн, воздействуют на контролируемый материал продольным относительно распространения волны магнитным полем, принимают прошедшую через слой материала волну, измеряют угол поворота плоскости поляризации этой волны и высоту слоя сыпучего материала в аэрожелобе l определяют по формуле

,

где λ - угол поворота плоскости поляризации прошедшей через слой материала волны, V - постоянная Верде, H - напряженность магнитного поля.

Сущность заявляемого изобретения, характеризуемого совокупностью указанных выше признаков, состоит в том, что при зондировании контролируемого слоя сыпучего материала электромагнитными волнами, помещенного в продольное относительно распространения волны магнитное поле, по измеренному углу поворота плоскости поляризации прошедшей через слой материала волны определяют высоту слоя сыпучего материала, перемещаемого по аэрожелобу.

Наличие в заявляемом способе совокупности перечисленных существующих признаков позволяет решить поставленную задачу определения высоты слоя сыпучего материала на основе измерения угла поворота плоскости поляризации прошедшей через слой сыпучего материала волны с желаемым техническим результатом, т.е. упрощением процедуры получения информации о высоте слоя сыпучего материала.

На чертеже приведена функциональная схема устройства, реализующего предлагаемый способ.

Устройство, реализующее данное техническое решение, содержит источник излучения электромагнитных волн 1, соединенный выходом с элементом для ввода излучения в аэрожелоб 2, элемент для вывода излучения из аэрожелоба 3, подключенный к измерителю угла поворота плоскости поляризации волны 4, обмотку 5. На чертеже цифрой 6 обозначен аэрожелоб.

Суть предлагаемого способа заключается в следующем. На практике существуют вещества (чистые жидкости, кристаллические тела и др.), обладающие способностью поворачивать направление поляризации проходящей через них линейно-поляризованной электромагнитной волны. Подавляющее большинство веществ этой способностью не обладают. Учитывая, что предлагаемый способ предназначен для определения высоты слоя вещества, не обладающего способностью поворачивать направление поляризации проходящей через него волны, для приобретения этой способности этим веществом необходимо его поместить в продольное относительно распространения волны магнитное поле (эффект Фарадея).

Как известно, эффект Фарадея сводится к вращению плоскости поляризации электромагнитной волны, проходящей через диэлектрик в присутствии постоянного (или переменного) магнитного поля, ориентированного в направлении распространения волны. В силу этого любое диэлектрическое вещество, не обладающее способностью поворачивать плоскость поляризации, может приобрести эту способность.

Пусть по аэрожелобу перемещается диэлектрическое вещество, не обладающее способностью поворачивать направление поляризации, например цемент.

Если поместить этот сыпучий материал в магнитное поле и подать на него линейно-поляризованную электромагнитную волну (волна распространяется вдоль направления намагниченности цемента), то прошедшая через контролируемое вещество волна окажется повернутой этим веществом на некоторый угол λ, определяемый выражением

где λ - угол поворота плоскости поляризации прошедшей через цемент волны; V - постоянная Верде (или магнитная вращательная способность вещества); l - длина пути волны в веществе; Н - напряженность магнитного поля, ориентированного в направлении распространения волны. Здесь постоянная Верде зависит от рода вещества, его физического состояния и длины волны.

В рассматриваемом случае можно принимать, что длина пути волны l соответствует высоте слоя цемента, перемещаемого по аэрожелобу. В соответствии с этим решение уравнения (1) по l позволяет записать

Из последней формулы видно, что если известны значения напряженности H магнитного поля и постоянной Верде V, измерением угла поворота плоскости поляризации прошедшей через слой цемента волны можно вычислить высоту слоя цемента.

Устройство, реализующее предлагаемый способ, работает следующим образом. Создают магнитное поле на некотором горизонтальном измерительном участке аэрожелоба посредством продольной обмотки 5, расположенной в пазах наружной поверхности аэрожелоба, т.е. образуют катушку, внутри которой перемещается сыпучий материал. Через катушку пропускают электрический ток. В результате перемещаемый по аэрожелобу диэлектрический сыпучий материал приобретает способность поворачивать направление поляризации падающей на материал волны. После этого выходной электромагнитный сигнал источника излучения 1 направляют в элемент для ввода излучения 2 в аэрожелоб. Излучаемой этим элементом волной зондируют слой сыпучего материала в аэрожелобе (волна падает на слой материала перпендикулярно). При этом вектор поля зондирующей волны коллинерен вектору напряженности магнитного поля. Прошедший через слой сыпучего материала сигнал принимают элементом для вывода излучения 3 из аэрожелоба. Выходной сигнал этого элемента подают на вход измерителя угла поворота плоскости поляризации 4. В этом измерителе фиксируют значение угла λ, которое далее используется для определения высоты слоя сыпучего материала по формуле (2). В этой формуле значения постоянной Верде V выбираются, как уже было сказано выше, в зависимости от свойства и состояния конкретного материала и длины используемой зондирующей волны. Кроме того, напряженность H магнитного поля, зависящая от силы тока, протекающего через обмотку 5, и числа продольных относительно горизонтальной оси аэрожелоба витков, приходящегося на единицу длины измерительного участка аэрожелоба, может быть вычислена через магнитную индукцию магнитного поля и магнитную проницаемость материала, из которого изготовлен аэрожелоб.

При реализации данного способа намагниченность сыпучего материала в аэрожелобе также может быть осуществлена на базе постоянного магнитного поля, образованного, например, двумя плоскими ферритами. При этом измерительный участок аэрожелоба располагают между этими ферритами так, чтобы вектор напряженности постоянного магнитного поля был параллелен вектору поля зондирующей сыпучий материал волны.

Заявленное техническое решение успешно может быть применено для решения задач измерения массового расхода различных пылевидных материалов, транспортируемых по аэрожелобам и трубопроводам.

Таким образом, согласно предлагаемому способу на основе измерения угла поворота плоскости поляризации прошедшей через слой сыпучего материала электромагнитной волны можно обеспечить упрощение процедуры получения информации о высоте слоя сыпучего материала, перемещаемого по аэрожелобу.

Способ определения высоты слоя сыпучего материала, перемещаемого по аэрожелобу, при котором зондируют материал электромагнитной волной и принимают отраженную от поверхности слоя материала волну, отличающийся тем, что воздействуют на контролируемый в аэрожелобе материал продольным относительно распространения зондирующей волны магнитным полем, принимают прошедшую через слой материала волну, измеряют угол поворота плоскости поляризации этой волны, и высоту слоя сыпучего материала в аэрожелобе 1 определяют по формуле ,где λ - угол поворота плоскости поляризации прошедшей через слой материала волны, V - постоянная Верде, Н - напряженность магнитного поля.
Источник поступления информации: Роспатент

Показаны записи 11-20 из 101.
10.02.2013
№216.012.2499

Высокопараллельный спецпроцессор для решения задачи о выполнимости булевых формул

Изобретение относится к вычислительной технике, в частности к специализированным процессорам с высокой степенью параллелизма. Технический результат заключается в снижении сложности спецпроцессора за счет упрощения структуры процессорного блока, в расширении функциональных возможностей за счет...
Тип: Изобретение
Номер охранного документа: 0002474871
Дата охранного документа: 10.02.2013
10.02.2013
№216.012.24a5

Тренажер для освоения интервенционных методов диагностики и лечения заболеваний сосудов сердца

Изобретение относится к медицине и медицинской технике. Тренажер для освоения интервенционных методов диагностики и лечения заболеваний сосудов сердца содержит блок (АБ) с двумя датчиками фиксации линейного перемещения катетера, тросика со сменными инструментами и блоки: сопряжения (БС),...
Тип: Изобретение
Номер охранного документа: 0002474883
Дата охранного документа: 10.02.2013
27.02.2013
№216.012.2be1

Устройство для пожаротушения

Изобретение относится к противопожарной технике и может быть использовано в качестве средства пожаротушения с высокоточным определением массы огнетушащего вещества, в частности диоксида углерода, в баллоне и ее уменьшения вследствие возможной утечки из баллона. Предлагаемое устройство для...
Тип: Изобретение
Номер охранного документа: 0002476760
Дата охранного документа: 27.02.2013
20.03.2013
№216.012.2f84

Прямоточный движитель для водного транспорта

Изобретение относится к судостроению и может быть использовано в качестве движителя для судов различного назначения. Прямоточный движитель для водного транспорта содержит трубопроводы и устройство, создающее струю воды за счет формирования в трубопроводе бегущих водяных волн. Трубопроводы...
Тип: Изобретение
Номер охранного документа: 0002477699
Дата охранного документа: 20.03.2013
27.03.2013
№216.012.316d

Устройство для определения высоты слоя вещества

Устройство для определения высоты слоя вещества, протекающего по аэрожелобу, содержит источник излучения, соединенный выходом с элементом ввода излучения, элемент вывода излучения, подключенный ко входу измерителя угла поворота плоскости поляризации, и обмотку. В устройство введены...
Тип: Изобретение
Номер охранного документа: 0002478191
Дата охранного документа: 27.03.2013
27.05.2013
№216.012.4529

Способ измерения расхода газа

Способ измерения расхода газа, при котором выделяют элементарный измерительный объем газа в потоке, проводят его через измерительную схему струйного генератора, измеряют частоту колебаний давления элементарного объема в приемных каналах одного любого струйного элемента и по частоте колебаний...
Тип: Изобретение
Номер охранного документа: 0002483282
Дата охранного документа: 27.05.2013
27.05.2013
№216.012.4537

Способ определения сплошности потока жидкости в трубопроводе

Предлагаемое техническое решение относится к измерительной технике. Способ определения сплошности потока жидкости в трубопроводе, при котором воздействуют на поток жидкости электрическим полем, зондируют контролируемый поток электромагнитной волной и принимают прошедшую через поток...
Тип: Изобретение
Номер охранного документа: 0002483296
Дата охранного документа: 27.05.2013
27.05.2013
№216.012.4598

Магниторезистивный преобразователь

Изобретение относится к измерительной технике. Технический результат - уменьшение потребляемой мощности и нагрева. Сущность: преобразователь содержит подложку с диэлектрическим слоем, на котором расположены соединенные в мостовую схему четыре параллельно расположенные тонкопленочные...
Тип: Изобретение
Номер охранного документа: 0002483393
Дата охранного документа: 27.05.2013
10.06.2013
№216.012.47d9

Способ управления движением судна по заданной траектории

Изобретение относится к области судовождения. Автоматическое управление движением судна по заданной траектории осуществляют путем управления по заданному углу курса с использованием кормовых рулей. Для обеспечения движения судна с углом дрейфа, близким к нулю, в предложенном способе применяют...
Тип: Изобретение
Номер охранного документа: 0002483973
Дата охранного документа: 10.06.2013
10.09.2013
№216.012.689b

Счетчик-расходомер газа

Изобретение относится к измерительным устройствам и может быть использовано в технологических трубопроводах для измерения количества газа или жидкости, в ЖКХ и производственных процессах, а также в узлах учета энергоресурсов для коммерческого расчета. Счетчик-расходомер газа содержит...
Тип: Изобретение
Номер охранного документа: 0002492426
Дата охранного документа: 10.09.2013
Показаны записи 11-20 из 49.
20.10.2014
№216.012.fe9b

Устройство для определения высоты полого древесного цилиндрического изделия

Предлагаемое техническое решение относится к измерительной технике. Техническим результатом заявляемого устройства является повышение стабильности измерения контролируемого параметра. Технический результат достигается тем, что в устройство для определения высоты полого древесного...
Тип: Изобретение
Номер охранного документа: 0002531035
Дата охранного документа: 20.10.2014
20.03.2015
№216.013.346a

Способ определения диаметра диэлектрического полого цилиндрического изделия

Изобретение относится к измерительной технике и представляет собой способ определения диаметра диэлектрического полого цилиндрического изделия. При реализации способа контролируемое изделие предварительно помещают в электрическое поле, облучают изделие электромагнитной волной, принимают...
Тип: Изобретение
Номер охранного документа: 0002544893
Дата охранного документа: 20.03.2015
10.04.2015
№216.013.36bb

Способ определения наружного объема цилиндрического изделия

Предлагаемое техническое решение относится к измерительной технике. Техническим результатом заявляемого решения является расширение диапазона измерения. Технический результат достигается тем, в способе определения наружного объема цилиндрического изделия, использующим взаимодействие...
Тип: Изобретение
Номер охранного документа: 0002545499
Дата охранного документа: 10.04.2015
20.05.2015
№216.013.4b6c

Устройство для обезвоживания нефтепродукта путем выпаривания водяных капелек

Изобретение относится к обезвоживанию нефтепродукта. Изобретение касается устройства обезвоживания нефтепродукта, протекающего по магистральному трубопроводу, путем выпаривания из него водяных капелек. Устройство содержит источник энергии электромагнитного поля, соединенный выходом с элементом...
Тип: Изобретение
Номер охранного документа: 0002550822
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4dac

Способ определения толщины льда

Изобретение относится к способам определения толщины льда и может быть использовано в системах управления технологическими процессами и рыболовстве. Сущность: в основу способа положено использование взаимодействия льда и полой герметичной цилиндрической эластичной оболочки с рабочей средой (1)...
Тип: Изобретение
Номер охранного документа: 0002551398
Дата охранного документа: 20.05.2015
10.07.2015
№216.013.6084

Способ контроля процесса плавки в вакуумной дуговой печи

Изобретение относится к области измерительной техники. Техническим результатом заявляемого решения является отслеживание длины дуги в процессе плавки в вакуумной дуговой печи. Технический результат достигается тем, что в способе контроля процесса плавки в вакуумной дуговой печи, включающем...
Тип: Изобретение
Номер охранного документа: 0002556249
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.60d3

Устройство для определения внешнего объема цилиндрического полого изделия

Изобретение относится к области измерительной техники. Техническим результатом заявляемого решения является упрощение процедуры обработки информационных сигналов о геометрических параметрах цилиндрического изделия. Устройство для определения внешнего объема цилиндрического полого изделия...
Тип: Изобретение
Номер охранного документа: 0002556329
Дата охранного документа: 10.07.2015
10.10.2015
№216.013.81c9

Сверхвысокочастотный способ определения плотности древесины

Предлагаемое техническое решение относится к измерительной технике. Сверхвысокочастотный способ определения плотности древесины включает зондирование образца древесины электромагнитными волнами. Затем принимают пару ортогонально поляризованных волн, вычисляют скорости распространения этих волн...
Тип: Изобретение
Номер охранного документа: 0002564822
Дата охранного документа: 10.10.2015
10.11.2015
№216.013.8bfa

Способ цифрового измерения электрических величин

Изобретение относится к измерительной технике. Способ включает преобразование измеряемой электрической величины и отсчет измеренной электрической величины. При этом возбуждают открытый резонатор электромагнитными колебаниями, воздействуют преобразованной электрической величиной на открытый...
Тип: Изобретение
Номер охранного документа: 0002567441
Дата охранного документа: 10.11.2015
27.04.2016
№216.015.3801

Устройство для определения концентрации кислорода

Изобретение относится к измерительной технике и аналитическому приборостроению и может быть использовано в системах управления технологическими процессами. Устройство для определения концентрации кислорода содержит первичный преобразователь, представляющий собой магнитную систему с рабочим и...
Тип: Изобретение
Номер охранного документа: 0002582487
Дата охранного документа: 27.04.2016
+ добавить свой РИД