×
03.04.2019
219.016.fa71

Результат интеллектуальной деятельности: СПОСОБ ГАЗИФИКАЦИИ УГЛЯ В СИЛЬНО ПЕРЕГРЕТОМ ВОДЯНОМ ПАРЕ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Вид РИД

Изобретение

№ охранного документа
0002683751
Дата охранного документа
01.04.2019
Аннотация: Изобретение относится к способам и устройствам для газификации угля сильно перегретым водяным паром для его конверсии в топливный газ или синтез-газ. Способ включает подачу угольных частиц и перегретого водяного пара в зону газификации угля и конверсии продуктов газификации в топливный газ или синтез-газ, отвод продуктов газификации потребителю и удаление зольного остатка. При этом угольные частицы или частицы углесодержащего материала подаются в высокоскоростную струю ударно сжатого сильно перегретого водяного пара для аэродинамической фрагментации агломератов частиц и предварительной термохимической подготовки двухфазной смеси «перегретый водяной пар - частицы», а образованная двухфазная струя подается тангенциально в вихревую зону газификации, где в условиях сильно закрученного потока происходит газификация угля и конверсия продуктов газификации в топливный газ или синтез-газ. Далее полученный топливный газ или синтез-газ выводится из зоны газификации частично к потребителю и частично для получения высокоскоростной струи ударно сжатого сильно перегретого водяного пара, а зольный остаток в виде расплава поступает в систему удаления зольного остатка. Технический результат заключается в обеспечении бескислородной газификации угля для его конверсии в топливный газ или синтез-газ. 2 н.п. ф-лы, 1 ил., 1 пр.

Область техники

Изобретение относится к способам и устройствам для бескислородной газификации угля сильно перегретым водяным паром с целью конверсии угля в топливный газ или синтез-газ.

При реализации известных бескислородных технологий газификации получают продукты со значительным содержанием диоксида углерода (СО2), что снижает степень конверсии угля (Дубинин, А.М. Паровая бескислородная газификация углей // Промышленная теплотехника. - 1990, Т. 12, №2. - С. 97-100). Этого можно избежать за счет повышения температуры перегретого пара (см, например, работу Е.И. Кагакин, А.Р. Богомолов, С.А. Шевырев, Н.А. Прибатурин / Взаимодействие карбонизированного угля с перегретым водяным паром // Ползуновский вестник №1, 2013 с. 135-138). Благодаря повышению температуры водяного пара степень конверсии угля увеличивается, а объемная доля диоксида углерода в продуктах газификации уменьшается. Следовательно, для повышения эффективности технологии бескислородной газификации угля необходимо повышать температуру перегретого водяного пара.

Химические реакции, обеспечивающие конверсию угля - это главным образом гетерогенные реакции, протекающие на поверхности угольных частиц. Скорость таких реакций зависит от температуры и концентрации реагентов, а также от площади поверхности контакта между реагентами (уголь и перегретый водяной пар), то есть от дисперсности угольных частиц. Агломерация угольных частиц снижает эффективность конверсии угля. Следовательно, для повышения эффективности конверсии при бескислородной газификации угля необходимо препятствовать агломерации угольных частиц.

Повысить эффективность конверсии при бескислородной газификации угля можно с помощью термомеханического воздействия на угольные частицы высокоскоростными струями сильно перегретого водяного пара, получаемыми при ударном или детонационном сжатии водяного пара в циклическом рабочем процессе с импульсно-детонационным сжиганием того или иного горючего (Фролов С.М., Сметанюк В.А., Фролов Ф.С., Патент WO/2016/060582 А1, Способ детонационной штамповки и устройство для его реализации B21D 26/08 (2006.01), опубликованный 21.04.2016). При таком воздействии, с одной стороны, достигается очень высокая температура перегретого пара (выше 2000°С), а с другой - исключается агломерация угольных частиц, что вызвано огромными сдвиговыми напряжениями в высокоскоростных струях перегретого водяного пара, обеспечивающими аэродинамическую фрагментацию агломератов.

Предшествующий уровень техники

Известны способ работы и устройство для газификации угля, описанные в статье Е.И. Кагакина, А.Р. Богомолова, С.А. Шевырева, Н.А. Прибатурина / Взаимодействие карбонизированного угля с перегретым водяным паром // Ползуновский вестник №1, 2013 с. 135-138. Описанный в данной работе способ, заключающийся в пропускании через слой углесодержащего сырья перегретого пара, реализован в установке, включающей парогенератор, генератор горючей смеси и реактор. Основной недостаток устройства - ограничение по температуре перегретого водяного пара (достигаемые значения не превышали 700-800°С).

Известен способ газификации угля, предложенный в патенте RU 2516651 С1, С10J 1/207 (2012.01). Способ включает загрузку, розжиг угля сверху, подачу воздушного дутья снизу и стадийное проведение процесса. Уголь (90-95%) с дополнительным ведением красной глины (2-3%) и известняка (4-5%), загружают в аппарат, а верхний и нижний слои угля высотой 200-300 мм смачивают жидким топливом и проводят их розжиг. Каталитическая газификация угля происходит при температуре зоны газификации 600-800°С и осуществляется в две стадии. Первая стадия включает подачу дутья воздухом. Вторая стадия включает подачу дутья воздухом и перегретым паром с температурой 250-450°С. Изобретение позволяет получить горючий газ повышенной калорийности, не содержащий конденсируемые продукты пиролиза, без спекания и разжижения зоны газификации. Недостаток способа - низкая температура используемого перегретого водяного пара.

Известен способ псевдодетонационной газификации угольной суспензии в комбинированном цикле, предложенный в патенте WO 2011/139181 A1, F01K 23/04 (2006.01), C10J 3/46 (2006.01), C10L 1/32 (2006.01). В предложенном способе газификации углей в газификатор подают жидкое активированное водо-угольное топливо высокой однородности - каплями одинаковых размеров и с частицами угля в этих каплях близкого гранулометрического состава. Капли топлива вводят прерывисто, отдельными топливными дозами и с приданием им определенного количества движения. Размол угля для способа приготовления активированного водо-угольного топлива регулируют адаптивно по критерию фактического количества выходящих летучих веществ из угля и выполняют глубокую классификацию угля по его гранулометрическому составу. Изобретение позволяет осуществить более полную утилизацию тепловой энергии углей и обеспечить увеличение эффективности выработки электроэнергии. Недостаток способа - сложная подготовка угля, предполагающая предварительную классификацию по гранулометрическому составу.

Известен газогенератор для бескислородной газификации углей, предложенный в работе A.M. Дубинина, О.М. Панова / Паровая бескислородная газификация углей как средство экономии топлива // Теплоэнергетика №4, 1997, с. 51-53. Основной элемент предложенного устройства - газогенератор с противоточной подачей угля (сверху) и водяного пара (снизу), снабженный автоматом для поддержания равенства давлений в камерах сгорания и газификации. В состав устройства также входит котел-утилизатор, воздухоподогреватель, подогреватель продуктов сгорания перед газовой турбиной, газовую турбину, трехступенчатый компрессор с промежуточным холодильником, а также система очистки продуктов сгорания и газификации. Основной недостаток устройства - использование низкотемпературного водяного пара.

Наиболее близкими к предлагаемому изобретению по технической сущности является способ и устройство для его реализации, предложенные в патенте SU 1828465 A3, C10J 3/00, 14.04.1989. Сущность способа-прототипа газификации угля под давлением в газогенераторе с расположенными внутри теплообменными трубами для теплоносителя заключается в том, что в газогенератор подают уголь, флюидизируют его водяным паром в псевдоожиженном слое, нагревают уголь в зоне нагрева и пиролиза и зоне газификации аллотермическим теплоносителем, пропускаемым по теплообменным трубам, причем теплоноситель подают сначала в зону газификации, а затем в зону нагрева и пиролиза, а уголь проходит газогенератор в противотоке к теплоносителю, при этом, с целью оптимального использования введенного постороннего тепла, подачу угля осуществляют при помощи перегретого пара или циркуляционного неочищенного газа, а в зону пиролиза дополнительно вводят циркуляционный неочищенный газ в качестве дополнительного средства псевдоожижения и теплоносителя. Основные недостатки способа-прототипа и устройства-прототипа заключаются в том, что, во-первых, для газификации используют перегретый водяной пар с температурой, не превышающей, 700-800°С, во-вторых, не предусмотрены способы фрагментации угольных агломератов, которые могут быть образованы в процессе подачи частиц угля в зону реакции. Кроме того, для получения перегретого водяного пара используются традиционные парогенераторы, не позволяющие получать перегретый пар с температурой, превышающей 700-800°С (см., например, монографию Резникова М.И. и Липова Ю.М «Паровые котлы тепловых электростанций» - М.: Энергоиздат, 1981).

Раскрытие изобретения

Задача изобретения - создание способа бескислородной газификации угля для его конверсии в топливный газ или синтез-газ с помощью термомеханического воздействия на угольные частицы высокоскоростными струями сильно перегретого водяного пара, получаемыми при ударном или детонационном сжатии водяного пара в циклическом рабочем процессе с импульсно-детонационным сжиганием того или иного горючего.

Задача изобретения - создание устройства, которое обеспечит бескислородную газификацию угля для его конверсии в топливный газ или синтез-газ с помощью термомеханического воздействия на угольные частицы высокоскоростными струями сильно перегретого водяного пара, получаемыми при ударном или детонационном сжатии водяного пара в циклическом рабочем процессе с импульсно-детонационным сжиганием того или иного горючего.

Решение поставленной задачи достигается предлагаемыми:

- способом газификации угля в перегретом водяном паре для его конверсии в топливный газ или синтез-газ, включающим подачу угольных частиц и перегретого водяного пара в зону газификации угля и конверсии продуктов газификации в топливный газ или синтез-газ, отвод продуктов газификации потребителю и удаление зольного остатка, в котором угольные частицы или частицы углесодержащего материала подаются в высокоскоростную струю ударно сжатого сильно перегретого водяного пара для аэродинамической фрагментации агломератов частиц и предварительной термохимической подготовки двухфазной смеси «перегретый водяной пар - частицы», а образованная двухфазная струя подается тангенциально в вихревую зону газификации, где в условиях сильно закрученного потока происходит газификация угля и конверсия продуктов газификации в топливный газ или синтез-газ, причем полученный топливный газ или синтез-газ выводится из зоны газификации частично к потребителю и частично для получения высокоскоростной струи ударно сжатого сильно перегретого водяного пара, а зольный остаток в виде расплава поступает в систему удаления зольного остатка.

- устройством, включающим систему подачи частиц угля и перегретого водяного пара в реактор для газификации угля и конверсии продуктов газификации в топливный газ или синтез-газ, систему отвода продуктов газификации потребителю и систему удаления зольного остатка, в котором система подачи сильно перегретого водяного пара выполнена в виде импульсно-детонационного пароперегревателя, присоединенного тангенциально к входному патрубку вихревого реактора для газификации угля и конверсии продуктов газификации в топливный газ или синтез-газ, а система подачи угольных частиц или частиц углесодержащего материала выполнена в виде дозирующего устройства, обеспечивающего подачу частиц в импульсно-детонационный пароперегреватель до входного патрубка вихревого реактора.

Краткое описание чертежей

На фиг. 1 приведена схема заявляемого устройства: 1 - вихревой реактор, 2 - входной патрубок, 3 - система подачи сильно перегретого водяного пара, 4 - система подачи угольных частиц или частиц углесодержащего материала, 5 - теплообменная рубашка для получения водяного пара, 6 - паровой коллектор с обратным клапаном, 7 - паровой коллектор, 8 - система отвода топливного газа или синтез-газа, 9 - система удаления зольного остатка, 10 - нижний экран, 11 - верхний экран, УВ - ударная волна, ИДП - импульсно-детонационный пароперегреватель, УСМ - углесодержащий материал.

Вариант осуществления изобретения

На фиг. 1 приведена схема заявляемого устройства. Основной узел устройства - вихревой реактор (1), снабженный входным патрубком (2), системой подачи сильно перегретого водяного пара (3), системой подачи угольных частиц или частиц углесодержащего материла (4), теплообменной рубашкой для получения водяного пара (5), паровым коллектором с обратным клапаном (6) подачи водяного пара в систему (3), паровым коллектором (7) подачи водяного пара в систему (4), а также системой отвода топливного газа или синтез-газа (8), системой удаления зольного остатка (9), системами подачи окислителя и пускового горючего, а также системой управления (на фиг. не показаны). Входной патрубок (2) установлен в нижней части вихревого ректора (1) и ориентирован тангенциально, как показано на разрезе А-А. Внутри вихревого реактора (1) предусмотрены экраны - нижний (10) и верхний (11)-ограничивающие область газификации угольных частиц или частиц углесодержащего материала. Система подачи сильно перегретого водяного пара (3) выполнена в виде импульсно-детонационного пароперегревателя, присоединенного к вихревому реактору (1) через входной патрубок (2). Система подачи угольных частиц или частиц углесодержащего материала (4) выполнена в виде дозирующего устройства, обеспечивающего подачу частиц в импульсно-детонационный пароперегреватель до входного патрубка (2) вихревого реактора (1).

Предлагаемое устройство работает следующим образом

Получение топливного газа или синтез-газа в результате бескислородной газификации угольных частиц или частиц углесодержащего материала в вихревом реакторе (1) происходит в непрерывном режиме, а подача двухфазной смеси «перегретый водяной пар - частицы» в вихревой реактор (1) осуществляется циклически с частотой рабочих циклов, задаваемых системой управления.

Работа устройства включает три стадии: I - стадия запуска, на которой система подачи сильно перегретого водяного пара (3) запускается на пусковом горючем; II - стадия выхода на рабочий режим, на которой система подачи сильно перегретого водяного пара (3) постепенно переходит на работу с пускового горючего на топливный газ или синтез-газ, получаемый в вихревом реакторе (1); III - рабочая стадия, на которой система подачи сильно перегретого водяного пара (3) полностью работает на топливном газе или синтез-газе, получаемом в вихревом реакторе (1), причем основная часть топливного газа или синтез-газа направляется потребителю.

Запуск системы подачи сильно перегретого водяного пара (3) на стадии I происходит в режиме дефлаграционного сжигания горючей смеси «пусковое горючее-окислитель» (см., например, патент WO/2016/060582 А1, Способ детонационной штамповки и устройство для его реализации B21D 26/08 (2006.01), опубликованный 21.04.2016). В теплообменную рубашку (5) вихревого реактора (1) непрерывно подается вода. Горячие продукты дефлаграционного горения пускового горючего поступают в вихревой реактор (1), что приводит к прогреву воды, подаваемой в теплообменную рубашку (5) и получению водяного пара, поступающего из теплообменной рубашки (5) по паровому коллектору с обратным клапаном (6) в систему подачи сильно перегретого водяного пара (3), а по паровому коллектору (7) -в систему подачи угольных частиц или углесодержащего материала (4). Устройство готово к переходу на стадию II.

На стадии II происходит переход системы подачи сильно перегретого водяного пара (3) от работы в дефлаграционном режиме к работе в импульсно-детонационном режиме на пусковом горючем с перегревом водяного пара, поступающего из теплообменной рубашки (5) по паровому коллектору с обратным клапаном (6), в соответствии с принципом работы, изложенным, например, в патенте WO 2011/070580 Al, F23D 14/12 (2006.01), 09.12.2010 и в работе «Performance-Stability and Performance-Safety of a Practical Pulse Detonation Burner (based on patent WO 2011070580 A8)» // Michael Zettner / The 31st Annual Symposium on the Israel Section of the Combustion Institute, December 14th, 2017, pp. 73-76. В качестве рабочего тела на данной стадии используется: смесь «пусковое горючее-окислитель» и водяной пар. Угольные частицы или частицы углесодержащего материала подаются из системы подачи (4) в высокоскоростную струю ударно сжатого сильно перегретого водяного пара. В струе перегретого водяного пара происходит аэродинамическая фрагментации агломератов частиц и предварительная термохимическая подготовка двухфазной смеси «перегретый водяной пар - частицы». Образованная двухфазная смесь направляется тангенциально в вихревой реактор (1), где в условиях сильно закрученного потока происходит газификация угля и конверсия продуктов газификации в топливный газ или синтез-газ. Полученный топливный газ или синтез-газ выводится из зоны газификации для питания системы подачи сильно перегретого водяного пара (3). В момент, когда производительность вихревого реактора (1) выходит на уровень, достаточный для питания системы подачи сильно перегретого водяного пара (3) топливным газом или синтез-газом, подача пускового горючего прекращается. Устройство готово к переходу на стадию III.

Стадия III аналогична стадии II. Основные отличия в том, что в систему подачи сильно перегретого водяного пара (3) подается рабочее тело - смесь «топливный газ или синтез-газ - окислитель» и водяной пар, а основная часть полученного топливного газа или синтез-газа направляется потребителю. Образующийся в процессе газификации угля зольный остаток поступает в систему удаления зольного остатка.

Приводим пример осуществления изобретения на опытном образце предлагаемого устройства, оснащенного регистрирующей аппаратурой.

Опытный образец устройства включает вихревой реактор диаметром 800 мм и высотой 2000 мм, снабженный входным патрубком, систему подачи сильно перегретого водяного пара, систему подачи углесодержащих частиц (водно-угольной суспензии), систему отвода топливного газа и систему управления. В качестве окислителя использовали кислород, а в качестве пускового горючего - пропан-бутан.

Система подачи сильно перегретого водяного пара выполнена в виде импульсно-детонационной трубы, включающей камеру сгорания внутренним диаметром 150 мм и длиной 400 мм, к которой последовательно присоединены ускоритель пламени внутренним диаметром 150 мм и длиной 3500 мм с препятствиями-турбулизаторами, обеспечивающими быстрый переход горения в детонацию, и гладкий участок трубы внутренним диаметром 150 мм и длиной 3000 мм. Камера сгорания содержит смесительное устройство с обратным клапаном, коллектор подачи пускового горючего с 20 распределенными форсунками, обеспечивающими быстрое смешение горючего с окислителем и водяным паром, и 4 автомобильные свечи зажигания, обеспечивающие надежное зажигание горючей смеси, и присоединена к магистралям подачи кислорода из системы подачи окислителя и водяного пара из парового коллектора с клапаном. Водяной пар для подачи в импульсно-детонационную трубу получается с помощью электрического парогенератора.

Расходы кислорода, водяного пара и пускового горючего выбираются такими, чтобы состав смеси «горючее - окислитель - водяной пар», заполняющей импульсно-детонационную трубу был близок к стехиометрическому по соотношению горючего и окислителя, а соотношение объемов водяного пара и кислорода достигало 2:1. Время подачи компонентов смеси задавали таким, чтобы обеспечить полное заполнение импульсно-детонационной трубы. Водно-угольная суспензия содержала 60% бурого угля и 40% воды (по массе). Средний размер угольных частиц в водно-угольной суспензии 10-15 мкм. Расход водно-угольной суспензии 1 л/с. Испытания проводятся при частоте работы устройства от 1 до 5 Гц. Измерения параметров рабочего режима устройства проводятся по методикам приемочных испытаний горелки импульсно-детонационной скоростной (ЦИДГ.100.000.000 ПМ01), разработанным в рамках государственного контракта №16.526.12.6018 от «14» октября 2011 г. (Шифр «2011-2.6-526-006-002») «Разработка высокоскоростной энергосберегающей импульсно-детонационной газовой горелки для повышения эффективности тепловой работы промышленных печей и теплоэнергетических установок».

Испытания показали, что в выходном сечении импульсно-детонационной трубы циклически формируется плотная высокотемпературная (-2500°С) двухфазная струя «сильно перегретый водяной пар - угольные частицы - примесь двуокиси углерода (не более 7-8% (об.))». Анализ дисперсности потока частиц распыливаемой суспензии следовым методом показал, что в факеле в основном (до 95%) присутствуют частицы диаметром 10-15 мкм (т.е. частицы угля, входящие в состав водно-угольной суспензии). Как и ожидалось, высокая температура водяного пара и высокая дисперсность угольных частиц позволили реализовать эффективный процесс газификации водно-угольной суспензии. Предварительный газовый анализ продуктов газификации показал, что они в основном содержат водород H2 и моноксид углерода СО в соотношении, близком к 2:1, а степень конверсии угля зависит от рабочей частоты импульсно-детонационной трубы и достигает 97-98% при частоте 5 Гц.

Таким образом, предложены способ и устройство, обеспечивающие бескислородную газификацию угля для его конверсии в топливный газ или синтез-газ с помощью термомеханического воздействия на угольные частицы высокоскоростными струями сильно перегретого водяного пара, получаемыми при ударном или детонационном сжатии водяного пара в циклическом рабочем процессе с импульсно-детонационным сжиганием того или иного горючего.


СПОСОБ ГАЗИФИКАЦИИ УГЛЯ В СИЛЬНО ПЕРЕГРЕТОМ ВОДЯНОМ ПАРЕ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ ГАЗИФИКАЦИИ УГЛЯ В СИЛЬНО ПЕРЕГРЕТОМ ВОДЯНОМ ПАРЕ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 10.
04.04.2018
№218.016.2ee9

Способ сверхтонкого распыливания жидкого топлива и устройство для его осуществления

Изобретение относится к способам распыливания жидкостей, а также эмульсий (например, водотопливных эмульсий) и суспензий (например, водоугольных суспензий), и т.п., в различных энергетических и технологических установках. Предложен способ сверхтонкого распыливания жидкостей и сред на их основе,...
Тип: Изобретение
Номер охранного документа: 0002644422
Дата охранного документа: 12.02.2018
09.08.2018
№218.016.7a45

Энергетическая установка с импульсно-детонационным сжиганием горючего

Изобретение относится к энергетическим установкам с импульсно-детонационным сжиганием ископаемых или синтетических горючих материалов, которые могут быть использованы, например, на электроэнергетических предприятиях или на промышленных предприятиях в составе различных технологических комплексов...
Тип: Изобретение
Номер охранного документа: 0002663607
Дата охранного документа: 07.08.2018
14.11.2018
№218.016.9d10

Способ инициирования детонации в трубе с горючей смесью и устройство для его осуществления

Изобретение относится к способам и устройствам сжигания газообразного или распыленного жидкого топлива в режиме газовой или капельной детонации и может быть использовано в различных технологических устройствах и энергетических установках, работающих на импульсно-детонационном или...
Тип: Изобретение
Номер охранного документа: 0002672244
Дата охранного документа: 12.11.2018
27.04.2019
№219.017.3c5a

Способ получения сильно перегретого пара и устройство детонационного парогенератора (варианты)

Изобретение относится к способам и устройствам для получения сильно перегретого водяного пара. Способ получения сильно перегретого водяного пара из питательной воды за счет циклического детонационного сжигания горючей смеси, в котором водяной пар, предварительно получаемый из питательной воды,...
Тип: Изобретение
Номер охранного документа: 0002686138
Дата охранного документа: 24.04.2019
24.05.2019
№219.017.5f55

Способ опреснения воды и устройство для его осуществления

Изобретение относится к способу и устройству для опреснения воды. Способ опреснения соленой воды, в котором опресняемая соленая вода, подаваемая в виде струи или пелены, периодически подвергается воздействию сильной ударной волны и высокоскоростного потока горячих газообразных продуктов...
Тип: Изобретение
Номер охранного документа: 0002688764
Дата охранного документа: 22.05.2019
26.05.2019
№219.017.6110

Способ и устройство для газодинамического разгона массивных тел до высокой скорости

Изобретение относится к области машиностроения, а более конкретно к устройствам для метания снарядов из стволов. Способ газодинамического разгона массивного тела, помещенного в ствол с горючей смесью, до высокой скорости с помощью стартового ускорения массивного тела и последующей организации...
Тип: Изобретение
Номер охранного документа: 0002689056
Дата охранного документа: 23.05.2019
24.11.2019
№219.017.e67f

Воздушно-реактивный детонационный двигатель на твердом топливе и способ его функционирования

Изобретение относится к силовым установкам летательных аппаратов различного назначения, работающим на твердом топливе (например, синтетическом полимере). Способ организации детонационного горения пиролизных газов в камере сгорания воздушно-реактивного двигателя, при котором для дросселирования...
Тип: Изобретение
Номер охранного документа: 0002706870
Дата охранного документа: 21.11.2019
20.02.2020
№220.018.0470

Способ организации рабочего процесса в прямоточном воздушно-реактивном двигателе с непрерывно-детонационной камерой сгорания и устройство для его осуществления

Изобретение относится к способам организации рабочего процесса в воздушно-реактивных двигателях с непрерывно-детонационным горением и устройствам для их осуществления, предназначенным, в частности, для высокоскоростных беспилотных летательных аппаратов. Способ организации рабочего процесса в...
Тип: Изобретение
Номер охранного документа: 0002714582
Дата охранного документа: 18.02.2020
15.04.2020
№220.018.1484

Способ работы импульсно-детонационного двигателя в поле центробежных сил и устройство для его реализации в реактивном вертолёте

Изобретение относится к воздушно-реактивным двигателям, устанавливаемым на концах лопастей несущего винта реактивного вертолета. Предложен способ организации рабочего процесса в импульсно-детонационном тяговом модуле для реактивного вертолета, размещенном на конце лопасти несущего винта,...
Тип: Изобретение
Номер охранного документа: 0002718726
Дата охранного документа: 14.04.2020
15.04.2020
№220.018.14c9

Способ определения относительной детонционной способности газообразных и диспергированных конденсированных горючих материалов и устройство для его реализации

Изобретение относится к способам и устройствам для определения относительной детонационной способности газообразных и жидких горючих материалов. Способ определения относительной детонационной способности газообразных и диспергированных конденсированных горючих материалов включает подачу горючей...
Тип: Изобретение
Номер охранного документа: 0002718732
Дата охранного документа: 14.04.2020
Показаны записи 1-10 из 19.
20.08.2013
№216.012.611b

Устройство для импульсного зажигания горючей смеси

Устройство для импульсного зажигания горючей смеси содержит корпус с расположенной в нем камерой сгорания, топливную форсунку, источник зажигания и канал для подвода воздуха. Устройство дополнительно содержит канал смешения, соединенный с топливной форсункой и каналом для подвода воздуха. Канал...
Тип: Изобретение
Номер охранного документа: 0002490491
Дата охранного документа: 20.08.2013
25.08.2017
№217.015.ce99

Способ организации рабочего процесса в турбореактивном двигателе с непрерывно-детонационной камерой сгорания и устройство для его осуществления

Способ организации рабочего процесса в непрерывно-детонационной камере сгорания турбореактивного двигателя включает двухступенчатое преобразование химической энергии топлива в полезную механическую работу и в кинетическую энергию реактивной струи. При осуществлении способа инициируют одну или...
Тип: Изобретение
Номер охранного документа: 0002620736
Дата охранного документа: 29.05.2017
04.04.2018
№218.016.2ee9

Способ сверхтонкого распыливания жидкого топлива и устройство для его осуществления

Изобретение относится к способам распыливания жидкостей, а также эмульсий (например, водотопливных эмульсий) и суспензий (например, водоугольных суспензий), и т.п., в различных энергетических и технологических установках. Предложен способ сверхтонкого распыливания жидкостей и сред на их основе,...
Тип: Изобретение
Номер охранного документа: 0002644422
Дата охранного документа: 12.02.2018
29.05.2018
№218.016.53ca

Способ снижения гидродинамического сопротивления движению судна и устройство для его осуществления

Изобретение относится к области судостроения и касается, в частности, вопросов улучшения гидродинамических качеств транспортных судов. Предложен способ снижения гидродинамического сопротивления движению судна за счет профилирования днища и организации процесса сгорания в каверне, основанный на...
Тип: Изобретение
Номер охранного документа: 0002653664
Дата охранного документа: 11.05.2018
09.08.2018
№218.016.7a45

Энергетическая установка с импульсно-детонационным сжиганием горючего

Изобретение относится к энергетическим установкам с импульсно-детонационным сжиганием ископаемых или синтетических горючих материалов, которые могут быть использованы, например, на электроэнергетических предприятиях или на промышленных предприятиях в составе различных технологических комплексов...
Тип: Изобретение
Номер охранного документа: 0002663607
Дата охранного документа: 07.08.2018
14.11.2018
№218.016.9d10

Способ инициирования детонации в трубе с горючей смесью и устройство для его осуществления

Изобретение относится к способам и устройствам сжигания газообразного или распыленного жидкого топлива в режиме газовой или капельной детонации и может быть использовано в различных технологических устройствах и энергетических установках, работающих на импульсно-детонационном или...
Тип: Изобретение
Номер охранного документа: 0002672244
Дата охранного документа: 12.11.2018
07.12.2018
№218.016.a461

Турбореактивный двигатель и способ его работы

Изобретения относятся к турбореактивному двигателю и способу его работы. Одновальный двухконтурный турбореактивный двигатель содержит компрессор, турбину, основную непрерывно-детонационную камеру сгорания с каналами подачи топлива, топливными форсунками и инициатором детонации, газодинамический...
Тип: Изобретение
Номер охранного документа: 0002674172
Дата охранного документа: 05.12.2018
27.04.2019
№219.017.3c5a

Способ получения сильно перегретого пара и устройство детонационного парогенератора (варианты)

Изобретение относится к способам и устройствам для получения сильно перегретого водяного пара. Способ получения сильно перегретого водяного пара из питательной воды за счет циклического детонационного сжигания горючей смеси, в котором водяной пар, предварительно получаемый из питательной воды,...
Тип: Изобретение
Номер охранного документа: 0002686138
Дата охранного документа: 24.04.2019
24.05.2019
№219.017.5f55

Способ опреснения воды и устройство для его осуществления

Изобретение относится к способу и устройству для опреснения воды. Способ опреснения соленой воды, в котором опресняемая соленая вода, подаваемая в виде струи или пелены, периодически подвергается воздействию сильной ударной волны и высокоскоростного потока горячих газообразных продуктов...
Тип: Изобретение
Номер охранного документа: 0002688764
Дата охранного документа: 22.05.2019
26.05.2019
№219.017.6110

Способ и устройство для газодинамического разгона массивных тел до высокой скорости

Изобретение относится к области машиностроения, а более конкретно к устройствам для метания снарядов из стволов. Способ газодинамического разгона массивного тела, помещенного в ствол с горючей смесью, до высокой скорости с помощью стартового ускорения массивного тела и последующей организации...
Тип: Изобретение
Номер охранного документа: 0002689056
Дата охранного документа: 23.05.2019
+ добавить свой РИД