×
30.03.2019
219.016.fa15

Результат интеллектуальной деятельности: Полиэтиленгликоль-содержащий липид, композиция на его основе с катионным амфифилом и нейтральным фосфолипидом и способ ее получения для доставки нуклеиновых кислот in vivo

Вид РИД

Изобретение

Аннотация: Изобретение относится к области химии, биотехнологии, медицины и химико-фармацевтической промышленности, а именно к полиэтиленгликоль-содержащему липиду, имеющему строение формулы 1, где если m=1, то n=18 или n=32-52, а если m=2, то n=20-46. Изобретение относится также к композиции для доставки протяженных и коротких нуклеиновых кислот в клетки млекопитающих, которая включает поликатионный амфифил 1,26-бис(холест-5-ен-3β-илоксикарбониламино)-7,11,16,20-тетраазагексакозан тетрагидрохлорид для связывания и упаковки нуклеиновых кислот, нейтральный фосфолипид 1,2-ди-О-олеоилфосфатидилэтаноламин для структуризации комплексов и указанный выше полиэтиленгликоль-содержащий липид, и способу ее получения. Предлагаемая группа изобретений обеспечивает расширение арсенала средств, способных эффективно доставлять нуклеиновые кислоты в опухолевые клетки in vitro в присутствии сыворотки крови в ростовой среде, а также в клетки мишени in vivo при внутривенном введении в организм животного. 3 н. и 1 з.п. ф-лы, 3 ил., 5 пр.

Изобретение относится к области химии, биотехнологии, медицины и химико-фармацевтической промышленности, и описывает синтез, состав, способ получения новой композиции для транспорта нуклеиновых кислот в клетки в присутствии сыворотки в ростовой среде. Композиция включает поликатионный амфифил, нейтральный фосфолипид и полиэтиленгликоль (ПЭГ)-содержащий липид, и образует комплекс с нуклеиновой кислотой. Предлагаемая композиция способна в виде водных дисперсий доставлять нуклеиновые кислоты в клетки млекопитающих как in vitro, так и in vivo.

Среди разработанных на сегодняшний день систем доставки нуклеиновых кислот наиболее широко распространены катионные липосомы, благодаря таким преимуществам, как неиммуногенность, низкая токсичность, возможность крупномасштабного производства [Madeira С. et al. Fluorescence methods for lipoplex characterization / Biochim. Biophys. Acta, 2011, V. 1808, pp. 2694-2705; Noble G.T. et al. Ligand-targeted liposome design: challenges and fundamental considerations / Trends in Biotechnology, 2014, V. 32, pp. 32-45]. Комплексы катионных липосом с нуклеиновыми кислотами получили название - липоплексы. Однако главным недостатком липосом является их низкая эффективность трансфекции эукариотических клеток. Катионные липосомы 2X3-DOPE, состоящие из поликатионного амфифила 1,26-бис(холест-5-ен-3β-илоксикарбониламино)-7,11,16,20-тетраазагексакозан тетрагидрохлорида [Petukhov I.A. et al. Synthesis of polycationic lipids based on cholesterol and spermine / Russ. Chem. Bull., 2010, V. 59, pp. 260-268] и цвиттер-ионного липида 1,2-ди-О-олеоилфосфатидилэтаноламина (DOPE), оказались способны эффективно переносить короткие и протяженные нуклеиновые кислоты [Maslov М.А. et al. Novel cholesterol spermine conjugates provide efficient cellular delivery of plasmid DNA and small interfering RNA / J. Control. Release, 2012, V. 160, pp. 182-193; Markov O.O. et al. Novel cationic liposomes provide highly efficient delivery of DNA and RNA into dendritic cell progenitors and their immature offsets / J. Control. Release, 2012, V. 160, pp. 200-210].

Известно, что использование полиэтиленгликоль (ПЭГ)-содержащих липидов в составе катионных липосом приводит к созданию стерического барьера, предотвращающего адсорбцию белков плазмы крови (опсонинов) на поверхности липосом [Yingchoncharoen P. et al. Lipid-Based Drug Delivery Systems in Cancer Therapy: What Is Available and What Is Yet to Come / Pharmacol. Rev., 2016, V. 68, pp. 701-787]. ПЭГилирование позволяет увеличивать время циркуляции катионных липосом в кровотоке и защищает их от поглощения клетками ретикулоэндотелиальной системы [Suk J.S. et al. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery / Adv. Drug Deliv. Rev., 2016, V. 99, 28-51]. В некоторых случая использование ПЭГ уменьшает агрегацию эритроцитов и/или гемолиз [Eliyahu Н. et al. Lipoplex-induced hemagglutination: potential involvement in intravenous gene delivery / Gene Therapy, 2002, V. 9, pp. 850-858].

На физико-химические характеристики и биологические свойства ПЭГ-модифицированных катионных липосом влияют такие параметры, как структура ПЭГ-содержащего липида и его молекулярная масса [Xia Y. et al. Effect of surface properties on liposomal siRNA delivery / Biomaterials, 2016, V. 79, pp. 56-68], а также его количественное содержание в составе липосом [Suk J.S. et al. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery / Adv. Drug Deliv. Rev., 2016, V. 99, pp. 28-51].

Молекулярная масса остатков ПЭГ, используемых для модификации систем доставки нуклеиновых кислот, варьируется от 350 Да до 40 кДа [Mosqueira V.C. et al. Interactions between a macrophage cell line (J774A1) and surface-modified poly (D,L-lactide) nanocapsules bearing poly(ethylene glycol) / J. Drug Target., 1999, V. 7, pp. 65-78; Cui J. et al. Engineering poly (ethylene glycol) particles for improved biodistribution / ACS Nano, 2015, V. 9, pp. 1571-1580], в частности, в составе катионных липосом наиболее часто используется липид с ПЭГ молекулярной массы 2 кДа [Xia Y. et al. Effect of surface properties on liposomal siRNA delivery / Biomaterials, 2016, V. 79, pp. 56-68; Chan C.L. et al. Endosomal escape and transfection efficiency of PEGylated cationic liposome-DNA complexes prepared with an acid-labile PEG-lipid / Biomaterials. 2012, V. 33, pp. 4928-4935; Tagami T. et al. Anti-angiogenic therapy via cationic liposome-mediated systemic siRNA delivery / Int. J. Pharm., 2012, V. 422, pp. 280-289].

Количественное содержание ПЭГ-содержащего липида в составе систем доставки нуклеиновых кислот варьируется от 0,5 до 30% [Gref R. et al. "Stealth" corona-core nanoparticles surface modified by polyethylene glycol (PEG): Influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption / Colloids and Surfaces, 2000, V. 18, pp. 301-313; Chan C.L. et al. Endosomal escape and transfection efficiency of PEGylated cationic liposome-DNA complexes prepared with an acid-labile PEG-lipid / Biomaterials, 2012, V. 33, pp. 4928-4935; Palchetti S. et al. The protein corona of circulating PEGylated liposomes / Biochim. Biophys. Acta, 2016, V. 1858, pp. 189-196; Mosqueira V.C. et al. Interactions between a macrophage cell line (J774A1) and surface-modified poly (D,L-lactide) nanocapsules bearing poly(ethylene glycol) / J. Drug Target., 1999, V. 7, рр. 65-78]. Для обеспечения наиболее эффективной защиты от взаимодействия с белками сыворотки крови оптимальным является содержание ПЭГ-липида в количестве от 2 до 5% [Gref R. et al. "Stealth " corona-core nanoparticles surface modified by polyethylene glycol (PEG): Influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption / Colloids and Surfaces, 2000, V. 18, pp. 301-313].

Техническим результатом заявленного изобретения является расширение арсенала средств, способных эффективно доставлять нуклеиновые кислоты в опухолевые клетки in vitro в присутствии сыворотки крови в ростовой среде, а также в клетки мишени in vivo при внутривенном введении в организм животного.

Технический результат достигается ПЭГ-содержащим липидом структуры (1):

где: если m=1, то n=18 или n=32-52, а если m=2, то n=20-46.

Структура ПЭГ-содержащего липида (1) включает дитетрадецилглицерин, необходимый для встраивания в липидный бислой катионных липосом, и остаток полиэтиленгликоля различной молекулярной массы (например, ~750 Да, ~1,5 кДа и ~2,0 кДа), необходимой для защиты липосом от воздействия сыворотки крови и увеличения времени циркуляции в кровотоке. В качестве терминальной группы полиэтиленгликоля выбрана ацетамидная группа. Для присоединения ПЭГ к дитетрадецилглицерину используют биодеградируемый линкер карбамоильного типа.

Технический результат также достигается предлагаемой композицией, которая включает: 1) поликатионный амфифил 1,26-бис(холест-5-ен-3β-илоксикарбониламино)-7,11,16,20-тетраазагексакозан тетрагидрохлорид (соединение 2X3) в качестве компонента, связывающего и упаковывающего нуклеиновую кислоту, 2) нейтральный фосфолипид 1,2-ди-О-олеоилфосфатидилэтаноламин (DOPE) в качестве структурообразующего и промотирующего компонента (для структуризации комплексов) и 3) ПЭГ-содержащий липид (1), обеспечивающий защитную функцию.

В одном из вариантов осуществления изобретения композиция содержит: поликатионный амфифил в количестве 25-50 мольных процентов от общего количества липидов в композиции, нейтральный фосфолипид в количестве 25-49,5 мольных процентов от общего количества липидов в композиции и ПЭГ-содержащий липид (1) в количестве 0,5-10 мольных процентов от общего количества липидов композиции.

Технический результат также достигается способом получения предлагаемой композиции для доставки коротких и протяженных нуклеиновых кислот, согласно которому гидратируют в воде липидную пленку, содержащую поликатионный амфифил, нейтральный фосфолипид и ПЭГ-содержащий липид (1), и затем полученную эмульсионно-дисперсионную систему подвергают ультразвуковой обработке или экструзии.

Исходным соединением в синтезе ПЭГ-содержащего липида (1) являлся 1,2-ди-О-тетрадецил-rac-глицерин (2), из которого было получено его активированное производное - rac-1-O-(4-нитрофенилоксикарбонил)-2,3-ди-O-тетрадецилглицерин (3) согласно описанному ранее методу [Shmendel' Е. V. et al. Synthesis of neoglycolipids for the development of non-viral gene delivery systems / Russian Chemical Bulletin, 2010, V. 59, pp. 2281-2289]. Активированный диглицерид (3) вводили во взаимодействие с избытком диаминов - O,O'-бис(2-аминоэтил)октадекаэтиленгликолем, бис(3-аминопропил)полиэтиленгликолем с молекулярной массой ~1500 Да и бис(амино)полиэтиленгликолем с молекулярной массой ~2000 Да - в условиях реакции конденсации в присутствии триэтиламина [Шменделъ Е.В. и др. Синтез фолатсодержащих липоконъюгатов с гидрофобными спейсерными группами / Вестник МИТХТ, 2013, Т. 8, с. 111-113], получая соединение (4). Ацилирование свободной терминальной аминогруппы соединения (4) приводило к целевому соединению (1).

Соединения (2), (3) были получены ранее [Shmendel' Е. V. et al. Synthesis of neoglycolipids for the development of non-viral gene delivery systems / Russian Chemical Bulletin, 2010, V. 59, pp. 2281-2289]. O,O'-Бис(2-аминоэтил)октадекаэтиленгликоль, бис(3-аминопропил)полиэтиленгликоль с молекулярной массой ~1500 Да, бис(амино)полиэтиленгликоль с молекулярной массой -2000 Да были получены от Aldrich. Остальные растворители и реагенты были отечественного производства. Хлористый метилен и триэтиламин кипятили над гидридом кальция и перегоняли перед реакцией. Пиридин кипятили над гидроксидом калия и перегоняли перед реакцией.

Тонкослойную хроматографию проводили на пластинках Kieselgel 60 F254 (Merck). Обнаружение пятен на хроматограммах проводили раствором фосформолибденовая кислота - церий (IV) сульфат с последующим прогреванием и с помощью УФ-лампы (254 нм). Колоночную хроматографию осуществляли на силикагеле Kieselgel 60 (0,040-0,063 мм и 0,063-0,200 мм, Merck). Ионообменную колоночную хроматографию проводили на смоле Dowex Н+.

Спектры ЯМР 1Н и 13С регистрировали на приборах Bruker DPX 300 и Bruker DRX 500 с использованием CDCl3 в качестве растворителя, если не указано иное. Химические сдвиги ЯМР 1Н приведены относительно остаточного сигнала CHCl3H 7.26 м.д.). Химические сдвиги ЯМР 13С приведены относительно центрального сигнала растворителя (δC 77.0 м.д. для растворов в CDCl3). Масс-спектры получали на времяпролетном масс-спектрометре «Bruker Ultraflex» (Германия) методом матриксной лазерно-десорбционной ионизации на матрице с использованием в качестве матрицы 2,5-дигидроксибензойной кислоты, если не указано иное.

Для формирования композиций использовали гидратирование липидной пленки, состоящей из поликатионного амфифила, нейтрального фосфолипида (например, DOPE) и ПЭГ-содержащего липида (1), с последующей ультразвуковой обработкой или экструзией.

Для изучения способности предлагаемой композиции доставлять нуклеиновые кислоты в клетки млекопитающих in vitro использовали протяженную плазмидную ДНК (pEGFP-C2, «Clontech» (Германия)) или короткую 21-звенную двуцепочечную РНК (siPHК, ИХБФМ СО РАН) (последовательность смысловой цепи 5'-GCGCCGAGGUGAAGUUCGATT-3', антисмысловой цепи - 5'-UCGAACUUCACCUCGGCGCGG-3'). Для исследования способности композиции доставлять нуклеиновые кислоты в клетки-мишени in vivo использовали 19-звенную двуцепочечную иммуностимулирующую РНК (исРНК, ИХБФМ СО РАН) с 3-х нуклеотидными выступающими 3'-концами [патент RU 2391405 С1, опубл. 10.06.2010] (последовательность цепи 1: 5'-GUGUCAGGCUUUCAGAUUUUUU-3'; цепи 2: 5'-AAAUCUGAAAGCCUGACACUUA-3').

Для формирования комплексов нуклеиновых кислот с предлагаемой композицией инкубировали аликвоты растворов нуклеиновых кислот и композиции, рассчитанные в соответствии с соотношением положительных зарядов аминогрупп поликатионного амфифила (N) к отрицательным зарядам фосфатных групп (Р) нуклеиновых кислот (соотношения N/P=4/1-8/1).

Эффективность проникновения нуклеиновых кислот с использованием липосомальной композиции в клетки млекопитающих in vitro была исследована в экспериментах по трансфекции клеток HEK293 плазмидной ДНК, кодирующей зеленый флуоресцирующий белок (EGFP), а также по трансфекции трансгенных клеток BHK IR780, стабильно экспрессирующих EGFP, siPHК, направленной на подавление синтеза EGFP. Эффективность доставки иммуностимулирующей РНК с использованием липосомальной композиции в клетки-мишени in vivo была исследована в экспериментах по определению уровня интерферона-α (ИФН-α) и цитокинов воспаления интерлейкина-6 (ИЛ-6) и фактора некроза опухоли-α (ФНО-α) в сыворотке крови мышей через 6 ч после внутривенного введения.

Сопоставительный анализ заявляемой липосомальной композиции с известными и широко используемыми трансфектантами, такими как Lipofectamine®2000 и композицией 2X3:DOPE [Maslov М.А. et al. Novel cholesterol spermine conjugates provide efficient cellular delivery of plasmid DNA and small interfering RNA / J. Control. Release, 2012, V. 160, pp. 182-193] показал, что ПЭГ-содержащий липид (1) и липосомальная композиция на его основе обладают следующими преимуществами:

1) Заявляемая композиция с высокой эффективностью доставляет как in vitro, так и in vivo в клетки млекопитающих протяженные и короткие нуклеиновые кислоты, что позволяет рассматривать ее в качестве перспективного средства доставки терапевтических нуклеиновых кислот в эукариотические клетки.

2) Заявляемая композиция не требуют сложной процедуры приготовления, для получения рабочего раствора достаточно подвергнуть ультразвуковой обработке или экструзии гидратированную липидную пленку, состоящую из поликатионного амфифила, нейтрального фосфолипида (например, DOPE) и ПЭГ-содержащего липида (1).

3) Заявляемая композиция стабильна при хранении, как в сухом виде, так и в виде водных формуляций.

4) Заявляемая композиция превосходит известные аналоги по эффективности трансфекции в эукариотические клетки.

Поиск по источникам научно-технической и патентной литературы показал, что заявляемое соединение, композиция на его основе и способ ее получения в известных из уровня техники источниках не описаны.

Изобретение иллюстрируется следующими примерами.

Пример 1. Синтез ПЭГ-содержащего липида (1).

К раствору 1,2-ди-О-тетрадецил-rac-глицерина (2) (2,42 г, 4,99 ммоль) в безводном хлористом метилене (20 мл) добавили по каплям безводный триэтиламин (1,4 мл) и раствор 4-нитрофенилхлорформиата (1,55 г, 7,69 ммоль) в безводном хлористом метилене (20 мл). Реакционную смесь перемешивали 11 ч при 24°C, промывали 3% водн. хлористоводородной кислоты (20 мл), насыщенным раствором хлорида натрия (3×20 мл) до рН=7. Органический слой сушили сульфатом натрия, фильтровали, упаривали в вакууме. Продукт выделяли колоночной хроматографией, элюируя толуолом. Получили 3,11 г (96%) rac-1-O-(4-нитрофенилоксикарбонил)-2,3-ди-O-тетрадецилглицерина (3) в виде кристаллизующегося масла.

К раствору rac-1-O-(4-нитрофенилоксикарбонил)-2,3-ди-O-тетрадецилглицерина (3) (0,171 ммоль) в безводном хлористом метилене (3 мл) был добавлен раствор диамина (0,343 ммоль) - O,O'-бис(2-аминоэтил)октадекаэтиленгликоля или бис(3-аминопропил)полиэтиленгликоля с молекулярной массой ~1500 Да или бис(амино)полиэтиленгликоля с молекулярной массой ~2000 Да - в безводном хлористом метилене (4 мл) и безводном триэтиламине (96 мкл). Реакционную смесь перемешивали 1 ч при 24°C, затем промывали 3% водн. хлористоводородной кислоты (до рН=4), водой до рН=7. Органический слой сушили сульфатом натрия, фильтровали, растворители удалили в вакууме. Продукт (4) выделяли колоночной хроматографией, элюируя смесью хлороформ-метанол 15:1, с увеличением полярности до 10:1. Получили от 20 до 51% соединения (4) в виде кристаллизующегося масла.

Безводный пиридин (50 мкл) и уксусный ангидрид (50 мкл) были добавлены к раствору соединения (4) в безводном хлористом метилене (2 мл). Реакционную смесь перемешивали 6 ч при 24°C, растворители удалили в вакууме. Продукт выделили с помощью ионообменной колоночной хроматографии, элюируя метанолом, с увеличением полярности метанол-водный раствор аммиака 5:1. Соединение (1) было получено с выходом 77-88% в виде белого кристаллизующегося масла.

Соединение (1), где n=18: 1H ЯМР (300 МГц, CDCl3, δ): 0.81 (т, J=6.7 Гц, 6Н, 2(СН2)11Ме); 1.10-1.29 (м, 44Н, 2(CH2)11Ме); 1.44-1.57 (м, 4Н, 2OCH2CH2); 1-91 (с, 3H, CH3COO); 3.25-3.68 (м, 86Н, 2NHCH2, CH2(OCH2CH2)18OCH2, 2OCH2CH2, ОСН2СНО); 3.68-3.77 (м, 1Н, OCH2CHO); 4.02 (дд, J=5.4 Гц, J=11.4 Гц, 1H) и 4.07-4.15 (м, 1Н, СН2ОС(O)); 5.21-5.30 (м, 1H, NHCH2); 6.46-6.56 (м, 1Н, NH). 13С ЯМР (125 МГц, CDCl3, δ): 14.04, 22.61, 25.99, 26.04, 29.28, 29.43, 29.58, 29.61, 29.98, 31.85, 39.26, 40.82, 69.80, 70.02, 70.14, 70.27, 70.51, 71.71, 170.28. Масс-спектр MALDI, m/z: [М]+ вычислено для C74H148N2O24, 1449.042; найдено: 1449.781.

Соединение 1, где n=20-46: 1Н ЯМР (300 МГц, CDCl3, δ): 0.81 (т, J=6.7 Гц, 6Н, 2(СН2)11Ме,); 1.13-1.29 (м, 44Н, 2(СН2)11Ме); 1.43-1.52 (м, 4Н, 2OCH2CH2); 1.66-1.75 (м, 4Н, 2NHCH2CH2); 1.88 (с, 3Н, СН3СОО); 3.17-3.25 (м, 2Н, NHCH2); 3.26-3.32 (м, 2Н, NHCH2); 3.33-3.63 (м, 142Н, СН2(ОСН2СН2)33ОСН2, 2OCH2CH2, ОСН2СНО); 3.69-3.73 (м, 1Н, ОСН2СНО); 4.01 (дд, J=5.2, J=11.5, 1 Н) и 4.06-4.14 (м, 1 Н, СН2ОС(O)); 5.07-5.14 (м, 1H, NHCH2); 6.26-6.35 (м, 1H, NHCH2). Масс-спектр MALDI, m/z: [М+Н]+ вычислено для C106H213N2O39, 2138.475; найдено: 2138.272.

Соединение 1, где n=32-52: 1Н ЯМР (300 МГц, CDCl3:CD3OD, 6:1, δ): 0.81 (т, J=6.7 Гц, 6Н, 2(СН2)11Ме,); 1.12-1.32 (м, 44Н, 2(СН2)11Ме); 1.44-1.55 (м, 4Н, 2OCH2CH2); 1.91 (с, 3Н, CH3COO); 3.21-3.68 (м, 182Н, 2NHCH2, СН2(ОСН2СН2)42ОСН2, 2OCH2CH2, ОСН2СНО); 3.68-3.74 (м, 1Н, ОСН2СНО); 4.01 (дд, J=5.4, J=11.6, 1 Н) и 4.06-4.13 (м, 1 Н, СН2ОС(О)). 13С ЯМР (125 МГц, CDCl3): 13.84, 22.36, 22.52, 25.94, 29.20, 29.35, 29.50, 29.54, 31.78, 39.20, 69.53, 69.93, 70.33, 71.71, 109.20, 160.10. Масс-спектр MALDI, m/z: [М+Н]+ вычислено для C122H245N2O48, 2506.679; найдено: 2506.662.

Пример 2. Получение композиции Р800, Р1500, Р2000.

Катионный амфифил 2X3 [Petukhov I.A. et al. Synthesis of polycationic lipids based on cholesterol and spermine / Russ. Chem. Bull., 2010, V. 59, pp. 260-268], нейтральный фосфолипид DOPE и ПЭГ-содержащий липид (1) в подходящем органическом растворителе упаривали в вакууме до образования липидной пленки. Полученную липидную пленку гидратировали в необходимом количестве автоклавированной деионизированной воды в течение 5 часов, а затем озвучивали на ультразвуковой бане до получения однородной композиции. Озвучивание можно заменить экструзией через поликарбонатную мембрану с размером пор 50-200 нм. Были получены композиции Р800 (когда в ПЭГ-содержащем липиде (1) n=18), Р1500 (когда в ПЭГ-содержащем липиде (1) n=20-46) и Р2000 (когда в ПЭГ-содержащем липиде (1) n=32-52).

Пример 3. Трансфекция клеток HEK 293 плазмидной ДНК с использованием композиций Р800, Р1500, Р2000.

Исследование доставки плазмидной ДНК в клетки HEK 293 проводили с помощью проточной цитофлуориметрии. Эффективность трансфекции оценивали по количеству клеток, содержащих зеленый флуоресцентный белок (EGFP) от общего количества клеток в образце. Клетки HEK 293 высаживали в 24-луночные планшеты (1×105 клеток на лунку в 500 мкл среды DMEM с 10% эмбриональной телячьей сывороткой (FBS)) и культивировали в течение суток при 37°C в атмосфере, содержащей 5% CO2. Перед проведением трансфекции среду в лунках заменяли на 200 мкл среды DMEM с 10% FBS. Композицию Р800, или Р1500, или Р2000 в 25 мкл среды OptiMEM смешивали с раствором pEGFP-C2 (0,5 мкг на лунку) в 25 мкл этой же среды при соотношении N/P=4/1 (темно серые столбики), 6/1 (светло серые столбики) или 8/1 (белые столбики) и инкубировали 20 мин при 25°C. Полученную смесь добавляли к клеткам и выдерживали в течение 4 ч при 37°C в атмосфере, содержащей 5% CO2, затем заменяли среду на 500 мкл DMEM с 10% FBS. Через 48 ч клетки промывали фосфатно-солевым буфером (PBS) (300 мкл), добавляли 40 мкл раствора трипсина и инкубировали 2 мин (37°C, 5% CO2). По окончании инкубации в лунки добавляли 400 мкл DMEM с 10% FBS, клетки суспендировали и переносили в пробирки. Полученную клеточную суспензию центрифугировали при 1200 об/мин в течение 10 мин, отбирали среду и промывали 500 мкл PBS. Затем клетки фиксировали в 600 мкл 2% раствора формальдегида в PBS. Анализ уровня трансфекции клеток проводили на флуоцитометре ACEA NovoCyte™ 3000 (Bioscience Inc., USA). В этих экспериментах определяли количество клеток (фиг. 1А), экспрессирующих белок EGFP, и средний уровень флуоресценции клеток (фиг. 1Б), при длине волны возбуждения 488 нм. В качестве объекта сравнения был выбран коммерчески доступный препарат - Lipofectamine 2000 (Invitrogene) и липосомы 2X3-DOPE (L) [Maslov М.А. et al. Novel cholesterol spermine conjugates provide efficient cellular delivery of plasmid DNA and small interfering RNA / J. Control. Release, 2012, V. 160, pp. 182-193].

Результаты трансфекции клеток плазмидной ДНК pEGFP-C2 в присутствии FBS в ростовой среде представлены на фиг. 1.

Пример 4. Трансфекция клеток BHK IR-780 короткой интерферирующей РНК с использованием предлагаемых композиций.

Исследование проникновения siPHК, направленной на подавление синтеза зеленого флуоресцирующего белка EGFP, проводили на клетках линии BHK IR-780, стабильно экспрессирующих данный белок. В качестве мишени была выбрана мРНК EGFP, таким образом по уменьшению флуоресценции клеток, определяемой этим белком, можно судить об эффективности доставки siPHК в цитоплазму клетки.

Клетки BHK IR-780 высаживали в 24-луночные планшеты (0,13×105 клеток на лунку в 500 мкл среды DMEM с 10% FBS) и культивировали в течение суток при 37°C в атмосфере, содержащей 5% CO2. Перед проведением трансфекции для экспериментов в присутствии сыворотки (фиг. 2Б) или в отсутствии сыворотки (фиг. 2А) среду в лунках заменяли на 200 мкл среды DMEM с 10% FBS или без нее, соответственно. Композиции Р800 (фиг. 2, ()), Р1500 (фиг. 2, ()) или Р2000 (фиг. 2, ()) в 25 мкл среды OptiMEM смешивали с раствором siPHК (конечная концентрация siPHК 50 нМ) в 25 мкл этой же среды при соотношениях N/P=4/1, 6/1 или 8/1 и инкубировали 20 мин при 25°C. Полученную смесь добавляли к клеткам и выдерживали в течение 4 ч при 37°C в атмосфере, содержащей 5% CO2, затем заменяли среду на 500 мкл DMEM с 10% FBS. Через 72 ч клетки обрабатывали, как описано в примере 5. В качестве объекта сравнения был выбран коммерчески доступный препарат - Lipofectamine 2000 (фиг. 2, ()) и липосомы 2X3:DOPE (L - фиг. 2, ()). Результаты по трансфекции клеток короткой интерферирующей РНК с липосомальными композициями в присутствии сыворотки в ростовой среде (Б) или без нее (А), определенные по уровню снижения экспрессии белка EGFP представлены на фиг. 2.

Пример 5. Анализ уровня цитокинов в сыворотке крови мышей.

Все процедуры на животных проводили в соответствии с протоколами, утвержденными Биоэтическим комитетом СО РАН, и рекомендациями по правильному использованию и уходу за лабораторными животными (European Communities Council Directive 86/609/CEE). В работе использовали 10-14-недельных самцов мышей линии CBA/LacSto со средним весом 23-27 г разведения вивария ИЦиГ СО РАН. Животных содержали по 8-10 особей в клетке при естественном освещении. Мыши имели свободный доступ к еде и воде. Мышам внутривенно вводили препараты исРНК в количестве 0,5 мкг/г в комплексе с липосомами L или композицией Р800, Р1500 или Р2000 при соотношении N/P=4/1 в 200 мкл OptiMEM. Через 6 часов осуществляли забор крови у мышей путем декапитации. Для получения сыворотки пробирки с кровью инкубировали при 37°C в течение 30 мин для образования сгустка крови. Сгусток отделяли от стенок пробирки и удаляли. Сыворотку центрифугировали при 300 G, супернатант переносили в лунки 96-луночного планшета. Концентрации ИФН-α (фиг. 3А), ФНО-α (фиг. 3Б, черные столбцы) и ИЛ-6 (фиг. 3Б, белые столбцы) в сыворотке крови мышей определяли с помощью иммуноферментного анализа как описано в протоколе производителя («BD Biosciences», США). Было проведено три независимых эксперимента, образцы измерялись в дубликатах. В качестве контроля специфичности использовали РНК сходную по структуре с исРНК, но случайной последовательности (siScr).

Результаты уровня цитокинов в сыворотке крови мышей представлены на фиг. 3.

Таким образом, приведенные примеры однозначно указывают на способность предлагаемой липосомальной композиции, состоящей из поликатионного амфифила, нейтрального фосфолипида и ПЭГ-содержащего липида (1), способствовать эффективному проникновению коротких и протяженных нуклеиновых кислот в клетки млекопитающих в присутствии сыворотки крови in vitro, а также усиливать интерфероногенную активность исРНК при ее доставке in vivo, что позволяет использовать их в качестве агентов для доставки нуклеиновых кислот в клетки млекопитающих в условиях как in vitro, так и in vivo.


Полиэтиленгликоль-содержащий липид, композиция на его основе с катионным амфифилом и нейтральным фосфолипидом и способ ее получения для доставки нуклеиновых кислот in vivo
Полиэтиленгликоль-содержащий липид, композиция на его основе с катионным амфифилом и нейтральным фосфолипидом и способ ее получения для доставки нуклеиновых кислот in vivo
Полиэтиленгликоль-содержащий липид, композиция на его основе с катионным амфифилом и нейтральным фосфолипидом и способ ее получения для доставки нуклеиновых кислот in vivo
Полиэтиленгликоль-содержащий липид, композиция на его основе с катионным амфифилом и нейтральным фосфолипидом и способ ее получения для доставки нуклеиновых кислот in vivo
Источник поступления информации: Роспатент

Показаны записи 11-20 из 84.
10.04.2014
№216.012.b10a

Рекомбинантная плазмидная днк pqe-p35d, обеспечивающая синтез рекомбинантного белка p35d вируса оспы коров, штамм бактерий escherichia coli - продуцент рекомбинантного белка p35d вируса оспы коров и рекомбинантный белок p35d вируса оспы коров, используемый для создания тест-систем и конструирования субъединичных вакцин против ортопоксвирусных инфекций

Изобретение относится к области биотехнологии и касается получения генетической конструкции, обеспечивающей синтез в клетках Escherichia coli рекомбинантного белка p35d.Представлены: рекомбинантная плазмидная ДНК pQE-p35d, обеспечивающая синтез рекомбинантного белка p35dвируса оспы коров и...
Тип: Изобретение
Номер охранного документа: 0002511037
Дата охранного документа: 10.04.2014
20.04.2014
№216.012.bb56

Рекомбинантная плазмидная днк pg1-rm7, обеспечивающая синтез гибридного белка g1-rm7, и гибридный белок, связывающий фактор некроза опухолей и обладающий биолюминесцентной активностью

Группа изобретений относится к биотехнологии, генной и белковой инженерии, конкретно к рекомбинантной плазмидной ДНК pG1-Rm7, обеспечивающей в клетках Escherichia coli синтез гибридного белка G1-Rm7, способного связывать фактор некроза опухолей и обладающего биолюминесцентной активностью...
Тип: Изобретение
Номер охранного документа: 0002513686
Дата охранного документа: 20.04.2014
20.05.2014
№216.012.c3e2

Средство для нейтрализации вируса натуральной оспы

Изобретение относится к иммунологии и медицине и представляет собой средство для нейтрализации вируса натуральной оспы, представляющее собой искусственное одноцепочечное антитело человека 1A, имеющее аминокислотную последовательность, приведенную в материалах заявки, экспонированное на...
Тип: Изобретение
Номер охранного документа: 0002515905
Дата охранного документа: 20.05.2014
10.09.2014
№216.012.f1a3

Способ получения наноразмерной системы доставки нуклеозидтрифосфатов в клетки млекопитающих

Изобретение относится к области химии, биологии и молекулярной медицины, а именно к способу получения наноразмерной системы доставки нуклеозидтрифосфатов. Способ включает модификацию носителя, в качестве которого используют аминосодержащие наночастицы диоксида кремния размером до 24 нм, путем...
Тип: Изобретение
Номер охранного документа: 0002527681
Дата охранного документа: 10.09.2014
10.11.2014
№216.013.03a2

Средство, обладающее антибактериальной активностью

Изобретение относится к медицине, а именно к антибактериальным препаратам широкого спектра действия. Предложено средство, представляющее собой дигидроксоцистинодиа-минодиаргенат натрия, обладающее антибактериальной активностью. Средство представляет собой комплекс двух ионов серебра с...
Тип: Изобретение
Номер охранного документа: 0002532328
Дата охранного документа: 10.11.2014
20.12.2014
№216.013.109d

Фосфорсодержащие фторированные производные 1,4-нафтохинона, обладающие цитотоксической активностью по отношению к раковым клеткам человека в культуре

Изобретение относится к новым фторированным производным 1,4-нафтохинона общей формулы (I) обладающим цитотоксической активностью по отношению к раковым клеткам, которые могут найти применение в медицине. Предложены новые соединения с противораковой активностью для терапии злокачественных...
Тип: Изобретение
Номер охранного документа: 0002535676
Дата охранного документа: 20.12.2014
27.12.2014
№216.013.15c8

Способ очистки вируса осповакцины или его рекомбинантных вариантов

Изобретение относится к медицинской биотехнологии. Способ очистки вируса осповакцины, в том числе его рекомбинантных вариантов, включает обработку исходной вируссодержащей жидкости ультразвуком. Полученную суспензию центрифугируют при 24000 об/мин. Осадок ресуспендируют в буфере. Повторно...
Тип: Изобретение
Номер охранного документа: 0002537000
Дата охранного документа: 27.12.2014
27.04.2015
№216.013.4718

Рнк-аптамер, обладающий способностью узнавать характерные для рассеянного склероза аутоантитела

Изобретение относится к области биотехнологии и медицины и касается РНК-аптамера. Предложенный РНК-аптамер представляет собой 57-звенный олигонуклеотид смешанного типа, имеющий нуклеотидную последовательность GGGAGGACGAUGCGGUGUUUUCUGAGUACAUCUCUGCCCCACCCUU GUUUACCCCCA, где A,G - рибонуклеотиды,...
Тип: Изобретение
Номер охранного документа: 0002549704
Дата охранного документа: 27.04.2015
10.05.2015
№216.013.4939

Рекомбинантная плазмидная днк pclm4/hygro-14d5, кодирующая полипептид со свойствами легкой цепи химерного антитела против вируса клещевого энцефалита, и рекомбинантная плазмидная днк pchm2-14d5, кодирующая полипептид со свойствами тяжелой цепи химерного антитела против вируса клещевого энцефалита, химерное антитело, обеспечивающее экстренную профилактику клещевого энцефалита у мышей

Группа изобретений относится к биотехнологии, генной и белковой инженерии. Сконструированы плазмиды pCLm4/hygro-14D5 и pCHm2-14D5. Плазмиды обеспечивают синтез в эукариотических клетках полипептидов со свойствами легкой и тяжелой цепей химерного антитела, которые объединяются в химерное...
Тип: Изобретение
Номер охранного документа: 0002550252
Дата охранного документа: 10.05.2015
20.07.2015
№216.013.62be

Способ получения экзосом из крови

Изобретение относится к биотехнологии, а именно к способу получения экзосом из крови. Кровь разделяют на плазму и клеточную фракцию. Далее клеточную фракцию крови подвергают последовательной двухстадийной обработке сначала буферным раствором PBS, содержащим 5 мМ ЭДТА, с последующим...
Тип: Изобретение
Номер охранного документа: 0002556825
Дата охранного документа: 20.07.2015
Показаны записи 11-18 из 18.
10.04.2019
№219.017.068a

Композиция для доставки нуклеиновых кислот в клетки млекопитающих

Изобретение относится к медицине и касается композиции для доставки нуклеиновых кислот в клетки млекопитающих в присутствии и в отсутствие сыворотки в ростовой среде. Композиция включает поликатионный амфифил и нейтральный фосфолипид и образует комплекс с нуклеиновой кислотой. Изобретение...
Тип: Изобретение
Номер охранного документа: 0002423147
Дата охранного документа: 10.07.2011
10.04.2019
№219.017.07ce

Противоопухолевое средство тритерпеновой природы, полученное путем модификации глицирретовой кислоты

Изобретение относится к новому химическому соединению, а именно к метиловому эфиру 2-циано-3,12-диоксо-1(2),11(9)-диен-11-дезоксоглицирретовой кислоты формулы (1): которое может быть использовано в медицине в качестве лекарственного средства, обладающего противоопухолевым действием. 1 табл., 3...
Тип: Изобретение
Номер охранного документа: 0002401273
Дата охранного документа: 10.10.2010
19.04.2019
№219.017.2e17

Фрагменты двуцепочечной рнк, обладающие антипролиферативной и интерферон-индуцирующей активностями

Изобретение относится к области молекулярной биологии и биотехнологии. Предложены фрагменты двуцепочечной РНК длиной 22-нуклеотида, содержащие тринуклеотидные выступающие 3'-концы, состоящие из нуклеотидных цепей следующей последовательности: 5'-AAANNNNNNNGCCUGACACUUU/A-3'...
Тип: Изобретение
Номер охранного документа: 0002391405
Дата охранного документа: 10.06.2010
29.04.2019
№219.017.40e2

Производные n-замещенного 1,4-диазабицикло-[2.2.2]-октана, проявляющие противовирусную активность в отношении рнк-вирусов

Изобретение относится к области химии и медицины и касается новых соединений, являющихся производными N-замещенного 1,4-диазабицикло[2.2.2.]октана. Предложенные соединения проявляют противовирусную активность и могут найти применение в медицине как активные компоненты для разработки...
Тип: Изобретение
Номер охранного документа: 0002399669
Дата охранного документа: 20.09.2010
29.04.2019
№219.017.40e3

Средство для инактивации вирусов, обладающее одновременной рибонуклеазной, мембранолитической и противовирусной активностями

Изобретение относится к области химии и медицины. Охарактеризовано средство для инактивации вирусов, представляющее собой производные лизина, глутаминовой и 6-аминогексановой кислот. Представленное средство обладает рибонуклеазной, мембранолитической и противовирусной активностями и может быть...
Тип: Изобретение
Номер охранного документа: 0002399388
Дата охранного документа: 20.09.2010
29.04.2019
№219.017.44f2

Средство, обладающее противовирусной активностью

Изобретение относится к средству, обладающему противовирусной активностью, которое представляет собой N- и С-замещенный пептид, выбранный из н-децилового эфира (1-тетрадецил-1,4-диазониабицикло[2.2.2.]октан-4-ил)-ацетил-глутамил-глицил-лизил-глицина (1), н-децилового эфира...
Тип: Изобретение
Номер охранного документа: 0002402563
Дата охранного документа: 27.10.2010
24.05.2019
№219.017.5fb8

Способ лечения злокачественных опухолей у животных

Изобретение относится к экспериментальной онкологии. Способ включает введение рибонуклеазы. При этом в качестве рибонуклеазы используют панкреатическую РНКазу А в концентрации (3,5-7,0)·10 мг/кг массы животного. Панкреатическую РНКазу А вводят внутримышечно ежедневно, курсом 8-10 инъекций....
Тип: Изобретение
Номер охранного документа: 0002317825
Дата охранного документа: 27.02.2008
12.10.2019
№219.017.d4d6

Способ прогнозирования эффективности лечения больных острыми миелобластными лейкозами противоопухолевыми препаратами даунорубицином и цитозин-арабинозидом

Изобретение относится к онкогематологии. Способ прогнозирования эфективности лечения больного ОМЛ характеризуется тем, что у больного берут пробу крови или костного мозга, выделяют опухолевые клетки, культивируют их с дуанорубицином и цитозин-арабинозидом в отдельности, добавляют раствор WST-1,...
Тип: Изобретение
Номер охранного документа: 0002702657
Дата охранного документа: 09.10.2019
+ добавить свой РИД