×
30.03.2019
219.016.f979

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ ПУТЕВОЙ СКОРОСТИ

Вид РИД

Изобретение

№ охранного документа
0002683578
Дата охранного документа
29.03.2019
Аннотация: Изобретение относится к измерительной технике, в частности к радиоволновым способам измерения путевой скорости транспортных средств с использованием эффекта Доплера для электромагнитных волн. Технический результат - повышение точности измерения путевой скорости транспортного средства - достигается тем, что в способе измерения путевой скорости, заключающемся в том, что электромагнитные волны излучают вперед под углом α по направлению движения транспортного средства, принимают отраженные от поверхности дороги электромагнитные волны, затем эти волны смешивают в первом смесителе с частью излучаемых волн и выделяют первый сигнал разностной частоты, дополнительно к этому отраженные волны пропускают через линию задержки длиной в четверть длины волны электромагнитного колебания, смешивают их на втором смесителе с частью излучаемых волн и выделяют второй сигнал разностной частоты, затем оба сигнала сравнивают по фазе, при этом один из сигналов разностной частоты предварительно пропускают через управляемую линию задержки, с помощью изменения разности фаз этих сигналов управляют линией задержки до совпадения фаз обоих сигналов разностной частоты, по результирующему управляющему сигналу вычисляют время задержки, по которому определяют скорость транспортного средства. 3 ил.

Изобретение относится к измерительной технике, в частности к способам измерения путевой скорости наземных транспортных средств с использованием эффекта Доплера для электромагнитных волн.

В настоящее время известны радиоволновые способы измерения путевой скорости, основанные на эффекте Доплера (Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. М.: Энергоатомиздат, 1989. 124-132 с.). В отличие от способов, определяющих скорость по частоте вращения колеса, радиоволновые доплеровские способы измерения позволяют определять истинную путевую скорость, которая не зависит от скольжения, движения при повороте и пробуксовывания. Эта информация об истинной скорости относительно поверхности очень важна для правильной работы антиблокировочной системы и других систем управления транспортного средства. Обычно при реализации способа СВЧ радиоволны излучаются вперед и под углом α по направлению движения транспортного средства. Отраженные от поверхности дороги электромагнитные волны принимаются или этой же антенной или другой приемной антенной. Затем эти волны смешивают в смесителе с частью излучаемых волн и выделяют сигнал разностной частоты. Частота отраженных волн в процессе движения транспортного средства, поступающая на смеситель, будет отличаться от излучаемой частоты СВЧ волн на доплеровскую частоту. Эту частоту, пропорциональную скорости движения будет иметь сигнал, выделяемый на смесителе:

где λ0=c/ƒ0 - длина излучаемой электромагнитной волны, с - скорость света в воздухе.

Отсюда скорость можно вычислить из уравнения:

Однако данный классический способ обладает существенным недостатком. Поскольку реальная антенна не излучает одну волну прямолинейно, а имеет некоторую диаграмму направленности с шириной главного лепестка θ, отраженная волна будет выглядеть не одной гармоникой, а суперпозицией волн, падающих и отраженных с разными углами α-θ/2≤αi≤а+θ/2 от подстилающей поверхности ΔƒD. Функцию распределения энергии отраженной волны от угла α можно выразить через уравнение радиолокации:

В этой формуле α - угол наклона относительно горизонтальной поверхности, θс - угол направления центра диаграммы направленности антенны (ДНА), А(α) - функция распределения ДНА, R(α)=Н/sin(α) - расстояние от фазового центра антенны до точки отражения, Н - высота расположения антенны над поверхностью (см. Фиг. 1). K - константа, определяемая системными параметрами, σ(α) - функция эффективной отражающей поверхности дороги. А(α) имеет максимум при условии равенства α=θс и симметрична относително θс. σ(α) имеет тенденцию к увеличению с увеличением угла α, в соответствии с ДНА. Если выполнить подстановку значения α=arccos(λ0ƒD/2V) из (1) в Е(α) согласно уравнению (3), получим выражение для спектральной плотности доплеровского сигнала S для данной скорости:

В результате имеет место принципиальное смещение между максимумом спектральной плотности и собственно доплеровской частотой ƒD. Кроме этого сам доплеровский сигнал будет иметь существенную стохастическую составляющую из-за случайного характера распределения отражающих свойств по площади отражающей поверхности, а также влияния вибрации и неровностей дороги. Также следует отметить, что вычисление спектра требует времени для накопления данных, что приводит к дискретному измерению скорости. За это время скорость может меняться, поэтому результат измерения будет неточным. На Фиг. 1а представлен реальный доплеровский сигнал записанный за время Т=1 сек. в относительных единицах и Фиг. 1б его периодограмма спектральной плотности в нормализованном виде по частотам F=π/ti, где ti - время выборки. Из спектра сигнала видно, что точно определить максимум затруднительно.

Чтобы уменьшить влияние этих ошибок, применяют способы с использованием излучения и приема электромагнитных волн из двух антенн под разными углами к поверхности (например, RU 2334995 C1, 27.09.2008). Совместная обработка двух доплеровских сигналов позволяет лишь частично снизить влияние ошибки от наличия спектрального распределения ΔƒD. Однако, практически кратное увеличение составных компонентов устройства, реализующего данный способ, соответственно увеличивает и ошибки, вызванные с паразитным просачиванием излучений между антеннами, циркуляторами и другими элементами устройства. Кроме этого повышается стоимость устройства. Точность можно повысить также за счет использования усредняющих и сглаживающих процедур обработки спектра, однако тот факт, что максимум спектральной плотности не соответствует доплеровской частоте (см. Фиг. 1б), не позволяет эффективно использовать и этот подход.

Наиболее близким по технической сущности является способ измерения путевой скорости (М.И. Финкельштейн. Основы радиолокации. М., Советское радио. 1973, с. 85), принятый за прототип. Электромагнитные колебания фиксированной частоты от генератора СВЧ излучаются под углом α между направлением движения и подстилающей поверхностью. Отраженные волны принимаются антенной и смешиваются с частью излучаемых электромагнитных колебаний. В результате выделяется доплеровский сигнал, а путевая скорость вычисляется по максимуму спектральной плотности доплеровского сигнала.

Недостатком способа являются значительные ошибки в определении путевой скорости, обусловленные измерением доплеровской частоты по максимуму спектральной плотности доплеровского сигнала и дискретным характером измерения. Для использования в навигационных системах, системах безопасности и для экономии расхода топлива требуется точное измерение пройденного пути. Для этого необходимо измерение мгновенной скорости.

Техническим результатом настоящего изобретения является повышение точности измерения путевой скорости наземного транспортного средства.

Технический результат достигается тем, что в способе измерения путевой скорости, заключающимся в том, что электромагнитные волны излучают вперед под углом α по направлению движения транспортного средства, принимают отраженные от поверхности дороги электромагнитные волны, затем эти волны смешивают в первом смесителе с частью излучаемых волн и выделяют первый сигнал разностной частоты, дополнительно к этому отраженные волны пропускают через линию задержки длиной в четверть длины волны электромагнитного колебания, смешивают их на втором смесителе с частью излучаемых волн и выделяют второй сигнал разностной частоты, затем оба сигнала сравнивают по фазе, при этом один из сигналов разностной частоты предварительно пропускают через управляемую линию задержки, с помощью изменения разности фаз этих сигналов управляют линией задержки до совпадения фаз обоих сигналов разностной частоты, по результирующему управляющему сигналу вычисляют время задержки, по которому определяют скорость транспортного средства.

На Фиг. 1а представлен реальный доплеровский сигнал в течение 1 сек, а на Фиг. 1б его периодограмма спектральной плотности в нормализованном виде.

На Фиг. 2 представлена структурная схема устройства, реализующего способ.

На Фиг. 3 изображены временные диаграммы сигналов на выходах первого и второго смесителя I(t) и Q(t), а также измеренное значение мгновенной скорости V(t).

Устройство расположено на транспортном средстве и содержит генератор СВЧ 1, направленный ответвитель 2, циркулятор 3, антенну 4, линия задержки на λ0/4-5, первый смеситель 6, второй смеситель 7, управляемая линия задержки 8, фазовый детектор 9, вычислительный блок 10 (см. Фиг. 2). Антенна ориентирована под углом α между направлением движения и подстилающей поверхностью 11.

Устройство работает следующим образом. От генератора СВЧ сигнал с частотой ƒ0 поступает через основной вывод направленного ответвителя и циркулятор на антенну и излучается в сторону подстилающей поверхности. При этом часть сигнала через вспомогательный вывод направленного ответвителя поступает на первые входы двух смесителей, а на вторые его входы поступает СВЧ сигнал, отраженный от поверхности обратно в антенну и прошедший через циркулятор. Однако, если на первый смеситель он приходит напрямую, то на второй вход - после задержки на λ0/4, что соответствует сдвигу по фазе на угол 90°. В результате на выходе первого и второго смесителя образуются доплеровские сигналы I(t) и Q(t), также сдвинутые между собой по фазе на 90° (см. фиг. 3). Затем сигнал Q(t) подается прямо на первый вход фазового детектора, а на второй его вход поступает сигнал I(t) через управляемую линию задержки. Фазовый детектор формирует сигнал, который подается на управляющий вход линии задержки и поддерживает состояние равенства фаз сигналов I(t) и Q(t). Этот сигнал управления преобразуется вычислительным блоком в сигнал, соответствующий мгновенной скорости V(t). Это следует из того, что в каждый текущий момент времени управляющее напряжение будет соответствовать времени tз равной периода доплеровской частоты ƒD, тогда равенство (2) можно записать в следующем виде

V(t)=cƒD/2cos(α)ƒ0=c/8tзcos(α)ƒ0

По этой формуле вычислительный блок и рассчитывает текущее значение мгновенной скорости от текущего значения времени задержки при выполнении условия равенства фаз I(t) и Q(t).

Таким образом, ошибка, связанная с неточным определением доплеровской частоты из-за стохастического и асимметричного характера спектра доплеровского сигнала при измерении путевой скорости устраняется, а точность измерения по сравнению с прототипом увеличивается. При этом устраняется дискретность измерения путевой скорости, а путь измеряется прямым интегрированием мгновенного значения скорости.

Способ измерения путевой скорости, заключающийся в том, что электромагнитные волны излучают вперед под углом α по направлению движения транспортного средства, принимают отраженные от поверхности дороги электромагнитные волны, затем эти волны смешивают в первом смесителе с частью излучаемых волн и выделяют первый сигнал разностной частоты, отличающийся тем, что отраженные волны пропускают через линию задержки длиной в четверть длины волны электромагнитного колебания, смешивают их на втором смесителе с частью излучаемых волн и выделяют второй сигнал разностной частоты, затем оба сигнала сравнивают по фазе, при этом один из сигналов разностной частоты предварительно пропускают через управляемую линию задержки, с помощью изменения разности фаз этих сигналов управляют линией задержки до совпадения фаз обоих сигналов разностной частоты, по результирующему управляющему сигналу вычисляют время задержки, по которому определяют скорость транспортного средства по формуле , где с - скорость света, - доплеровская частота, пропорциональная скорости движения транспортного средства, - частота излучаемого сигнала, α - угол, под которым излучают сигнал с частотой по направлению движения транспортного средства, - время задержки сигнала, соответствующее совпадению фаз обоих сигналов разностной частоты.
СПОСОБ ИЗМЕРЕНИЯ ПУТЕВОЙ СКОРОСТИ
СПОСОБ ИЗМЕРЕНИЯ ПУТЕВОЙ СКОРОСТИ
СПОСОБ ИЗМЕРЕНИЯ ПУТЕВОЙ СКОРОСТИ
СПОСОБ ИЗМЕРЕНИЯ ПУТЕВОЙ СКОРОСТИ
СПОСОБ ИЗМЕРЕНИЯ ПУТЕВОЙ СКОРОСТИ
СПОСОБ ИЗМЕРЕНИЯ ПУТЕВОЙ СКОРОСТИ
СПОСОБ ИЗМЕРЕНИЯ ПУТЕВОЙ СКОРОСТИ
Источник поступления информации: Роспатент

Показаны записи 31-40 из 276.
10.07.2014
№216.012.dc1f

Способ преобразования энергии ветра в полезную энергию

Изобретение относится к области ветроэнергетики. Способ преобразования энергии ветра в полезную энергию путем воздействия на струны набегающего потока воздуха. Колебания струн под действием потока воздуха усиливают за счет увеличения их поверхности путем навешивания на них полотнищ....
Тип: Изобретение
Номер охранного документа: 0002522129
Дата охранного документа: 10.07.2014
10.08.2014
№216.012.e7b6

Устройство формирования переноса в сумматоре

Изобретение относится к области вычислительной техники и может быть использовано в КМДП интегральных схемах для реализации арифметических устройств. Техническим результатом является повышение надежности. Устройство содержит логические транзисторы n-типа, предзарядовые транзисторы р-типа,...
Тип: Изобретение
Номер охранного документа: 0002525111
Дата охранного документа: 10.08.2014
10.08.2014
№216.012.e7c4

Малогабаритный музыкальный фонтан

Изобретение относится к гидротехническим устройствам, а именно к фонтанам, в том числе к декоративным и демонстративным, в которых изменяется характер струи. Малогабаритный музыкальный фонтан содержит основание, с закрепленными на нем корпусом, электродвигателем и кронштейнами крепления траверс...
Тип: Изобретение
Номер охранного документа: 0002525125
Дата охранного документа: 10.08.2014
10.09.2014
№216.012.f364

Устройство для измерения свойства диэлектрического материала

Предлагаемое техническое решение относится к измерительной технике. Техническим результатом заявляемого устройства является повышение точности измерения. Устройство для измерения свойства диэлектрического материала содержит генератор электромагнитных колебаний, первый развязывающий элемент,...
Тип: Изобретение
Номер охранного документа: 0002528130
Дата охранного документа: 10.09.2014
10.09.2014
№216.012.f365

Бесконтактное радиоволновое устройство для измерения толщины диэлектрических материалов

Изобретение относится к измерительной технике и может быть использовано для бесконтактного и дистанционного определения толщины плоских диэлектрических материалов. Технический результат - повышение точности достигается тем, что устройство содержит генератор сверхвысокочастотных электромагнитных...
Тип: Изобретение
Номер охранного документа: 0002528131
Дата охранного документа: 10.09.2014
10.09.2014
№216.012.f3f3

Способ измерения вектора гармонического сигнала

Изобретение относится к области электроизмерительной техники и может использоваться при измерениях пассивных и активных комплексных электрических величин. Способ состоит в том, что амплитуду А и начальный фазовый сдвиг φ вектора гармонического сигнала S(t) с известным периодом Т, действующего...
Тип: Изобретение
Номер охранного документа: 0002528274
Дата охранного документа: 10.09.2014
20.10.2014
№216.012.fe4b

Способ позиционного управления газовой турбиной

Изобретение относится к области позиционного управления газовой турбиной. Технический результат изобретения - обеспечение позиционного управления газовой турбиной с получением необходимой динамики и точности позиционирования. Газ подают на лопатки турбины до достижения точки позиционирования,...
Тип: Изобретение
Номер охранного документа: 0002530955
Дата охранного документа: 20.10.2014
20.10.2014
№216.012.fe96

Объемный расходомер

Изобретение относится к области измерительной техники и может быть использовано в системах измерения газообразных и текучих сред, а также в коммерческих расчетах. Объемный расходомер содержит последовательно соединенные с входным каналом сумматор, расходомер напорного потока и делитель потока,...
Тип: Изобретение
Номер охранного документа: 0002531030
Дата охранного документа: 20.10.2014
20.10.2014
№216.012.fe98

Способ измерения расхода среды

Изобретение относится к области измерительной техники и может быть использовано в системах измерения газообразных и текучих сред, а также в коммерческих расчетах. Способ измерения расхода среды, при котором основной поток суммируют с обратным потоком, проводят суммарный поток через основной...
Тип: Изобретение
Номер охранного документа: 0002531032
Дата охранного документа: 20.10.2014
20.10.2014
№216.012.fe99

Устройство для измерения количества вещества в металлической емкости

Изобретение относится к измерительной технике и может быть использовано для измерения объемов металлических полостей произвольной формы, а также для измерения количества (объема, массы) содержащихся в таких полостях веществ, занимающих произвольное положение в объеме емкости, в том числе и...
Тип: Изобретение
Номер охранного документа: 0002531033
Дата охранного документа: 20.10.2014
Показаны записи 31-40 из 41.
29.05.2018
№218.016.5721

Устройство для измерения массового расхода жидких и сыпучих сред

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения расхода жидких и сыпучих сред в трубопроводах, в частности при трубопроводной транспортировке нефтепродуктов, сжиженных газов и др. Устройство содержит генератор СВЧ, передающую и приемную...
Тип: Изобретение
Номер охранного документа: 0002654929
Дата охранного документа: 23.05.2018
29.05.2018
№218.016.5768

Способ измерения массового расхода жидких и сыпучих сред

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения расхода жидких и сыпучих сред в трубопроводах, в частности при трубопроводной транспортировке нефтепродуктов, сжиженных газов и др. Технический результат - повышение точности измерения...
Тип: Изобретение
Номер охранного документа: 0002654926
Дата охранного документа: 23.05.2018
29.05.2018
№218.016.57c3

Способ измерения вектора путевой скорости транспортного средства

Изобретение относится к измерительной технике, в частности к способам измерения путевой скорости транспортных средств с использованием эффекта Доплера для электромагнитных волн. Технический результат - повышение точности измерения путевой скорости достигается тем, что в способе измерения...
Тип: Изобретение
Номер охранного документа: 0002654931
Дата охранного документа: 23.05.2018
05.07.2018
№218.016.6c1d

Измеритель путевой скорости и угла сноса летательного аппарата

Изобретение относится к измерительной технике, в частности к устройствам измерения путевой скорости и угла сноса летательного аппарата в автономных навигационных системах с использованием электромагнитных волн. Достигаемый технический результат - увеличение точности измерения. Указанный...
Тип: Изобретение
Номер охранного документа: 0002659821
Дата охранного документа: 04.07.2018
02.08.2018
№218.016.778c

Способ измерения путевой скорости и угла сноса летательного аппарата

Изобретение относится к измерительной технике, в частности к способам измерения путевой скорости и угла сноса летательного аппарата в автономных навигационных системах с использованием электромагнитных волн. Достигаемый технический результат - увеличение точности измерения. Указанный результат...
Тип: Изобретение
Номер охранного документа: 0002662803
Дата охранного документа: 31.07.2018
09.08.2018
№218.016.7922

Радиоволновый способ измерения путевой скорости

Изобретение относится к измерительной технике, в частности к радиоволновым способам измерения путевой скорости транспортных средств с использованием эффекта Доплера для электромагнитных волн. Технический результат - повышение точности измерения. Указанный результат достигается тем, что...
Тип: Изобретение
Номер охранного документа: 0002663215
Дата охранного документа: 02.08.2018
11.10.2018
№218.016.9087

Доплеровский измеритель путевой скорости

Изобретение относится к измерительной технике, в частности к устройствам измерения путевой скорости транспортных средств с использованием эффекта Доплера для электромагнитных волн. Технический результат - повышение точности измерения. Указанный результат достигается тем, что доплеровский...
Тип: Изобретение
Номер охранного документа: 0002669016
Дата охранного документа: 05.10.2018
02.05.2019
№219.017.4863

Бесконтактный способ измерения пройденного пути

Изобретение относится к измерительной технике, в частности к радиоволновым способам измерения путевой скорости транспортных средств с использованием эффекта Доплера для электромагнитных волн. Технический результат - повышение точности измерения пройденного пути транспортного средства. Указанный...
Тип: Изобретение
Номер охранного документа: 0002686674
Дата охранного документа: 30.04.2019
02.05.2019
№219.017.489c

Способ измерения вектора перемещения транспортного средства

Изобретение относится к измерительной технике, в частности к радиоволновым способам измерения путевой скорости транспортных средств с использованием эффекта Доплера. Достигаемый технический результат – повышение точности измерения вектора перемещения транспортного средства. Технический...
Тип: Изобретение
Номер охранного документа: 0002686676
Дата охранного документа: 30.04.2019
08.06.2019
№219.017.757e

Бесконтактный измеритель пройденного пути

Изобретение относится к измерительной технике, в частности к устройствам измерения пройденного расстояния наземным транспортным средством с использованием эффекта Доплера. Достигаемый технический результат – повышение точности измерения пути, пройденного наземным транспортным средством....
Тип: Изобретение
Номер охранного документа: 0002690842
Дата охранного документа: 06.06.2019
+ добавить свой РИД