×
29.03.2019
219.016.f5c8

Результат интеллектуальной деятельности: СИСТЕМА МАСЛОУЛАВЛИВАНИЯ, ПРЕДНАЗНАЧЕННАЯ ДЛЯ АВИАЦИОННОГО ДВИГАТЕЛЯ

Вид РИД

Изобретение

№ охранного документа
0002457345
Дата охранного документа
27.07.2012
Аннотация: Изобретение относится к системе маслоулавливания, предназначенной для авиационного двигателя, включающего в себя корпус, ограничивающий объем, в котором содержится вращающийся вал и смесь воздуха и масла, предназначенная для обработки. Система содержит: вращающуюся полую трубу; конструкцию для маслоулавливания, прикрепленную к указанной трубе и удерживаемую для обеспечения ее вращения вместе с указанной трубой, при этом указанная конструкция для маслоулавливания имеет входную первую поверхность, сообщающуюся с указанным объемом, и выходную вторую поверхность, соединенную с каналом, предусмотренным в указанной полой трубе; и передаточное средство между указанной полой трубой и указанным валом, предназначенное для сообщения указанной полой трубе скорости V вращения вокруг ее оси таким образом, что указанная скорость V вращения превышает скорость вращения указанного вращающегося вала. Такое выполнение системы позволит обеспечить возможность повышения степени отделения масла от воздуха. 2 н. и 6 з.п. ф-лы, 3 ил.

Настоящее изобретение относится к системе маслоулавливания, предназначенной для авиационного двигателя, и к авиационному двигателю, включающему в себя подобную систему. В авиационном двигателе и, в особенности, в турбореактивном двигателе обеспечивается циркуляция потоков масла к определенным компонентам, в частности для выполнения функций смазки. После введения в элементы, которые должны быть смазаны, масло подвергается возврату с тем, чтобы обеспечить его рециклинг и, таким образом, повторное введение его еще раз в контур системы смазки.

Тем не менее контуры системы смазки не являются полностью свободными от утечек, и имеются потери, которые определяют расход масла в двигателе.

Основной источник утечки масла следует искать в системе, предназначенной для маслоулавливания воздуха, выходящего из кожухов двигателя, связанных с передней и задней опорами двигателя: воздух проходит к кожухам опор между деталями, которые являются вращающимися и неподвижными, и воздух захватывает масло, впоследствии отводимое наружу посредством системы маслоулавливания. Увеличение способности системы маслоулавливания к разделению воздуха и масла обеспечивает возможность уменьшения расхода масла в двигателе или в турбореактивном двигателе и, таким образом, возможность уменьшения затрат на его эксплуатацию.

Представленная фиг.1 показывает пример известной системы маслоулавливания, смонтированной в кожухе задней опоры турбореактивного двигателя. Данная фигура показывает кожух 10 задней опоры и полую вращающуюся трубу 12, предназначенную для улавливания газа, который выходит из кожуха передней опоры. Также показаны нагнетательные трубы 14, которые обеспечивают возможность введения воздуха под давлением в кожух 10 для предотвращения попадания текучей среды в кожух.

Надлежащее маслоулавливание обеспечивается с помощью центробежного маслоулавливателя 16 кольцевой формы, который смонтирован на аксиальной трубе 12 для дегазирования. Входная сторона 16а маслоулавливателя 16 находится в контакте с насыщенным маслом воздухом, содержащимся в кожухе 10, в то время как его выходная сторона 16b сообщается с аксиальной трубой 12 для дегазирования. Центробежный маслоулавливатель 16 удерживается для обеспечения вращения его вместе с трубой 12. В простом случае, маслоулавливатель 16 образован множеством микроканалов, например образован сотовой структурой, при этом края входной поверхности 16а стремятся под действием вращения маслоулавливателя отвести капли масла, которые направляются к кожуху 10, при одновременном обеспечении возможности прохода воздуха к трубе для дегазирования под действием давления, которое существует в кожухе 10. Таким образом, это обеспечивает отделение масла от воздуха, при этом извлечение масла обеспечивается посредством контура нагнетания, открывающегося наружу в нижнюю часть кожуха 10, при этом данный контур не показан на фиг.1.

В подобной системе частота вращения маслоулавливливателя 16, естественно, определяется частотой вращения трубы 12 для дегазирования. Установлено, что при такой системе степень, в которой масло отделяется от воздуха, существенно ниже заданной степени, что приводит к увеличению расхода масла.

Цель настоящего изобретения заключается в создании системы маслоулавливания, предназначенной для авиационного двигателя, которая обеспечивает возможность повышения степени, в которой осуществляется рециклинг смазочного масла, то есть степени, в которой масло отделяется от воздуха, без существенного усложнения конструкции, например кожуха задней опоры авиационного двигателя.

В соответствии с изобретением для достижения данной цели система маслоулавливания, предназначенная для авиационного двигателя, имеющего корпус, ограничивающий объем, в котором содержится смесь воздуха и масла, предназначенная для обработки, и полый вращающийся вал, характеризуется тем, что она содержит:

вращающуюся полую трубу, отдельную от указанного вала;

конструкцию для маслоулавливания, прикрепленную к указанной трубе и удерживаемую для обеспечения ее вращения вместе с указанной трубой, при этом указанная конструкция для маслоулавливания имеет входную первую поверхность, сообщающуюся с указанным объемом, и выходную вторую поверхность, соединенную с каналом, предусмотренным в указанной полой трубе; и

передаточное средство между указанной полой трубой и указанным валом, предназначенное для сообщения указанной полой трубе скорости V вращения вокруг ее оси таким образом, что указанная скорость V вращения превышает скорость вращения указанного вращающегося вала, в результате чего капли масла, содержащегося в воздухе внутри корпуса, отводятся по направлению к оболочке на входной поверхности указанной конструкции для маслоулавливания, и подвергнутый обработке воздух улавливается посредством указанного канала вращающейся полой трубы.

Можно понять, что согласно изобретению конструкция для маслоулавливания приводится в движение со скоростью вращения, которая больше не равна скорости вращения полого вращающегося вала, то есть вала для дегазирования, но со скоростью вращения, которая может быть задана посредством выбора соответствующего соотношения между скоростью V и скоростью вращения для оптимизации работы конструкции для маслоулавливания.

Кроме того, можно видеть, что даже несмотря на то, что конструкция для маслоулавливания представляет собой дополнительный компонент, она не изменяет общей структуры кожуха опоры, который обычно образует корпус, в котором выполняется маслоулавливание.

Предпочтительно оси указанной полой трубы и указанного вращающегося вала параллельны. Таким образом, выполнение передачи существенно упрощается.

Предпочтительно указанное передаточное средство содержит первое зубчатое колесо, смонтированное на указанной полой трубе с обеспечением его взаимодействия со вторым зубчатым колесом, смонтированным на указанном вращающемся вале.

Также предпочтительно, если указанная полая труба проходит через стенку указанного корпуса, и уплотнение лабиринтного типа расположено между указанной полой трубой и стенкой указанного корпуса.

Также предпочтительно, если предусмотрены подшипники, прикрепленные к стенке корпуса, при этом указанная полая труба установлена в указанных подшипниках для обеспечения возможности ее центрирования и вращения.

Также предпочтительно, если конструкция для маслоулавливания является пенометаллом.

В соответствии с изобретением также разработан авиационный двигатель или, более точно, авиационный турбореактивный двигатель, который характеризуется тем, что его система маслоулавливания выполнена в соответствии с вышеуказанными отличительными признаками, при этом система маслоулавливания смонтирована в кожухе, связанном с задней опорой. Если требуется, она также может быть смонтирована в кожухе передней опоры или фактически между двумя кожухами.

Другие отличительные признаки и преимущества изобретения станут более очевидными при прочтении нижеприведенного описания предпочтительного варианта осуществления изобретения, приведенного в качестве неограничивающего примера. Описание относится к сопровождающим фигурам, на которых:

фиг.1, описанная выше, показывает систему маслоулавливания по предшествующему уровню техники, смонтированную в кожухе задней опоры турбореактивного двигателя;

фиг.2 представляет собой аксиальное сечение кожуха задней опоры турбореактивного двигателя, оснащенного системой маслоулавливания в соответствии с изобретением;

фиг.3A представляет собой поперечное сечение по линии A-A на фиг.2;

фиг.3B представляет собой поперечное сечение по линии B-B на фиг.2; и

фиг.3C представляет собой поперечное сечение по линии C-C на фиг.2.

Сначала со ссылкой на фиг.2 ниже приведено описание общей конфигурации конструкции для маслоулавливания в соответствии с изобретением, смонтированной в кожухе 10 задней опоры авиационного двигателя и, более точно, турбореактивного двигателя. На данной фигуре можно видеть еще раз не только кожух 10, но также вращающуюся полую аксиальную трубу 12 для улавливания газа, проходящую от кожуха передней опоры, причем воздушный поток показан стрелками А, в то время как поток воздушно-масляной смеси показан стрелками АН.

Конструкция для маслоулавливания, которая в целом обозначена ссылочной позицией 20, по существу образована полой вращающейся трубой 21, имеющей кольцевую центробежную конструкцию 22 для маслоулавливания, смонтированную на ней. Полая труба 21 предпочтительно установлена таким образом, что ее ось XX' параллельна оси YY' трубы 12 для дегазирования. Тем не менее данные оси необязательно должны быть параллельными друг другу. Полая труба 21 установлена в двух группах подшипников 24 и 26, которые сами установлены в опорных конструкциях 28 и 30, прикрепленных к кожуху задней опоры. Кольцевая конструкция 22 для маслоулавливания имеет наружную входную поверхность 22а, которая находится в непосредственном контакте с объемом, ограниченным кожухом 10 задней опоры, и внутреннюю выходную поверхность 22b, которая соединена с каналом 34, образованным полой трубой 21. Полая труба 21 имеет первый конец 21а, который закрыт, и второй конец 21b, который открыт и который обеспечивает возможность отвода воздуха от выходной стороны конструкции 20 маслоулавливателя. Для обеспечения уплотнения относительно полой трубы 21 уплотнительные прокладки 40 и 42 лабиринтного типа установлены, во-первых, на наружной поверхности трубы 21 и, во-вторых, на нагнетательных трубах 14.

Со ссылкой на фиг.3A далее приводится описание предпочтительного варианта осуществления механической передачи между валом 12 для отвода газа, находящегося под низким давлением, и полой трубой 21 конструкции 22 маслоулавливателя. Предпочтительно передаточная система, обозначенная в целом ссылочной позицией 44, образована двумя зубчатыми колесами 46 и 48, установленными соответственно на наружной поверхности трубы 12 для дегазирования, находящейся под низким давлением, и на наружной поверхности полой трубы 21 конструкции для маслоулавливания. Следует понимать, что посредством соответствующих характеристик зубчатых колес 46 и 48 можно обеспечить придание полой трубе 21 скорости V вращения вокруг ее продольной оси XX', при этом указанная скорость вращения вполне определена и пригодна для оптимизации операции маслоулавливания. Скорость V вращения превышает скорость v вращения полого вала 12.

Фиг.3B показывает находящийся под низким давлением вал 12, полую трубу 21 и центробежную кольцевую конструкцию 22 для маслоулавливания с ее входной поверхностью 22а и ее выходной поверхностью 22b.

На фиг.3C можно еще раз увидеть находящуюся под низким давлением трубу 12 для дегазирования и полую трубу 21, при этом данные две полые трубы предусмотрены с «обтирочными» элементами 50 и 52, образующими лабиринтные уплотнения 40 и, более точно, 42.

В вышеприведенном описании указано, что конструкция для маслоулавливания смонтирована в кожухе задней опоры, что соответствует наилучшему решению с экономической точки зрения. Тем не менее данная конструкция, естественно, может быть с тем же успехом смонтирована в кожухе передней опоры или фактически в обоих кожухах.

Источник поступления информации: Роспатент

Показаны записи 91-100 из 928.
20.07.2013
№216.012.577a

Устройство управления цапфой лопатки с переменным углом установки, статор, содержащий такое устройство управления, компрессор, содержащий такой статор, и газотурбинный двигатель, содержащий такой компрессор

Устройство управления цапфой лопатки с переменным углом установки содержит рычаг управления, цапфу и два самоустанавливающихся подшипника скольжения. Верхний конец цапфы присоединен к рычагу управления, а нижний - к лопатке. Первый самоустанавливающийся подшипник скольжения установлен на нижнем...
Тип: Изобретение
Номер охранного документа: 0002488002
Дата охранного документа: 20.07.2013
20.07.2013
№216.012.57a4

Устройство установки свечи зажигания в камере сгорания газотурбинного двигателя, система зажигания газотурбинного двигателя и газотурбинный двигатель

Устройство установки свечи зажигания расположено в камере сгорания газотурбинного двигателя, размещенной внутри корпуса, в котором камера сгорания имеет ось YY. Устройство установки свечи зажигания содержит канал с осью XX, а также подвижную направляющую свечи, позволяющую реагировать на...
Тип: Изобретение
Номер охранного документа: 0002488044
Дата охранного документа: 20.07.2013
27.07.2013
№216.012.5973

Система воздушных винтов противоположного вращения с устройством флюгирования их лопастей

Система (1) воздушных винтов противоположного вращения газотурбинного двигателя летательного аппарата содержит первый и второй винты (6, 8), каждый из которых включает в себя систему (26, 56) управления установкой лопастей. Указанная система управления содержит вращающиеся средства (38, 68)...
Тип: Изобретение
Номер охранного документа: 0002488520
Дата охранного документа: 27.07.2013
27.07.2013
№216.012.5a24

Ротор вентилятора для газотурбинного двигателя, газотурбинный двигатель, содержащий такой ротор, и прокладка хвостовика лопасти для такого ротора

Ротор вентилятора газотурбинного двигателя содержит диск, несущий лопасти, хвостовики которых вставлены в пазы, размещенные по внешней периферии диска, и прокладки, каждая из которых размещена между дном паза диска и соответствующим хвостовиком лопасти. Входной конец каждой прокладки...
Тип: Изобретение
Номер охранного документа: 0002488697
Дата охранного документа: 27.07.2013
27.07.2013
№216.012.5a25

Компрессорный модуль турбомашины, уплотнительный диск внутренней камеры для такого модуля и турбомашина, содержащая такой компрессорный модуль

Компрессорный модуль турбомашины включает в себя компрессор низкого давления и компрессор высокого давления, валы которых направляются в подшипниках, и радиальные трубы наддува внутренней камеры. Валы отделены от внутренней камеры, содержащей валы компрессоров, лабиринтными уплотнениями,...
Тип: Изобретение
Номер охранного документа: 0002488698
Дата охранного документа: 27.07.2013
27.07.2013
№216.012.5a27

Ступень турбомашины, компрессор, турбина, турбомашина, содержащие такую ступень, и замок для такой ступени

Ступень турбомашины содержит лопаточный диск, окруженный разделенным на сектора кольцом, закрепленным на корпусе и содержащим окружной выступ, прижимаемый в радиальном направлении па кольцевом рельсе корпуса при помощи замков с C-образным сечением. Каждый замок содержит внутреннюю и наружную...
Тип: Изобретение
Номер охранного документа: 0002488700
Дата охранного документа: 27.07.2013
27.07.2013
№216.012.5a39

Диффузор газотурбинного двигателя и газотурбинный двигатель, содержащий такой диффузор

Диффузор газотурбинного двигателя содержит две кольцевые перегородки, проходящие внутри друг друга и соединенные между собой, по существу, радиальными лопатками. Нижний по потоку периферийный край по меньшей мере одной из перегородок содержит выемки, равномерно распределенные вокруг продольной...
Тип: Изобретение
Номер охранного документа: 0002488718
Дата охранного документа: 27.07.2013
27.07.2013
№216.012.5ad2

Способ определения условий фазы для механической обработки детали с регулируемой скоростью резки

Изобретение относится к средству определения условий для механической обработки детали. Техническим результатом является повышение точности определения условий резки. Для этого предложен способ определения условий стадии механической обработки детали при регулировании скорости резки между...
Тип: Изобретение
Номер охранного документа: 0002488871
Дата охранного документа: 27.07.2013
10.08.2013
№216.012.5d54

Способ алюминирования из паровой фазы полых металлических деталей газотурбинного двигателя

Изобретение относится к нанесению алюминиевого покрытия на металлическую деталь и может быть использовано для нанесения такого покрытия на внутренние стенки полостей лопатки газотурбинного двигателя путем осаждения из паровой фазы. Получают галогенид путем реакции между галогеном и...
Тип: Изобретение
Номер охранного документа: 0002489513
Дата охранного документа: 10.08.2013
10.08.2013
№216.012.5d90

Охлаждаемая лопатка газотурбинного двигателя, способ ее сборки, направляющий сопловый аппарат газотурбинного двигателя, турбина, содержащая указанный аппарат, газотурбинный двигатель

Настоящее изобретение относится к охлаждаемой лопатке, составляющей направляющий аппарат газотурбинного двигателя. Охлаждаемая лопатка включает в себя внутреннюю полку, наружную полку и перо. Перо проходит между внутренней полкой и наружной полкой. Охлаждаемая лопатка имеет полость вдоль пера и...
Тип: Изобретение
Номер охранного документа: 0002489573
Дата охранного документа: 10.08.2013
Показаны записи 1-1 из 1.
13.01.2017
№217.015.8593

Турбомашина, содержащая направляющий "плавающий" подшипник вала турбомашины

Турбомашина, содержащая, по меньшей мере, один вал и, по меньшей мере, один подшипник, направляющий во вращении упомянутый вал вокруг оси турбомашины; подшипник, содержащий первое внутренне расположенное в радиальном направлении кольцо и второе внешне расположенное в радиальном направлении...
Тип: Изобретение
Номер охранного документа: 0002603205
Дата охранного документа: 27.11.2016
+ добавить свой РИД