×
29.03.2019
219.016.f2b2

СПОСОБ ОПРЕДЕЛЕНИЯ БОНИТЕТА НАСАЖДЕНИЙ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Способ включает получение изображений лесных массивов в виде цифровой матрицы |m×n| дискретных отсчетов зависимости амплитуды сигнала А(х,у) от пространственных координат. Кроме того, проводят расчет пространственного спектра матрицы, определение средней частоты пространственного спектра (F) и диаметра кроны среднего дерева (D=1/F). Также проводят вычисление площади рельефа древесного полога (S) анализируемого участка, расчет запаса V[м/га] по числовым характеристикам матрицы и массовым таблицам, отслеживание изменения расчетных параметров в те же вегетационные периоды на временном интервале в несколько лет. В способе осуществляют синхронные измерения коэффициентов спектральной яркости (КСЯ) в зеленом (G) и красном (R) участках видимого диапазона спектра с одновременным получением двумерных изображений в этих же участках. Рассчитывают фотосинтезирующий индекс Ф=G/R как отношение средних значений КСЯ в зеленой и красной полосах. Находят прирост продуктивности δV/δt=ΔV/L на временном интервале в несколько лет, По величине прироста продуктивности δV/δt=ΔV/L, высоте среднего дерева насаждения H=H(D) и шкале бонитировочной характеристики устанавливают класс бонитета, где L - интервал наблюдения, [лет]; Ф, Ф - расчетные значения фотосинтезирующего индекса в начале и конце интервала наблюдений; D, D - диаметр кроны среднего дерева в начале и конце интервала наблюдения; П, П - полнота насаждения в начале и конце интервала наблюдений. Способ позволит повысить точность и производительность определения бонитета насаждений. 7 ил.
Реферат Свернуть Развернуть

Изобретение относится к лесному хозяйству и может найти применение при дистанционном мониторинге лесов космическими средствами на обширных площадях.

Бонитет является показателем, характеризующим качество условий произрастания леса, прежде всего его продуктивность. В России используют единую для страны бонитировочную шкалу классов бонитета [см., например, Общесоюзные нормативы для таксации лесов, справочник, стр.122, таблица 32 Бонитировочные шкалы для семенных и порослевых насаждений по М.М. Орлову, стр.123, Бонитировочные шкалы по группам древесных пород (ВНИИЛМ), аналог].

Классификационным признаком бонитировочной шкалы является средняя высота Н[м] насаждений в соответствующем возрасте. Дробность отечественной бонитировочной шкалы составляет по высоте 4 м, по запасу ≈20%, в соответствии с чем выделены следующие классы бонитета: Iа, I, II, III, IV, V, Va.

Входными параметрами отечественной бонитировочной шкалы являются высота и возраст насаждений. За столетний период составления бонитировочной шкалы накоплены материалы, позволяющие ее уточнить и расширить.

Английская, американская и немецкая бонитировочные шкалы квалификационным признаком имеют максимальный средний годичный прирост насаждений [см., например, Н.П.Анучин, Лесная таксация, учебник, 5-е издание, Москва: Лесная промышленность, стр.230-232, Бонитирование насаждений в США и Западной Европе - аналог]. В английской (американской) бонитировочной шкале разница в величине прироста, равная 20 куб. футам на 1-ом акре, принята в качестве ступени (интервала) между двумя классами производительности. В соответствии с этим для столетних сосновых насаждений установлены следующие шесть классов производительности: 160, 140, 120, 100, 80, 60 куб. футов на акр, что соответствует метрическому интервалу 1,37 м3/га в год. При этом все шесть классов шкалы производительности находятся в пропорциях:

класс бонитета: Ia I II III IV Va

прирост в год, м3/га: 10,96 9,59 8,22 6,85 5,48 4,11.

Недостатками известных аналогов являются:

- неоперативность, большая трудоемкость перечислительной таксации при установлении классов бонитета;

- трудность расчета и субъективизм определения средней высоты насаждения многоярусных насаждений.

Ближайшим аналогом к заявляемому способу является Патент RU №2277325, 2006 г. «Способ определения прироста запаса насаждений».

Способ ближайшего аналога включает:

- получение изображений лесных массивов в виде зависимости яркости I(х,у) от пространственных координат;

- преобразование функции яркости изображения в цифровую матрицу дискретных отсчетов, размерностью |m×n| элементов;

- программный расчет пространственного спектра изображения анализируемой матрицы и определение прикрепляющей точки Dcp=1/Fcp огивы насаждения анализируемого участка;

- расчет запаса насаждений по числовым характеристикам анализируемой матрицы и массовым таблицам;

- вычисление площади рельефа древесного полога (Sp) анализируемого участка с помощью программного анализа матрицы |m×n|;

- вычисление прироста запаса насаждения (Рм) в соответствии с формулой

где Fcp1, Fcp2 - средняя частота пространственного спектра матриц изображений, полученных в начале и конце временного интервала;

SP1>SP2 - площади рельефа древесных пологов анализируемого участка в том же временном интервале;

Dcp - средний диаметр крон древесного полога;

Fcp - средняя частота пространственного спектра матриц изображений.

Исследование изображений лесных массивов, содержащих пробные площадки, осуществляют на временном интервале в несколько лет в одни и те же вегетационные периоды года.

К недостаткам ближайшего аналога следует отнести:

- невозможность непосредственного использования способа для бонитировки насаждений;

- не все признаки продуктивности леса, измеряемые дистанционным способом (например, фотосинтезирующий индекс), используются при оценках.

Задача, решаемая заявленным способом, состоит в повышении точности и производительности дистанционной бонитировки насаждений на обширных площадях. Это осуществляется путем совместного анализа измерений коэффициента спектральной яркости (КСЯ) в зеленом и красном участках видимого диапазона спектра электромагнитных волн и полученных синхронно в тех же участках спектра двумерных изображений.

Технический результат достигается тем, что в способе определения бонитета насаждений, включающем получение изображений лесных массивов в виде цифровой матрицы |m×n| дискретных отсчетов зависимости амплитуды сигнала А(х,у) от пространственных координат, расчет пространственного спектра матрицы, определение средней частоты пространственного спектра (Fcp) и диаметра кроны среднего дерева Dcp=1/Fcp, вычисление площади рельефа древесного полога SP анализируемого участка, расчет запаса V[м3/га] по числовым характеристикам матрицы и массовым таблицам, отслеживание изменения расчетных параметров в те же вегетационные периоды на временном интервале в несколько лет, дополнительно осуществляют измерения коэффициентов спектральной яркости (КСЯ) в зеленом (G) и красном (R) участках видимого диапазона с одновременным получением двумерных изображений в этих же участках, что позволяет рассчитать фотосинтезирующий индекс Ф=G/R как отношение средних значений КСЯ в зеленом и красном участках спектра. С использованием фотосинтезирующего индекса находят прирост продуктивности ΔV на временном интервале наблюдений

По величине прироста продуктивности δV/δt=ΔV/L, высоте среднего дерева насаждения HcpI=H(Dcp1) и шкале бонитировочной характеристики устанавливают класс бонитета, где

L - интервал наблюдения, [лет];

Ф12 - расчетные значения фотосинтезирующего индекса в начале и конце интервала наблюдений;

Dcp1, Dcp2 - диаметр кроны среднего дерева в начале и конце интервала наблюдения;

П12 - полнота насаждения в начале и конце интервала наблюдений.

Изобретение иллюстрируется чертежами, где:

фиг.1 - зависимость коэффициентов спектральной яркости насаждений от длины волны излучения при различном проективном покрытии;

фиг.2 - сечение рельефа древесного полога вертикальной плоскостью;

фиг.3 - зависимость полноты насаждения от соотношения площади рельефа (Sp) и геометрической площади участка (Sо):

фиг.4 - огибающая пространственного спектра функции сигнала;

фиг.5 - зависимость высоты древостоя (Нср) от диаметра крон(Dср);

фиг.6 - шкала бонитировочных характеристик;

фиг.7 - функциональная схема устройства, реализующая способ.

Техническая сущность способа состоит в следующем.

Как следует из способов-аналогов, основным квалификационным признаком бонитировки насаждений является продуктивность, размерность величины м3/га в год. Простейшая формула исчисления запаса перечислительным способом включает произведение трех параметров: высоты, толщины ствола модельного дерева участка и количества деревьев на участке. Чтобы с математической точки зрения постановка задачи считалась корректной, необходимо при дистанционном зондировании также измерять как минимум три независимых параметра. В заявляемом способе независимыми измеряемыми параметрами являются: фотосинтезирующий индекс Ф, диаметр кроны среднего дерева Dcp, полнота насаждений П. Их произведение (Ф×Dср×П) отражает продуктивность (объем продуцирующей биомассы). Сама градация ступени бонитета имеет величину: 1,37 м3/га в год. Точно отследить изменение такой величины при дистанционном зондировании за счет изменения высоты и толщины отдельного дерева затруднительно. В то же время, за счет ежегодного роста ветвей, молодых побегов увеличивается объем продуцирующей биомассы, существенно изменяются такие интегральные характеристики насаждений как рельеф древесного полога, пространственный спектр изображения, фитоценометрические параметры. Чтобы вычислить прирост продуктивности, нет необходимости рассчитывать детальные таксационные характеристики. Для статистической устойчивости и точности результатов оценки следует оперировать среднестатистическими характеристиками насаждений. Рассмотрим измерение и расчет каждого из параметров, входящих в произведение (Ф×Dср×П).

Наиболее тесная зависимость между содержанием хлорофилла в хвое, листьях (ответственного за фотосинтез) и коэффициентом спектральной яркости растительных покровов соответствует зональному отношению

[см., например, Выгодская Н.Н., Горшкова Н.Н. Теория и эксперимент в дистанционных исследованиях растительности. Ленинград: Гидрометеоиздат, 1987, стр.123-130].

Зависимость КСЯ растительных покровов в видимом диапазоне от изменения проективного покрытия иллюстрируется графиками на фиг.1 [см., например, Л.И.Чапурский «Отражательные свойства природных объектов в диапазоне 400-2500 нм», ч. I, МО СССР, 1986 г., стр.44-53, Коэффициенты спектральной яркости растительного покрова. КСЯ крон деревьев].

До 95% лучистой энергии солнца поглощается древесной растительностью в процессе фотосинтеза, и лишь небольшой максимум отражения на длине волны λ=550 нм придает растительности зеленую окраску. Чем больше объем фитомассы, тем больше разница КСЯ на длинах волн λ=550 нм и λ=670 нм (см. фиг.1).

Ежегодный прирост объема фитомассы изменяет проективное покрытие (полноту) древостоя, интегральной характеристикой которого является площадь рельефа древесного полога SP. Изменение площади рельефа древесного полога в зависимости от полноты П древостоя иллюстрируется графиками на фиг.2. Относительную полноту древостоя рассчитывают через отношение площади рельефа Sr древесного полога к геометрической площади участка П=П(Sр/Sо). Зависимость иллюстрируется графиком на фиг.3 [см., например, Патент RU № 2294622, 2007 г. «Способ определения полноты древостоев»]. Площадь рельефа вычисляют программным методом обработки функции сигнала изображения A(x,y) по аналитическому выражению

где m,n - число строк, столбцов анализируемой матрицы изображения; х,у - текущие координаты функции сигнала A(х,у);

σ2 - дисперсия сигнала матрицы |m×n| элементов.

Текст программы вычисления площади рельефа [см. Патент RU №2855357, 2005 г. «Способ определения площади рельефа»] приведен ниже в примере реализации.

Следующей интегральной характеристикой, отслеживаемой при дистанционном зондировании, является распределение крон деревьев по их диаметру D. Для чего вычисляют огибающую пространственного спектра матрицы изображения |m×n| элементов путем двумерного Фурье-преобразования функции сигнала А(х,у). На фиг.4 показаны огибающие пространственных спектров сигналов изображений двух участков насаждений, исходного и прирастающего, полученных в способе ближайшего аналога.

Вычисление спектра Фурье матрицы |m×n| элементов, функции сигнала А (х,у) является стандартной процедурой специализированного программного обеспечения, [см. Пакет программ для обработки изображений в науках о Земле «ER MAPPER Reference», Earth Resource Mapping Pty Lid, Western Australia, 6005, 1998, p.295].

За время существования лесной науки получены устойчивые статистические зависимости между диаметром кроны, высотой и площадью поперечного сечения ствола дерева (см. фиг.5) [см. аналог. Общесоюзные нормативы для таксации лесов, справочник, стр.147, табл.42, Н.П.Анучин [Таксация, учебник, 5-е издание. Лесная промышленность, 1982 г., стр.105, 296-298, таблица 41; Патент RU №2133565, 1999 г., Способ таксации насаждений, таблица 2, лист 15-16].

Главнейшие древесные породы разделены на две группы:

- первая группа: сосна, лиственница, береза, осина, ольха, HI=7D1,2;

- вторая группа: ель, пихта, кедр, ясень, бук, дуб, HII=5D1,1;

площадь сечения g=120D0,8 (см2), а запас вычисляют по массовым таблицам, связывающим видовые числа fi, ступень толщины (d1,3i), площади сечений g=π d21,3 i/4 и количество деревьев в насаждении Ni данной ступени толщины из соотношения:

V=Σfi Нi gi Ni или для среднего модельного дерева: V=fcp Hсp gcp Ncp.

На временном интервале наблюдений в несколько лет, в те же вегетационные периоды года, проводят измерения основных параметров заявляемого способа Ф, D, П и оценивают прирост: ΔV=(Ф2 Dcp2 П2/ Ф1 Dcp1 П1 -1)V.

Полученные величины Н - высоты древостоя и ΔV являются входными в калибровочную шкалу бонитета насаждений, иллюстрированную графиками фиг.6. Пересечение прямой (H=const) с функцией прироста ΔV/L однозначно определяет класс бонитета.

Пример реализации способа

Заявляемый способ может быть реализован на базе устройства, функциональная схема которого показана на рисунке 7. Устройство содержит орбитальный комплекс наблюдения 1 типа Международной космической станции (МКС) с установленной на ее борту поворотной платформой 2 (±15°, от надира) и гиперспетрометром 3 (типа Астрогон-1). Съемка запланированных участков лесных массивов 4, включение гиперспектрометром 3 и выставка поворотной платформы 2 осуществляет бортовой комплекс управления 5 (БКУ) по командам, передаваемым из Центра управления полетом 6 (ЦУП) по радиолинии управления 7. Измерительную информацию зондирования лесных массивов записывают на бортовое устройство хранения информации 8 (типа видеомагнитофона «Нива») и в сеансах видимости МКС с наземных пунктов передают по автономным каналам передачи данных 9 на наземные пункты приема информации 10 (ППИ), где осуществляется запись переданных массивов на устройство хранения информации 11 (типа видеомагнитофона «Арктур»). Информацию с ППИ передают по наземным каналам связи в центр тематической обработки 12, где осуществляют выделение кадров по служебным признакам. Скомпонованные массивы изображений лесных участков по запросам потребителей передают в Региональные центры учета лесных ресурсов, где создают их долговременный архив 13 на базе запоминающих устройств (типа FT -120). Программную обработку изображений лесных участков и расчет бонитета насаждений осуществляют на ПЭВМ 14 в стандартном наборе элементов: процессора 15, оперативного запоминающего устройства (ОЗУ) 16, винчестера 17, дисплея 18, принтера 19, клавиатуры 20. Программу расчета площади рельефа записывают на винчестер 17. Доступ к результатам расчетов и долговременному архиву осуществляется через сеть Интернет 21.

По расчетной величине площади рельефа Sp и геометрической площади So определяют полноту насаждения П. Из графиков фиг.2,3 исходная полнота насаждения П1=0,5. Затем стандартной программой Фурье-преобразования вычисляют огибающую пространственного спектра. Амплитудно-частотная характеристика (АЧХ) пространственного спектра изображения анализируемого участка иллюстрируется графиками фиг.4. Средняя частота пространственного спектра исходного участка насаждения, которая делит площадь под огибающей пространственного спектра пополам, составляет Fcp=0,4, диаметр кроны среднего дерева Dcp=1/Fcp=2,5 м.

Из графиков фиг.5 для древостоя I группы этому диаметру кроны соответствует средняя высота насаждений Нср I(Dcp 1)≈21 м. При исходной высоте модельного дерева H=21 м, полноте П=0,5, площади сечения g=120D0,8 (см2) или g=120D0,810-4 м2, среднем количестве деревьев на одном гектаре Ncp=SП/π(Dcp2/4)=10000*0,5*4/3,14*

(2,52/4)=1020 шт., видовом числе модельного дерева 0,4 [см. Анучин Н.П., стр.105] запас составит:

V=fcpНсрgcpNcp=0,4*21*(252*10-4)*1020=216(м3/га).

Соотношение Ф1=G/R=1,7. Те же значения на временном интервале пять лет (фиг.1, 2, 3, 4, 5) составили значения: Ф2=1,8; П2=0,53; Fcp2=0,37; Dcp2=2,7.

Откуда ΔV=216(1,8*2,7*0,53/1,7*2,5*0,5-1)=48 (м3/га).

ΔV/5 лет=9,6 (м3/га) в год.

Пересечение прямой H1=21 и δV/δt=9,6 (м3/га) в год однозначно соответствуют (график 6) II классу бонитета.

По сравнению с ближайшим аналогом, за счет введения фотосинтезирующего индекса, способ обладает высокой чувствительностью, что делает возможным проводить оценку бонитета насаждения на более коротком интервале времени (1-3 года).

Эффективность способа характеризуется также такими качественными показателями, как высокая производительность, оперативность, точность, документальность, масштабность.

Способ определения бонитета насаждений, включающий получение изображений лесных массивов в виде цифровой матрицы |m×n| дискретных отсчетов зависимости амплитуды сигнала А(х,у) от пространственных координат, расчет пространственного спектра матрицы, определение средней частоты пространственного спектра (F) и диаметра кроны среднего дерева (D=1/F), вычисление площади рельефа древесного полога (S) анализируемого участка, расчет запаса V(м/га) по числовым характеристикам матрицы и массовым таблицам, отслеживание изменения расчетных параметров в те же вегетационные периоды на временном интервале в несколько лет, отличающийся тем, что осуществляют синхронные измерения коэффициентов спектральной яркости (КСЯ) в зеленом (G) и красном (R) участках видимого диапазона спектра с одновременным получением двумерных изображений в этих же участках, рассчитывают фотосинтезирующий индекс Ф=G/R как отношение средних значений КСЯ в зеленой и красной полосах, находят прирост продуктивности δV/δt=ΔV/L на временном интервале в несколько лет, по величине прироста продуктивности δV/δt=ΔV/L, высоте среднего дерева насаждения H=H(D) и шкале бонитировочной характеристики устанавливают класс бонитета, где L - интервал наблюдения, (лет);Ф, Ф- расчетные значения фотосинтезирующего индекса в начале и конце интервала наблюдений;D, D - диаметр кроны среднего дерева в начале и конце интервала наблюдения;П, П - полнота насаждения в начале и конце интервала наблюдений.
Источник поступления информации: Роспатент

Показаны записи 1-9 из 9.
01.03.2019
№219.016.cc33

Способ определения количества деревьев в лесном массиве

Изобретение относится к области обработки фотографических изображений и может быть использовано в лесном хозяйстве для оперативной оценки таксационных характеристик насаждений на неучтенных территориях. Сущность: обрабатывают изображение, представленное матрицей цифровых отсчетов функции...
Тип: Изобретение
Номер охранного документа: 0002359229
Дата охранного документа: 20.06.2009
01.03.2019
№219.016.cec2

Способ краткосрочного прогнозирования землетрясений

Изобретение относится к области сейсмологии и может быть использовано для прогнозирования землетрясений. Сущность: на протяженной измерительной базе устанавливают два разнесенных в пространстве измерительных пункта. Каждый измерительный пункт содержит по два заглубленных в грунт датчика,...
Тип: Изобретение
Номер охранного документа: 0002458362
Дата охранного документа: 10.08.2012
10.04.2019
№219.017.09ac

Способ обнаружения очагов землетрясений сетью сейсмостанций

Изобретение относится к области сейсмологии и может быть использовано для прогнозирования землетрясений. Сущность: в сейсмоопасном регионе размещают сеть сейсмических станций с сейсмоприемниками из трехкомпонентных кондукто-метрических датчиков давления. Датчики давления размещают на...
Тип: Изобретение
Номер охранного документа: 0002463631
Дата охранного документа: 10.10.2012
29.04.2019
№219.017.420e

Способ определения состава насаждений

Способ включает получение изображения лесных массивов в виде цифровой матрицы из | m×n | элементов зависимости яркости I(х, у) от пространственных координат, расчет пространственного спектра Фурье. Кроме того, осуществляют нахождение средней частоты F и диаметра кроны среднего дерева Д=1/F,...
Тип: Изобретение
Номер охранного документа: 0002371910
Дата охранного документа: 10.11.2009
29.04.2019
№219.017.4399

Способ определения экологического состояния лесов

Способ определения экологического состояния лесов включает зондирование с аэрокосмического носителя, измерение коэффициента спектральной яркости (КСЯ) древесного полога, вычисление по измеренным значениям КСЯ индексов жизненности (g) и красного поражения (r), получение двухмерных изображений...
Тип: Изобретение
Номер охранного документа: 0002416192
Дата охранного документа: 20.04.2011
29.04.2019
№219.017.4522

Способ экологического мониторинга лесов

Способ экологического мониторинга лесов включает дистанционную регистрацию полей яркости лесной растительности аэрокосмическими средствами. Дистанционную регистрацию полей яркости лесной растительности осуществляют путем зондирования много- или гиперспектральным датчиком в зеленой G(450-550...
Тип: Изобретение
Номер охранного документа: 0002406295
Дата охранного документа: 20.12.2010
29.05.2019
№219.017.696e

Устройство регистрации предвестников землетрясений

Изобретение относится к области сейсмологии и может быть использовано при прогнозировании землетрясений. Сущность: устройство содержит два измерительных канала, размещенных на космическом носителе, тракт передачи результатов измерений на наземные средства обработки. Один из измерительных...
Тип: Изобретение
Номер охранного документа: 0002446418
Дата охранного документа: 27.03.2012
29.05.2019
№219.017.6a33

Способ определения концентрации аэрозолей в атмосфере мегаполисов

Область использования: экология, дистанционные методы мониторинга природных сред, система санитарно-эпидемиологического контроля промышленных регионов. Способ включает зондирование атмосферы гиперспектрометром, установленном на космическом носителе, расчет суммарной концентрации загрязнителей в...
Тип: Изобретение
Номер охранного документа: 0002468396
Дата охранного документа: 27.11.2012
29.05.2019
№219.017.6a3e

Способ определения загрязнения атмосферы мегаполисов вредными газами

Изобретение относится к экологии, а именно к дистанционным методам мониторинга природных сред и санитарно-эпидемиологическому контролю промышленных регионов. Способ включает синхронную съемку цифровой видеокамерой и гиперспектрометром, установленными на космическом носителе с положением входной...
Тип: Изобретение
Номер охранного документа: 0002460059
Дата охранного документа: 27.08.2012
Показаны записи 1-10 из 56.
27.10.2013
№216.012.7ada

Способ дистанционного определения деградации почвенного покрова

Способ дистанционного определения деградации почвенного покрова. Способ включает зондирование подстилающей поверхности, содержащей тестовые участки многоканальным спектрометром, установленнЫм на аэрокосмическом носителе с одновременным получением изображений на каждом канале; расчет методом...
Тип: Изобретение
Номер охранного документа: 0002497112
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.7b01

Способ определения загрязнения окружающей среды при аварийных выбросах на аэс

Изобретение относится к ядерной физике и может быть использовано для дистанционного измерения и анализа уровня радиационного загрязнения вокруг АЭС. Согласно способу с помощью радиометра получают изображения подстилающей поверхности в виде функции яркости I(х,у), содержащей контрольные площадки...
Тип: Изобретение
Номер охранного документа: 0002497151
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.7b08

Способ краткосрочного прогнозирования землетрясений

Изобретение относится к области сейсмологии и может быть использовано для краткосрочного прогнозирования землетрясений. Сущность: посредством группы фотометров, разнесенных в пространстве, измеряют оптическую плотность атмосферы. Измерения осуществляют в спектральных участках с длиной волны...
Тип: Изобретение
Номер охранного документа: 0002497158
Дата охранного документа: 27.10.2013
27.12.2013
№216.012.8ed2

Способ инициирования струйных течений в атмосфере

Изобретение предназначено для сдвига и разрушения антициклонов в тропосфере. Способ включает длительное воздействие на атмосферу вертикальным восходящим конвективным потоком от системы излучателей, поднятых над Землей и разнесенных по площади, образуемым завихрением магнитным полем генерируемых...
Тип: Изобретение
Номер охранного документа: 0002502255
Дата охранного документа: 27.12.2013
27.12.2013
№216.012.8ed3

Устройство инициирования процессов в атмосфере

Изобретение касается метеорологии и может быть использовано для сдвига и разрушения антициклонов в тропосфере. Устройство содержит генератор высокочастотного напряжения и присоединенную к нему систему коронирующих электродов, каждый из которых выполнен в виде соленоида с венчиком игл на концах,...
Тип: Изобретение
Номер охранного документа: 0002502256
Дата охранного документа: 27.12.2013
10.01.2014
№216.012.95d8

Антенна для зондирования ионосферы

Изобретение относится к радиотехнике, а именно к области измерений геофизических полей Земли и системам связи. Техническим результатом является реализация широкодиапазонной антенны, работающей во всем диапазоне частот зондирования ионосферы. Антенна для зондирования ионосферы выполнена в виде...
Тип: Изобретение
Номер охранного документа: 0002504054
Дата охранного документа: 10.01.2014
27.04.2014
№216.012.bd20

Способ автоматической идентификации объектов на изображениях

Изобретение относится к информатике и может быть использовано для автоматической идентификации объектов на изображениях. Согласно способу производят сканирование исходного фотоизображения с высоким разрешением. Матрицу полученных отсчетов приводят к масштабу эталонной матрицы путем нормирования...
Тип: Изобретение
Номер охранного документа: 0002514155
Дата охранного документа: 27.04.2014
20.05.2014
№216.012.c520

Устройство коррекции погодных условий

Изобретение может быть использовано для сдвига и разрушения антициклонов в тропосфере. Устройство выполнено в виде геометрического зонтика из десяти радиальных проводов-коронирующих электродов, создающих антенное поле, длиной 100 м каждый, подвешенных на центральной опорной мачте из...
Тип: Изобретение
Номер охранного документа: 0002516223
Дата охранного документа: 20.05.2014
27.10.2014
№216.013.016f

Способ отслеживания границы зоны "лес-тундра"

Изобретение относится к лесному хозяйству и может быть использовано при оценке динамики глобальных климатических изменений в Арктике. Согласно способу проводят спектрометрические измерения в переходной зоне 69°…70° с.ш., содержащей тестовые участки в диапазоне 0,55…0,68 мкм и 0,73…1,1 мкм, а...
Тип: Изобретение
Номер охранного документа: 0002531765
Дата охранного документа: 27.10.2014
27.07.2015
№216.013.6823

Способ определения рейтинга вида пород для плана озеленения

Изобретение относится к лесному хозяйству и может найти применение при планировании мероприятий по озеленению городских территорий. Способ включает составление каталога древесных пород обследуемого городского поселения с известной экологической обстановкой и соответствующей ему территории...
Тип: Изобретение
Номер охранного документа: 0002558212
Дата охранного документа: 27.07.2015
+ добавить свой РИД