×
29.03.2019
219.016.f214

Результат интеллектуальной деятельности: ИЗМЕРИТЕЛЬНАЯ СЕКЦИЯ РАСХОДОМЕРА ГАЗОЖИДКОСТНОГО ПОТОКА

Вид РИД

Изобретение

Аннотация: Изобретение может найти применение при эксплуатации газовых скважин, на установках комплексной или предварительной подготовки газа для определения водогазового и конденсатогазового факторов (ВГФ, КГФ), характеризующих количество воды и углеводородного конденсата в продуктах добычи газоконденсатных скважин. В одну измерительную секцию 1 объединены доплеровский датчик скорости и два датчика плотности потока, один их которых - открытый цилиндрический резонатор (ОЦР) 6 работает на частотах ~35 ГГц (ВГФ ~5-100 см/м), а другой - закрытый цилиндрический резонатор (ЗР) 16 работает на частотах ~1 ГГц (ВГФ ~50-1000 см/м). Измерительный канал выполнен в виде гладкостенного цилиндра с диаметром, равным внутреннему диаметру ОЦР, что приводит к стабилизации потока в канале. Изобретение обеспечивает расширение диапазона регистрируемых ВГФ и КГФ от 1 до 1000 см/м и сокращение времени измерения. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области измерительной техники и может быть использовано на продуктивных газоконденсатных скважинах, на установках подготовки газа к транспорту, установках первичной переработки газа для определения расхода газа, расхода жидкости, доли воды и доли конденсата в жидкости без разделения продукта добычи на газообразную и жидкую фазы.

Известны устройства для определения расходов газа и жидкости в потоках сырой нефти [1]. Посредством размещения на трубе из диэлектрического материала множества резонаторов и измерения изменения их собственных частот при появлении газожидкого потока вычисляют объемные доли нефти, воды и газа, протекающие по трубопроводу. Ввиду резкого различия в скоростях нефтяного и газоконденсатного потоков этот метод практически невозможно применить для решения аналогичных задач в газовой промышленности.

Известны также устройства с использованием ультразвуковых колебаний [2-4]. Скорость звука в эмульсии "вода-нефть" зависит от объемной концентрации нефти и ее температуры. Размещая по объему трубопровода пары датчиков (излучатель-приемник) и измеряя амплитуды и фазы ультразвуковых (УЗ) сигналов или их запаздывание в отдельных точках измерительной секции, можно сделать выводы о скорости и плотности среды, и отсюда рассчитать расходы газа, нефти и воды.

Недостатком этих расходомеров является необходимость вводить в поток штанги, поддерживающие УЗ датчики и приемники, которые при их большом числе (~10-20) вносят в поток неконтролируемые возмущения. Кроме того, малые амплитуды приемных сигналов и их малые времена прохода от излучателя до приемника предъявляют высокие требования к регистрирующей их электронике.

Известны также устройства регистрации газожидкостных потоков с помощью резонаторов СВЧ- и КВЧ-диапазонов, основанные на изменении электродинамических характеристик резонаторов при прохождении сквозь них продуктов добычи скважины [5, 6, 7]. Устройство [5] использует эффект реакции открытого цилиндрического резонатора на тело возмущения, входящее в область, занятую полем резонатора, под действием аэродинамического напора и рассчитанное на регистрацию небольших скоростей или расходов.

Устройство [6] также реализует принцип зондирования потока, но с помощью волн дециметрового диапазона. Оно представляет собой закрытый резонатор, диаметр которого превышает диаметр стандартного трубопровода; резонатор работает на

ТМ010 типе колебаний в диапазоне частот ~1 ГГц. Чтобы выдержать высокие давления в стандартном трубопроводе резонатор размещен в специальном силовом корпусе и выполнен как отдельная измерительная секция.

Однако переход на такой резонатор повлек ухудшение чувствительности: район малых водосодержаний (~10-50 см33) стал регистрироваться с невысокой точностью. Кроме того, размещение резонатора дециметровых волн в отдельном силовом корпусе значительно удорожает стоимость измерительной секции. Это является недостатками устройства [6].

Наиболее близким к предлагаемой измерительной секции является устройство, описанное в патенте [7], которое мы и примем за прототип.

Устройство [7], реализующее принцип зондирования потока с помощью электромагнитных волн малой (~8 мм) длины волны, представляет собой сужающее устройство типа сопла Вентури, внутри которого располагаются два вогнутых зеркала микроволнового резонатора Фабри-Перо, просвечивающее все сечение газожидкостного потока. Кроме того, переход от стандартного сужения к измерительному участку выполнен в виде конусного сужения с рифленой боковой поверхностью и кольцевым выступом. Скорость потока измеряется доплеровским измерителем скорости по смещению частоты радиоволны 8 мм диапазона от движущегося со скоростью газа капельно-жидкого аэрозоля.

Рассмотренному устройству присущи следующие недостатки.

1. Газожидкостный поток на большой скорости (~20-60 м/с), проходя район микроволнового резонатора, из-за наличия вогнутых зеркал в цилиндрическом канале сужающего устройства и расположенной там же вставки в виде ребер треугольного профиля (установленной для селекции нерабочих типов колебаний) испытывает резкое изменение геометрии, что приводит к возникновению аэродинамических вихрей и аэродинамической нестабильности потока как целого. К этому же приводит и наличие рифленого конуса в начале сужающего устройства и кольцевого выступа. Следствием этого являются резко турбулентный характер движения потока в измерительном канале, приводящий к значительному разбросу показаний датчика плотности и необходимости большого набора статистики.

2. Из-за высокой чувствительности к воде верхняя граница водогазового фактора - ВГФ - (число см3 воды в одном м3 газа при стандартных условиях) лежит в районе <100 cм33, что недостаточно при работе со скважинами, подвергнутыми обводнению (ВГФ>100 cм33). При ВГФ>100 cм33 датчик плотности достигает верхней границы рабочего диапазона, сигнал от него опускается до уровня шумов.

Технической задачей, решаемой в предлагаемом устройстве, является возможность измерять ВГФ в диапазоне как малых значений (10-100 cм33), так и больших значений (ВГФ ~100-1000 cм33), сокращение времени измерения и уменьшение стоимости диагностической секции.

Эти технические результаты достигаются тем, что в измерительной секции расходомера газожидкостного потока, состоящей из участка измерения малых ВГФ на основе резонатора миллиметровых волн, участка измерения скорости потока и участка измерения больших ВГФ на основе закрытого резонатора дециметровых волн, все три измерительных участка объединены в одну конструкцию - измерительный канал, в качестве резонатора миллиметровых волн используется открытый цилиндрический резонатор (ОЦР); форма измерительного канала, по которому проходит газожидкостный поток, сделана одинаковой на протяжении всей длины измерительной секции: она цилиндрическая и ее диаметр равен внутреннему диаметру ОЦР, а сопряжения стандартного трубопровода с измерительным каналом выполнены гладкими с постепенным и плавным переходом от одного диаметра к другому и с полировкой как самих переходов, так и внутреннего диаметра канала, а внешний диаметр закрытого цилиндрического резонатора дециметровых волн сделан равным или меньше внутреннего диаметра корпуса измерительной секции.

В результате того, что измерительный канал сделан однорядным и имеет полированные стенки и плавные переходы от трубопровода к каналу и обратно, газожидкостный поток не испытывает заметного сопротивления, это способствует стабилизации его положения в пространстве и приводит к тому, что отпадает необходимость набора статистики при регистрации его параметров - скорости и плотности, и параметров диагностических резонаторов.

Технический результат - отсутствие силового корпуса у закрытого резонатора дециметровых волн достигается тем, что варьируя форму резонатора и величину диэлектрической проницаемости заполняющего его диэлектрика, удалось добиться сокращения внешнего диаметра резонатора, что позволило ввести резонатор внутрь измерительной секции и отказаться от специального силового корпуса.

На чертеже изображена схема измерительной секции. На ней обозначены: 1 - измерительная секция, выполненная на основе стандартного трубопровода; 2 - ее присоединительные фланцы; 3 - плавный переход от стандартного трубопровода к измерительному каналу; 4 - стенка измерительного канала; 5 - участок измерительного канала, где происходит измерение малых ВГФ; 6 - открытый цилиндрический резонатор (ОЦР), работающий в миллиметровом диапазоне длин волн; 7 - волновод связи ОЦР с КВЧ-генератором; 8 - волновод связи ОЦР с КВЧ-детектором; 9 - присоединительные фланцы; 10 - радиопрозрачное окно для ввода/вывода миллиметрового излучения в ОЦР; 11 - участок измерительного канала, где происходит измерение скорости потока; 12 - приемопередающая антенна доплеровского измерителя скорости; 13 - радиопрозрачное окно для ввода/вывода зондирующего излучения датчика скорости; 14 - присоединительный фланец; 15 - участок измерительного канала, где происходит измерение больших ВГФ; 16 - корпус закрытого цилиндрического резонатора (ЗЦР) дециметровых волн; 17 - кабель связи ЗЦР с СВЧ-генератором; 18 - кабель связи ЗЦР с СВЧ-детектором; 19 - проходные изоляторы; 20 - диэлектрик с большой величиной диэлектрической проницаемости.

Работа устройства происходит следующим образом. Газожидкостный поток, идущий по трубопроводу, плавно входит в измерительный канал, при этом его скорость увеличивается в раз

1 - диаметр стандартного трубопровода, а2 - диаметр измерительного канала). Соотношение выбирают в границах 2-3, так что скорость возрастает в 4-10 раз, достигая 20-80 м/с. (Стараются подобрать это соотношение таким образом, чтобы скорость газа при средних расходах газа составляла ~50 м/с). При такой скорости пленка жидкости с поверхности трубы и полированных переходов срывается и переходит в аэрозоль. Газожидкостный поток проходит через ОЦР; при этом измеряется смещение его частоты Δω1 и изменение добротности . На участке между ОЦР и ЗЦР измеряют доплеровский сдвиг частоты Δf0. Далее поток проходит через ЗЦР, где также измеряется сдвиг его частоты Δω2 и изменение добротности . Эти данные поступают в электронно-вычислительное устройство (не показано), где используя алгоритмы, описанные в [6] и [7], находят расходы газа Qг, углеводородного конденсата Qк, воды Qв и вычисляют водогазовый, конденсатогазовый факторы (ВГФ, КГФ).

Опытный образец устройства был проверен в лабораторных условиях на газожидкостных смесях; в качестве газа использовался сжатый воздух из баллонов при давлениях от 1 до 10 атм и температуре 10-25°С; в качестве жидкости - вода и масляно-водяная эмульсия.

Проделанные эксперименты подтвердили значительно более высокий уровень стабильности работы измерительной секции. При работе с малыми ВГФ (1-50 см33) данные по плотности газожидкостной смеси поступали с обоих резонаторов ОЦР и ЗЦР (последний находился в начале рабочего диапазона); при больших ВГФ (100-1000 см33) показания снимались только с ЗЦР, так как сигнал с ОЦР в виду большого затухания не регистрировался.

Таким образом, полный диапазон измерения ВГФ составил от ~1 до 1000 см33.

Литература

1. Патент США US 1155389883, G01N 022/04, от 14.02.1995. Measure-ment of gas and water antentinoil. Автор Harper R.

2. Patent 2393727 Canada, Intem. C1 Golf 1/74, от 05.03.01. Simultaneos determination of multiphase flowrates and concentrations от 05.03.01. Melnikov V., Drobkov V., Shustov A.

3. Патент РФ 2126143, МКН G01F 1/74. Ультразвуковой расходомер компонентов многофазной среды. / В.И.Мельников, В.П.Дробков, А.В.Шустов.

4. Дробков В.П. Разработка и исследование ультразвуковых методов и информационно-измерительной системы измерения расхода нефтеводогазового потока. Автореферат на соискание ученой степени д.т.н.

5. Патент РФ №2286546 С2, от 23.11.2004. Способ и устройство измерения расхода газожидкого потока. / Вышиваный И.Г., Костюков В.Е., Москалев И.Н. и др.

6. Патент РФ №2289808 от 20.12.2006. Способ и устройство определения объемных долей жидкого углеводородного конденсата и воды в потоке газожидкостной смеси природного газа. / Вышиваный И.Г., Костюков В.Е., Москалев И.Н. и др.

7. Патент РФ №2164340 от 20.03.2001. Способ определения покомпонентного расхода потока газожидкой смеси продуктов газонефтедобычи в трубопроводе и устройство для его осуществления. / Орехов Ю.И., Москалев И.Н., Костюков В.Е. и др.

Источник поступления информации: Роспатент

Показаны записи 1-1 из 1.
29.03.2019
№219.016.f2b9

Способ изоляции водопритоков в скважине

Предложение относится к разработке нефтегазовых месторождений, сложенных мощной толщей трещинных и трещинно-кавернозных водонасыщенных карбонатных пластов, в частности к способам ограничения водопритока в добывающих скважинах и регулирования профиля приемистости нагнетательных скважин. Способ...
Тип: Изобретение
Номер охранного документа: 0002377390
Дата охранного документа: 27.12.2009
Показаны записи 11-20 из 33.
19.01.2018
№218.016.0224

Жидкость для глушения и промывки нефтяных и газовых скважин

Изобретение относится к нефтегазодобывающей промышленности, в частности к жидкости на водной основе для глушения и промывки нефтяных и газовых скважин при наличии сероводорода и высокой температуры, обладающей регулируемой и повышенной вязкостью, термостойкостью, морозостойкостью, стойкостью к...
Тип: Изобретение
Номер охранного документа: 0002630007
Дата охранного документа: 05.09.2017
29.03.2019
№219.016.eea7

Способ освоения скважины

Изобретение относится к нефтегазодобывающей промышленности, например к освоению глубоких скважин путем создания депрессии на исследуемые пласты. Обеспечивает максимальное снижение противодавления в напорной колонне для более полного опорожнения скважины и повышение ее дебита. Сущность...
Тип: Изобретение
Номер охранного документа: 0002272897
Дата охранного документа: 27.03.2006
29.03.2019
№219.016.ef14

Способ и устройство измерения расхода газожидкостного потока

Изобретение относится к измерительной технике и может найти применение при измерении расхода природного газа, добываемого на газоконденсатных месторождениях и содержащего жидкую углеводородную фазу в капельном или аэрозольном виде. Сущность: устройство состоит из блока управления частотой,...
Тип: Изобретение
Номер охранного документа: 0002286546
Дата охранного документа: 27.10.2006
29.03.2019
№219.016.efb0

Способ изоляции продуктивного пласта, перекрытого обсадными колоннами, и тампонажный раствор для его осуществления

Изобретение относится к нефтяной и газовой промышленности, в частности к капитальному ремонту, проводимому в процессе эксплуатации месторождений, и ликвидации скважин, выполнивших свое назначение. Наибольшее применение найдет при эксплуатации многоярусных залежей и при ликвидации скважин...
Тип: Изобретение
Номер охранного документа: 0002299230
Дата охранного документа: 20.05.2007
10.04.2019
№219.016.ffb2

Способ ликвидации скважины

Изобретение относится к нефтяной и газовой промышленности, в частности к ликвидации скважин, выполнивших свое назначение. Обеспечивает флюидонепроницаемость сформированной системы искусственных покрышек и тампонажных изоляционных экранов. Сущность изобретения: устанавливают в обсадной колонне...
Тип: Изобретение
Номер охранного документа: 0002283942
Дата охранного документа: 20.09.2006
10.04.2019
№219.017.0399

Способ строительства конструкции глубокой скважины, тампонажный раствор для его осуществления и конструкция глубокой скважины

Группа изобретений относится к нефтегазовой промышленности, в частности к способам сооружения конструкций структурно-поисковых, разведочных, эксплуатационных и нагнетательных скважин. При осуществлении способа производится кольматация околоствольной зоны скважины в интервалах залегания всех...
Тип: Изобретение
Номер охранного документа: 0002386787
Дата охранного документа: 20.04.2010
19.04.2019
№219.017.32a0

Состав для рекультивации загрязненных почв

Изобретение относится к охране окружающей среды и предназначено для рекультивации почв, загрязненных тяжелыми металлами и нефтепродуктами. Состав в качестве основы содержит природный силикагель и аутогенный монопризматический минерал из группы слоистых водных силикатов - глауконит, и...
Тип: Изобретение
Номер охранного документа: 0002406579
Дата охранного документа: 20.12.2010
18.05.2019
№219.017.5629

Устройство для очистки воды от углеводородов и механических примесей

Изобретение относится к нефтегазовой промышленности, в частности к устройствам непрерывного действия по очистке промстоков, и может быть использовано в промысловых и заводских установках по отделению пластовой воды, подготовке нефти и газового конденсата, химической и других промышленностях,...
Тип: Изобретение
Номер охранного документа: 0002343951
Дата охранного документа: 20.01.2009
18.05.2019
№219.017.56b2

Способ изоляции флюидосодержащего пласта и устройство для его осуществления

Изобретение относится к нефтяной и газовой промышленности. Обеспечивает повышение эффективности способа. Согласно способу создают дискообразную каверну в горной породе. Заполняют дискообразную каверну тампонажным раствором. В интервале пород покрышек создают технологическое окно. Высоту...
Тип: Изобретение
Номер охранного документа: 0002312972
Дата охранного документа: 20.12.2007
18.05.2019
№219.017.56f2

Состав для инертизации отходов бурения

Изобретение относится к охране природной среды при строительстве, эксплуатации и демонтаже нефтегазовых скважин и предназначено для нейтрализации методом отверждения (инертизации) отходов бурения (отработанные глинистые буровые растворы и буровые шламы, а также другие шламы), содержащих...
Тип: Изобретение
Номер охранного документа: 0002387689
Дата охранного документа: 27.04.2010
+ добавить свой РИД