×
23.03.2019
219.016.ec98

Результат интеллектуальной деятельности: СПОСОБ ИЗГОТОВЛЕНИЯ КАТОДНОГО БЛОКА ДЛЯ АЛЮМИНИЕВОГО ЭЛЕКТРОЛИЗЕРА

Вид РИД

Изобретение

Аннотация: Изобретение относится к изготовлению катодного блока для алюминиевого электролизера. Способ включает подготовку исходных материалов, формование заготовки, ее карбонизацию, графитацию и охлаждение с получением катодного блока. Подготовка исходных материалов включает прокалку антрацита и нефтяного кокса в электрокальцинаторе при температуре от 1200 до 1300°С в течение от 2 до 3 ч и перемешивание полученного продукта с искусственным графитом, каменноугольным пеком и модифицирующей добавкой в количестве от 2,5 до 6,0 мас. %, состоящей из смеси карбоната лития и кристаллического кремния при их массовом соотношении 4:1. Карбонизацию заготовки ведут в кольцевой печи с газовым обогревом при температуре в газовой среде не ниже 1100°С в течение от 2 до 3 ч. Графитацию заготовки ведут в печи прямого нагрева путем нагрева заготовки до температуры от 2800 до 3000°С в течение от 2 до 3 ч. Обеспечивается снижение степени абразивного износа поверхности катодного блока, увеличение стойкости к адсорбции электролита и проникновения натрия, снижение расхода электроэнергии, увеличение срока службы и производительности электролизера. 1 табл., 7 пр.

Изобретение относится к производству углеграфитовых материалов, в частности к получению катодных блоков и секций, применяемых для футеровки углеграфитовой подины алюминиевого электролизера.

Известен способ изготовления катодного блока для алюминиевого электролизера (патент РФ №2556192, опубл. 10.07.2015), который включает заготовку исходных материалов, содержащих кокс и порошок твердого материала, например, порошок диборида титана TiB2, а также, при необходимости, углеродсодержащий материал, при перемешивании исходных материалов, формовании катодного блока, карбонизации, графитизации и охлаждении, при этом операцию графитизации проводят при температурах от 2300 до 3000°С, в частности от 2400 до 2900°С, причем второй слой получают с толщиной, составляющей от 10 до 50%, в частности от 15 до 45%, от общей толщины катодного блока. При заданных параметрах обеспечиваются высокая износостойкость подины в отношении расплава алюминия и криолит-глиноземного расплава, а также снижение энергопотребления и удельного расхода электроэнергии.

Недостатком этого способа является использование в качестве добавки TiB2, что приведет к увеличению стоимости монтажных работ и материалов. Способ недостаточно эффективен по причине высокого удельного электрического сопротивления кристаллов TiB2, и наличия в составе исходных материалов, которое приведет к перерасходу электроэнергии из-за перепада напряжения между слоями при их отслоении от поверхности углеграфитовых частиц катодного блока.

Известен способ изготовления катодного блока для алюминиевого электролизера (патент РФ №2533066, опубл. 20.11.2015), в котором катодный блок содержит слой композита, состоящий из графита и твердого материала, такого как TiB2, который присутствует в одномодовом гранулометрическим составом, при этом d50 составляет между 10 и 20 мкм, в частности между 12 и 18 мкм, преимущественно между 14 и 16 мкм. Реализованный способ изготовления катодного блока с указанными характеристиками обеспечивает повышение износостойкости катодного блока и простоты его изготовления.

Недостатком данного способа является высокая стоимость используемых материалов, а именно TiB2, а также низкий срок службы защитного покрытия из-за неудовлетворительной адгезии на поверхности катодного угольного блока и несоответствия поверхностных свойств частиц диборида титана и углеграфитовых частиц.

Известен способ получения графитированного материала с повышенной абразивной стойкостью (патент РФ №2443623, опубл. 27.02.2012), в котором осуществляют приготовление шихты, содержащей 15-25 мас. % термоантрацита с крупностью частиц 2-10 мм и коксовый наполнитель. В начале смешивают упомянутую шихту с пековым связующим, затем формируют из полученной смеси заготовку. Далее заготовку обжигают и термообрабатывают. Получают материал с повышенной абразивной стойкостью, структура которого состоит из графитированной матрицы и неграфитированных частиц термоантрацита.

Недостатком этого способа является неравномерность распределения структуры в объеме изготовленного материала, что приводит к анизотропии свойств, когда при эксплуатации катодного устройства могут наблюдаться локальные перегревы, создающие условия для последующих разрушений и адсорбции электролита в глубину слоев футеровки.

Известен способ получения катодного блока для электролизера для получения алюминия (патент РФ №2568542, опубл. 20.11.2015), принятый за прототип, который включает подготовку исходных материалов, содержащих два сорта кокса с различными характеристиками изменения объема, формование катодного блока, карбонизацию, графитизацию и охлаждение, во время которых в одном и том же температурном диапазоне первый сорт кокса имеет более сильные усадку и расширение, чем второй сорт кокса.

Недостатком прототипа является большая вероятность образования пустот в теле катодного блока из-за различий усадочных свойств и неравномерного распределения применяемых коксов, что обусловливает низкие прочностные свойства готовых катодных блоков.

Техническим результатом изобретения является получение катодного блока для алюминиевого электролизера, обладающего меньшей пористостью, высокой плотностью, большими прочностными свойствами, стойкостью к проникновению натрия, а также снижение расхода электроэнергии за счет уменьшения удельного электросопротивления катодного блока.

Технический результат достигается тем, что подготовка исходных материалов включает прокалку антрацита и нефтяного кокса в электрокальцинаторе при температуре от 1200 до 1300°С в течении от 2 до 3 часов, перемешивание полученного продукта с искусственным графитом, каменноугольным пеком и модифицирующей добавкой в количестве от 2,5 до 6,0 масс %, состоящей из смеси карбоната лития и кристаллического кремния при их массовом соотношении 4:1, при этом карбонизацию заготовки ведут в кольцевой печи с газовым обогревом при температуре в газовой среде не ниже 1100°С в течении от 2 до 3 часов, а графитацию заготовки ведут в печи прямого нагрева путем нагрева заготовки до температуры от 2800 до 3000°С с продолжительностью от 2 до 3 часов.

Способ реализуется следующим образом. На первой стадии подготавливаются исходные материалы. Для подготовки шихты из исходных материалов применят смесительное оборудование. В качестве исходных материалов используются антрацит, нефтяной кокс, искусственный графит, каменноугольный пек и модифицирующая добавка в количестве от 2,5 до 6,0 мас. %, состоящей из смеси карбоната лития и кристаллического кремния при массовом соотношении 4:1. Предварительно осуществляется прокалка антрацита и нефтяного кокса в электрокальцинаторах при температуре от 1200 до 1300°С в течение от 2 до 3 часов с целью удаления влаги и летучих веществ, максимального уплотнения вещества, относительной стабилизации усадки материала, увеличения механической прочности, электропроводности. В смесительное оборудование добавляют прокаленный антрацит и нефтяной кокс, искусственный графит, каменноугольный пек, предварительно нагретый до температуры от 110 до 120°С. Затем в полученную смесь добавляют модифицирующую добавку и перемешивают в течение от 2 до 3 часов до получения однородной массы. На следующей стадии формования катодного блока полученная смесь автоматическими тележками для дозировки и подогревателями шихты загружается в оборудование для вибропрессования заготовок. Вибропрессование осуществляется при поддержании температуры от 100 до 110°С в течении часа. На стадии карбонизации спрессованные заготовки подвергаются обжигу в 32-х камерных кольцевых печах закрытого типа с газовым обогревом при температуре в газовой среде не ниже 1100°С в течении от 2 до 3 часов. Графитация заготовок осуществляется в печах прямого нагрева Кастнера. Процесс графитации производится при нагреве до температуры от 2800 до 3000°С продолжительностью от 2 до 3 часа, и постепенным охлаждением до установления температуры в печи до 500°С.

Использование модифицирующей добавки, состоящей из смеси карбоната лития и кристаллического кремния в массовом соотношении 4:1 при изготовлении катодных блоков объясняется следующим образом. Углеграфитовые материалы имеют свойство образовывать и формировать фазы внедрения при нагреве благодаря их слоистой структуре и протеканию реакции взаимодействия (интеркаляции) в межслоевых пространствах структурных слоев. При применении модифицирующей добавки под действием высоких температур и процесса карбонизации-графитации происходит внедрение атомов лития в кристаллическую решетку графита изменяя структуру и физико-механические свойства углеграфитового катодного блока, поскольку атомы лития из-за своего маленького радиуса, в отличие от других щелочных металлов, способны внедряться в слои и поры углеграфитовых материалов без разрушения кристаллической структуры.

При наличии в исходной шихте модифицирующей добавки карбоната лития и кристаллического кремния, на стадии карбонизации при температуре 900°С и заданном времени выдержки 2-3 часа карбонат лития переходит в оксидную форму Li2O по реакции 1:

При дальнейшем росте температур вплоть до установления температуры карбонизации 1100°С образовавшийся по реакции 1 оксид лития взаимодействует с кристаллическим кремнием по реакции 2, в результате которого образуется металлический литий и оксид кремния.

Для полноты протекания реакции (2) установлено, что на 1 кг Li2CO3 необходимо 0,3 кг Si, то есть Si в 4 раза меньше, чем Li2CO3. Поэтому в качестве модифицирующей добавки используют смесь карбоната лития и кристаллического кремния в соотношении 4:1.

На следующей стадии графитации до установления температуры от 2800 до 3000°С одновременно с процессом упорядочивания и перестроения атомов углерода в структуру графита атомы лития взаимодействуют с узлами решетки графита с образованием устойчивых соединений LiC6, LiC12 и LiC18, при котором изменяется структура и свойства катодных блоков. Оксид кремния, образовавшийся по реакции (2) служит как упрочняющий компонент, повышающий стойкость к абразивному износу поверхности катодных блоков. В результате обеспечивается снижение негативных эффектов, связанных с адсорбцией и проникновением натрия в углеграфитовую футеровку, снижается подверженность к абразивному износу поверхности катодного блока, увеличивается удельный вес материала за счет металлизации и уплотнения структурных графитовых слоев, происходит снижение удельного электросопротивления, так как атомы лития, за счет мостиковых связей между слоями, обеспечивают перенос носителей заряда.

Испытания способа по изготовлению катодного блока для алюминиевого электролизера проводились в лабораторных условиях с параметрами, приближенными к промышленным условиям с использованием специального оборудования. Прокалка антрацита и нефтяного кокса при температуре 1200 до 1300°С в течение от 2 до 3 часов осуществлялась в шахтной печи. Для обеспечения процесса равномерной прокалки с периодичностью раз в 5 минут проводилось перемешивание смеси. Полученная прокаленная смесь антрацита и нефтяного кокса перемешивается в течении от 2 до 3 часов с каменноугольным пеком, предварительно нагретым до температуры от 110 до 120°С, и с модифицирующей добавкой, и далее уплотняется в стальной форме с размерами 80×40×30, закрепленной в вибрационной установке в течении одного часа при одновременном поддержании температуры от 100 до 110°С. Полученная уплотненная заготовка вынимается и помещается в шахтную печь Таммана. На стадии карбонизации образцы обжигаются при температуре не ниже 1100°С в течении от 2 до 3 часов. На стадии графитации после карбонизации брикетов производится нагрев до температуры от 2800 до 3000°С со скоростью 30 град/мин и обжиг при установленной температуре от 2800 до 3000°С в течении от 2 до 3 часов, при этом происходит завершение процесса восстановления оксида лития. На заключительном этапе процесс графитации останавливается, печь отключается, графитизированные образцы охлаждаются естественным остыванием в печи Таммана.

Изменение свойств катодных блоков при реализации способа поясняются примерами.

Пример 1. Для сравнения изготовлен образец катодного блока без применения модифицирующей добавки. Шихтовая смесь подготавливалась в лабораторных условиях с параметрами, приближенными к промышленным условиям с использованием лабораторного оборудования, согласно вышеописанным технологическим операциям. Результаты проведения испытаний представлены в таблице 1.

Пример 2. Также, как и в примере 1. Отличие в том, что на стадии подготовки исходных материалов применяется модифицирующая добавка в количестве 1 мас. %. Результаты проведения испытаний представлены в таблице 1. По сравнению с образцом катодного блока, изготовленного по примеру 1, общая пористость снизилась с 29 до 25%, кажущаяся плотность повысилась с 1,55 до 1,56 г/см3, истинная плотность повысилась с 1,93 до 1,95 г/см3, а удельное электрическое сопротивление повысилось с 25 до 28 мкОм⋅м. Повышение удельного электросопротивления вызвано неполным протеканием процесса интеркалляции лития.

Пример 3. Также, как и в примере 1. Отличие в том, что на стадии подготовки исходных материалов применяется модифицирующая добавка в количестве 2,5 мас. %. Результаты проведения испытаний представлены в таблице 1. По сравнению с образцом катодного блока, изготовленного по примеру 1, общая пористость снизилась с 29 до 24%, кажущаяся плотность повысилась с 1,55 до 1,66 г/см3, истинная плотность повысилась с 1,93 до 2,04 г/см3, а удельное электрическое сопротивление понизилось с 25 до 23 мкОм⋅м.

Пример 4. То же, что и в примере 1. Отличие в том, что на стадии подготовки исходных материалов применяется модифицирующая добавка в количестве 3,5 мас. %. Результаты проведения испытаний представлены в таблице 1. По сравнению с образцом катодного блока, изготовленного по примеру 1, общая пористость снизилась с 29 до 22%, кажущаяся плотность повысилась с 1,55 до 1,65 г/см3, истинная плотность повысилась с 1,93 до 2.04 г/см3, прочность при изгибе повысилась с 8 до 9 МПа, а удельное электрическое сопротивление понизилось с 25 до 20 мкОм⋅м.

Пример 5. То же, что и в примере 1. Отличие в том, что на стадии подготовки исходных материалов применяется модифицирующая добавка в количестве 5 мас. %. Результаты проведения испытаний представлены в таблице 1. По сравнению с образцом катодного блока, изготовленного по примеру 1, общая пористость снизилась с 29 до 21%, кажущаяся плотность повысилась с 1,55 до 1,68 г/см3, истинная плотность повысилась с 1,93 до 2.05 г/см3, прочность при изгибе повысилась с 8 до 11 МПа, а удельное электрическое сопротивление понизилось с 25 до 18 мкОм⋅м.

Пример 6. То же, что и в примере 1. Отличие в том, что на стадии подготовки исходных материалов применяется модифицирующая добавка в количестве 6 мас. %. Результаты проведенных испытаний представлены в таблице 1. По сравнению с образцом катодного блока, изготовленным по примеру 1, общая пористость снизилась с 29 до 20%, кажущаяся плотность повысилась с 1,55 до 1,69 г/см3, истинная плотность увеличилась с 1,93 до 2,08 г/см3, прочность при изгибе повысилась с 8 до 10 МПа, а удельное электрическое сопротивление снизилось с 25 до 17 мкОм⋅м.

Пример 7. Также, как и в примере 1. Отличие состоит в том, что на стадии подготовки исходных материалов применяется модифицирующая добавка в количестве 7,5 мас. %. Результаты проведенных испытаний представлены в таблице 1. По сравнению с образцом катодного блока, изготовленным по примеру 1, общая пористость снизилась с 29 до 16%, кажущаяся плотность повысилась с 1,55 до 1,7 г/см3, истинная плотность повысилась с 1,93 до 2,1 г/см3, прочность при изгибе повысилась с 8 до 9 МПа, а удельное электрическое сопротивление понизилось с 25 до 24 мкОм⋅м. Увеличение содержания модифицирующей добавки с 6,5 до 7,5 мас. %, что приводит к повышение удельного электросопротивления по сравнению с примерами изготовления образцов 3-6, из-за высокого содержания образовавшегося оксида кремния по реакции (2) на стадии карбонизации.

При изучении полученных проб установлено, что образцы катодного блока при использовании модифицирующей добавки, состоящей из смеси карбоната лития и кристаллического кремния в массовом соотношении 4:1 в количестве от 2,5 до 6,0 мас. %, отличаются более высокими физико-техническими характеристиками по сравнению с образцом катодного блока без использования модифицирующей добавки.

Так, например, общая пористость снижается с 29 до 20-24%, кажущаяся плотность повысилась от 1,55 до 1,66-1,69 г/см3, истинная плотность повышается от 1,93 до 2,04-2,08 г/см3, прочность при изгибе увеличивается от 8 до 9-11 МПа, а удельное электрическое сопротивление снижается от 25 до 17-23 мкОм⋅м.

Выход за заявленные пределы содержания модифицирующей добавки не удовлетворяет требуемому техническому результату.

Таким образом, при использовании предлагаемого способа изготовления катодного блока для алюминиевого электролизера снижается степень абразивного износа поверхности катодного блока, увеличивается стойкость к адсорбции электролита и проникновения натрия, происходит снижение расхода электроэнергии за счет уменьшения удельного электросопротивления катодного блока, а также увеличивается срок службы и производительность электролизера, а также повышается сортность первичного алюминия.

Способ изготовления катодного блока для алюминиевого электролизера, включающий подготовку исходных материалов, формование заготовки, ее карбонизацию, графитацию и охлаждение с получением катодного блока, отличающийся тем, что подготовка исходных материалов включает прокалку антрацита и нефтяного кокса в электрокальцинаторе при температуре от 1200 до 1300°С в течение от 2 до 3 ч, перемешивание полученного продукта с искусственным графитом, каменноугольным пеком и модифицирующей добавкой в количестве от 2,5 до 6,0 мас.%, состоящей из смеси карбоната лития и кристаллического кремния при их массовом соотношении 4:1, при этом карбонизацию заготовки ведут в кольцевой печи с газовым обогревом при температуре в газовой среде не ниже 1100°С в течение от 2 до 3 ч, а графитацию заготовки ведут в печи прямого нагрева путем нагрева заготовки до температуры от 2800 до 3000°С в течение от 2 до 3 ч.
Источник поступления информации: Роспатент

Показаны записи 161-170 из 204.
19.11.2019
№219.017.e39d

Состав смазочной композиции для кристаллизатора

Изобретение относится к цветной металлургии и может быть использовано в производстве алюминиевых слитков на машинах непрерывного литья. Предложен состав смазочной композиции для кристаллизатора, содержащий воду, нефтяное масло и окислитель. Дополнительно состав содержит полиоксиэтилен сорбитан...
Тип: Изобретение
Номер охранного документа: 0002706352
Дата охранного документа: 18.11.2019
01.12.2019
№219.017.e8e7

Тампонажный раствор

Изобретение относится к области строительства скважин, в частности к тампонажным растворам для цементирования обсадных колонн, газоконденсатных и нефтяных скважин, осложненных наличием слабосвязанных, склонных к гидроразрыву многолетних мерзлых пород. Техническим результатом является создание...
Тип: Изобретение
Номер охранного документа: 0002707837
Дата охранного документа: 29.11.2019
13.12.2019
№219.017.ecb9

Гипсоцементно-пуццолановая композиция

Изобретение относится к строительным материалам и может быть использовано при производстве звукопоглощающих перегородочных плит и панелей, звукопоглощающих строительных растворов для внутренних частей здания. Гипсоцементно-пуццолановая композиция содержит полуводный гипс, портландцемент,...
Тип: Изобретение
Номер охранного документа: 0002708779
Дата охранного документа: 11.12.2019
13.12.2019
№219.017.ed08

Звукопоглощающий бетон

Изобретение относится к составам бетона и может быть использовано в гражданском и промышленном строительстве для изготовления цементных композитов с высокими звукопоглощающими свойствами. Звукопоглощающий бетон получен из смеси, содержащей, мас. %: портландцемент 28,5-38,4, золу-уноса 6,4,...
Тип: Изобретение
Номер охранного документа: 0002708776
Дата охранного документа: 11.12.2019
21.12.2019
№219.017.f024

Способ получения мезофазного пека

Изобретение относится к технологии получения сырья для производства изотропных плотных графитированных конструкционных материалов и может быть использовано в нефтеперерабатывающей промышленности. Для получения мезофазного пека проводят разогрев и последующую карбонизацию сырья с поднятием...
Тип: Изобретение
Номер охранного документа: 0002709446
Дата охранного документа: 17.12.2019
24.01.2020
№220.017.f923

Установка для нанесения покрытий в среде легкоплавких материалов

Изобретение относится к установкам, предназначенным для создания диффузионных металлических покрытий на стальных изделиях химико-термической обработкой для улучшения физико-химических и механических свойств, и может использоваться в различных отраслях промышленности. Установка для нанесения...
Тип: Изобретение
Номер охранного документа: 0002711701
Дата охранного документа: 21.01.2020
25.01.2020
№220.017.f9c8

Состав для рекультивации почв

Изобретение относится к сельскому хозяйству, к области рекультивации нарушенных земель с перспективой использования в целях благоустройства городских территорий. Состав для рекультивации почв содержит торф, песок, золу сжигания осадка сточных вод и семена многолетних морозостойких растений при...
Тип: Изобретение
Номер охранного документа: 0002711925
Дата охранного документа: 23.01.2020
01.02.2020
№220.017.fce8

Способ очистки почв от тяжелых металлов

Изобретение относится к области защиты окружающей среды и может быть использовано для биологической очистки почв, загрязненных тяжелыми металлами. Способ заключается в высадке травосмеси состава: 30% тимофеевка луговая, 10% райграс высокий, 20% донник желтый, 30% овсяница луговая, 10% люцерна...
Тип: Изобретение
Номер охранного документа: 0002712542
Дата охранного документа: 29.01.2020
09.02.2020
№220.018.00ee

Способ прямой селективной флотации свинцово-цинковых руд

Изобретение относится к флотационному обогащению свинцово-цинковых руд, в частности к регулированию процесса селективной флотации свинцово-цинковых руд, включающему разделение минералов с использованием реагентов модификаторов флотации, дозировка которых корректируется по электрохимическому...
Тип: Изобретение
Номер охранного документа: 0002713829
Дата охранного документа: 07.02.2020
09.02.2020
№220.018.0132

Способ отделения иттрия и иттербия от примесей титана

Изобретение относится к гидрометаллургии редких металлов и может быть использовано для получения экстрактов РЗМ с пониженным содержанием титана при переработке экстракционной фосфорной кислоты в процессе производства фосфорных удобрений, а также при переработке сернокислых растворов, содержащих...
Тип: Изобретение
Номер охранного документа: 0002713766
Дата охранного документа: 07.02.2020
Показаны записи 41-47 из 47.
16.11.2019
№219.017.e34f

Способ получения гранулированного шлака

Изобретение относится к области металлургии и может быть использовано при переработке жидких металлургических шлаков для получения строительных материалов различного назначения. Для получения гранулированного шлака осуществляют грануляцию в водной среде в присутствии сорбента, представляющего...
Тип: Изобретение
Номер охранного документа: 0002706273
Дата охранного документа: 15.11.2019
01.12.2019
№219.017.e8e7

Тампонажный раствор

Изобретение относится к области строительства скважин, в частности к тампонажным растворам для цементирования обсадных колонн, газоконденсатных и нефтяных скважин, осложненных наличием слабосвязанных, склонных к гидроразрыву многолетних мерзлых пород. Техническим результатом является создание...
Тип: Изобретение
Номер охранного документа: 0002707837
Дата охранного документа: 29.11.2019
15.03.2020
№220.018.0c24

Гибридный цемент

Изобретение относится к составам гибридных вяжущих на основе молотого гранулированного металлургического шлака и может быть использовано в подземном, транспортном и гражданском строительстве для изготовления цементных бетонов. Техническим результатом является создание вяжущего пониженной...
Тип: Изобретение
Номер охранного документа: 0002716661
Дата охранного документа: 13.03.2020
18.07.2020
№220.018.3495

Тампонажная смесь

Изобретение относится к области строительства и обслуживания скважин, в частности к тампонажным смесям для цементирования обсадных колонн, газоконденсатных и нефтяных скважин, осложненных наличием слабосвязанных, склонных к гидроразрыву многолетних мерзлых пород. Тампонажная смесь содержит...
Тип: Изобретение
Номер охранного документа: 0002726695
Дата охранного документа: 15.07.2020
31.07.2020
№220.018.3acd

Противоморозная добавка для бетонной смеси

Изобретение относится к области строительных материалов и может быть использовано при изготовлении бетонов и строительных растворов, твердеющих при отрицательных температурах. Противоморозная добавка для бетонной смеси включает, мас.%: кремнегель 79,43–87,49, суперпластификатор на...
Тип: Изобретение
Номер охранного документа: 0002728023
Дата охранного документа: 28.07.2020
12.04.2023
№223.018.47e4

Способ возведения опорного основания дорожной одежды

Изобретение относится к области дорожного строительства и может быть использовано при новом строительстве или проведении ремонта автомобильных дорог, взлетно-посадочных полос аэродромов, вертолетных и иных площадок в условиях слабых грунтов на заболоченных территориях, а также на подвижных...
Тип: Изобретение
Номер охранного документа: 0002747181
Дата охранного документа: 28.04.2021
23.04.2023
№223.018.51c6

Способ контроля параметров дуговых печей

Изобретение относится к области автоматизации контроля технологических параметров в электрометаллургических технологических процессах и может быть использовано в системах адаптивного управления для автоматического регулирования теплового режима дуговых печей. Способ включает регулирование...
Тип: Изобретение
Номер охранного документа: 0002731711
Дата охранного документа: 08.09.2020
+ добавить свой РИД