×
22.03.2019
219.016.ec2a

Способ оценки токсичности жидкости

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к экологии и может быть использовано для оценки токсичности жидкостей-загрязнителей в водных объектах. Для этого культивируют одноклеточные водоросли в контакте с тестируемой жидкостью и освещают смесь лазером. Затем определяют флуоресцентные характеристики контролируемой жидкости, по изменению которых судят о токсичности загрязнителей. В качестве тест-объекта используют водоросли Attheya ussuriensis, или Porphyridium purpureum, или Chaetoceros muelleri, или Heterosigma akashiwo. Каждый образец анализирует на проточном цитофлуориметре через 24 часа, 96 часов и 7 дней как объект, имеющий автофлуоресценцию по хлорофиллу a. Водоросли освещают лазером с длиной волны 488 нм, а их эмиссию фиксируют фильтром эмиссии с длиной волны 690 нм. Тест-объект окрашивают витальным красителем Propidium Iodide для исключения мертвых водорослей до подсчета общего количества и выявляют их эмиссию при длине волны 610 нм. Токсичность рассчитывают статистически, сравнивая численность водорослей при сравнении с контрольным образцом с использованием критерия Стьюдента при уровне значимости р <0.05. Изобретение обеспечивает сокращение времени тестирования при сохранении точности результатов и уменьшении затрат труда и средств. 4 ил., 2 табл., 1 пр.
Реферат Свернуть Развернуть

Изобретение относится к водной токсикологии и предназначено для оценки токсичности жидкостей-загрязнителей в водных объектах.

Известен способ оценки токсичности жидкости, предусматривающий культивирование одноклеточных водорослей в контакте с этой жидкостью, как тест-объекта, их освещение и определение флуоресцентных характеристик, по изменению которых судят о токсичности контролируемой жидкости (см. SU №462805, МПК G01N 33/18, 1975).

Недостаток этого решения - недостаточная точность оценки анализа и его низкая оперативность.

Известен также способ оценки токсичности жидкости, предусматривающий культивирование одноклеточных водорослей в контакте с этой жидкостью, как тест-объекта, их освещение и определение флуоресцентных характеристик, по изменению которых судят о токсичности контролируемой жидкости (см. SU №1515105, МПК G01N 33/18, 1989). В качестве тест-объекта используют культуру Chlorella vulgaris, штамм S-39/64688. При этом в качестве признака позволяющего оценить токсичность контролируемой жидкости используют интенсивность люминесценции тест-объекта в различных световых состояниях. Фактически, косвенным образом оценивают выживаемость тест-объекта.

Недостаток этого решения слабая доступность данного штамма в регионах, удаленных от депозитария штаммов и отсутствие его в водах региональных бассейнов. Невозможность быстрого наращивания его биомассы в целях практического применения. Кроме того, достоверность результатов измерений недостаточно велика, в связи с использованием косвенных методов оценки выживаемости тест-объекта при воздействии жидкости, токсичность которой оценивают. Кроме того, способ не позволяет использовать современные средства измерений. Все это снижает адекватность оценки токсичности жидкости, из-за недостаточной ее оперативности и точности.

Задача изобретения - повышение адекватности оценки токсичности жидкости, ее оперативности и точности.

Технический результат, получаемый при решении поставленной задачи, выражается в том, что обеспечивается возможность использования современного измерительного прибора - проточного цитофлюориметра, при этом в качестве тест-объектов предлагаются к использованию микроводоросли, обеспечивающие: простоту культивирования и содержания в лабораторных условиях; возможность быстрого наращивания биомассы культур; имеющие высокую чувствительность к действию токсикантов и доступность (они широко распространены в морских акваториях Дальневосточного региона).

Для достижения поставленного технического результата, способ оценки токсичности жидкости, предусматривающий культивирование одноклеточных водорослей в контакте с этой жидкостью, как тест-объекта, их освещение и определение флуоресцентных характеристик, по изменению которых судят о токсичности контролируемой жидкости, отличается тем, что как тест-объект используют водоросли Attheya ussuriensis или Porphyridium purpureum или Chaetoceros muelleri или Heterosigma akashiwo, при этом подсчитывают количество живых водорослей через 24 часа, 96 часов и 7 дней, причем каждую водоросль регистрируют проточным цитофлюориметром, как объект, имеющий автофолюоресценцию по хлорофиллу а, для чего освещают водоросли лазером с длиной волны 488 нм, а их эмиссию фиксируют фильтром эмиссии с длиной волны 690 нм, причем из общего числа водорослей исключают мертвые, для чего тест-объект еще до подсчета количества водорослей окрашивают витальным красителем Propidium Iodide и выявляют водоросли имеющие флюоресценцию при освещении лазером с длиной волны 488 нм, а их эмиссию фиксируют фильтром эмиссии с длиной волны 610 нм, токсичность контролируемой жидкости рассчитывают статистически

Сопоставительный анализ признаков заявленного решения с признаками прототипа и аналогов свидетельствует о соответствии заявленного решения критерию «новизна».

При этом совокупность признаков отличительной части формулы изобретения обеспечивают повышение адекватности оценки токсичности жидкости, ее оперативности и точности, причем отличительные признаки отличительной части формулы изобретения обеспечивают решение нижеследующего комплекса функциональных задач:

Признаки «…как тест-объект используют водоросли Attheya ussuriensis или Porphyridium purpureum или Chaetoceros muelleri или Heterosigma akashiwo…» обеспечивают простоту культивирования и содержания тест-объектов в лабораторных условиях, возможность быстрого наращивания их биомассы при высокой чувствительности к действию токсикантов и их доступность (они широко распространены в морских акваториях Дальневосточного региона).

Признаки указывающие, что «подсчитывают количество живых водорослей через 24 часа, 96 часов и 7 дней» позволяют оценить динамику процесса воздействия токсичного материала.

Признаки указывающие, что «каждую водоросль регистрируют проточным цитофлюориметром, как объект, имеющий автофолюоресценцию по хлорофиллу а» обеспечивают надежный и оперативный подсчет общего количества водорослей в том числе количества живых и мертвых водорослей.

Признаки указывающие, что для регистрации водоросли проточным цитофлюориметром, «освещают водоросли лазером с длиной волны 488 нм (одним из нескольких лазеров проточного цитофлюориметра), а их эмиссию (эмиссию водорослей) фиксируют фильтром эмиссии (элементом проточного цитофлюориметра) с длиной волны 690 нм» обеспечивают работу проточного цитофлюориметра в диапазоне, в котором имеет место максимально интенсивное свечение хлорофилл а.

Признаки указывающие, что «из общего числа водорослей исключают мертвые, для чего тест-объект еще до подсчета количества водорослей окрашивают витальным красителем Propidium Iodide» обеспечивают окраску только мертвых водорослей и их свечение в ином диапазоне (соответствующем этому красителю), по сравнению с живыми.

Признаки указывающие, что «выявляют водоросли имеющие флюоресценцию при освещении лазером с длиной волны 488 нм, а их эмиссию фиксируют фильтром эмиссии с длиной волны 610 нм» обеспечивают работу проточного цитофлюориметра в диапазоне, в котором имеет место максимально интенсивное свечение красителя, попадающего в клетки погибших водорослей через их разрушенные (в результате токсического воздействия тестируемой жидкости) оболочки. При этом в живые водоросли краситель не попадает.

Признаки указывающие, что «уровень токсичности (LC50) рассчитывают статистически», позволяют по результатам замеров проточным цитофлюориметром определить уровень токсичности жидкости.

Признаки указывающие, что «токсичность контролируемой жидкости рассчитывают статистически», позволяют по результатам замеров проточным цитофлюориметром определить токсичность жидкости.

На фиг. 1 показаны графики смертности микроводоросли Attheya ussuriensis при тестировании гексана (синий), метанола (красный), дизельного топлива В0 (зеленый), биодизеля В100 (фиолетовый), смеси дизель-биодизель В20 (оранжевый) на острую токсичность (96 часов); На фиг. 2 показаны графики смертности микроводоросли Porphyridium purpureum при тестировании гексана (синий), метанола (красный), дизельного топлива В0 (зеленый), биодизеля В100 (фиолетовый), смеси дизель-биодизель В20 (оранжевый) на острую токсичность (96 часов); На фиг. 3 показаны графики смертности микроводоросли Chaetoceros muelleri при тестировании гексана (синий), метанола (красный), дизельного топлива В0 (зеленый), биодизеля В100 (фиолетовый), смеси дизель-биодизель В20 (оранжевый) на острую токсичность (96 часов); На фиг. 4 показаны графики смертности микроводоросли Heterosigma akashiwo при тестировании гексана (синий), метанола (красный), дизельного топлива В0 (зеленый), биодизеля В100 (фиолетовый), смеси дизель-биодизель В20 (оранжевый) на острую токсичность (96 часов).

Определена чувствительность выбранных культур микроводорослей к действию стандартного токсиканта бихромата калия K2Cr2O7, в таблице 1 приведены результаты исследований. Оценку чувствительности проводили по изменению численности клеток микроводорослей в контрольной и опытной пробе. Экспозиция клеток проводилась в 24-луночных планшетах, в климатстате при 20°С с циклом освещенности 12:12 (свет : темнота). Биоиспытания проводились при концентрациях K2Cr2O7 1, 2, 4, 8, 16, 32 мг/л. Для каждой концентрации и группы контроля (без токсиканта) эксперимент был проведен в 4 повторностях. Объем аликвоты микроводорослей в каждой повторности был 1,5 мл. Подсчет количества живых клеток осуществлялся с помощью проточного цитофлюориметра CytoFLEX (Beckman Coulter, USA) и программного обеспечения CytExpert v.2.0 через 96 часов (острая токсичность) и через 7 дней (хроническая токсичность). Жизнеспособность клеток оценивалась за счет окраски витальным красителем Propidium Iodide. Гейтирование (определение границ разделения клеток на графиках по данным интенсивности флюоресценции и светорассеянья) проводилось за счет определения клеток, имеющих автофлюоресценцию по хлорофиллу a (light source - laser 488 nm, emission filter - PC5.5, 690 nm) на точечной диаграмме FSC/PC5.5 и исключения из этого диапазона мертвых клеток, имеющих флюоресценцию по PI (light source - laser 488 nm, emission filter - ECD, 610 nm) на точечной диаграмме FSC/ECD. Расчет LC50 выполнен с помощью GraphPad Prism 7.04.

Таблица 1

Оценка чувствительности тест-объектов к действию бихромата калия

Вид 96 часов LC50 (мг/л) 7 дней LC50 (мг/л)
Attheya ussuriensis >33.13 7.91 (7.00-8.96)
Porphyridium purpureum 1.18 (0.57-1.80) 0.15 (5,02e-005-0,45)
Chaetoceros muelleri >42.36 29.66 (24.00-38.20)
Heterosigma akashiwo 13.88 (12.10-15.62) 8.94 (7.89-10.17)

Способ осуществляется следующим образом:

Микроводоросли культивируются в фильтрованной (фильтр с размером пор 0,22 мкм), стерилизованной морской воде в колбах Эрленмейера при температуре 20°C, солености 33%, с циклом освещенности 12:12. Используется питательная среда f/2. Для эксперимента отбираются водоросли в экспоненциальной фазе роста, через 7-10 дней с момента последнего пересева.

В 24 луночный пластиковый планшет раскапывается по 1,5 мл водорослей и добавляется исследуемый образец в концентрациях 0,01-120 мл/л. Для каждой концентрации и группы контроля эксперимент проводится в 4 повторениях.

Подсчет количества живых клеток осуществляется через 24 часа, 96 часов, 7 дней с помощью проточного цитофлюориметра. Отделение мертвых клеток осуществляется за счет окрашивания витальным красителем Propidium Iodide (PI). Гейтирование проводилось за счет определения клеток, имеющих автофлюоресценцию по хлорофиллу a (источник света - лазер 488 нм, фильтр эмиссии - 690 нм) на точечной диаграмме и исключения из этого диапазона мертвых клеток, имеющих флюоресценцию по PI источник света - лазер 488 нм, фильтр эмиссии - 610 нм).

Основным показателем, с помощью которого оценивают уровень токсичности добавленных в среду образцов, является численность клеток водорослей. По результатам экспериментов составляют таблицу численности клеток во всех вариантах эксперимента в абсолютных единицах, а также значений численности клеток водорослей, выраженных в относительных единицах (% относительно контроля). Расчет уровня токсичности (LC50) выполняется статистически с помощью GraphPad Prism 7.04 используя t - критерий Стьюдента при сравнении параметра численности при уровне значимости р<0.05.

Результаты реализации способа приведены в таблице 2.

Оценивали уровень токсичности биодизеля, полученного из использованных фритюрных масел (B100) и смеси данного биодизеля с дизельным топливом в соотношении 20% биодизеля, 80% дизельного топлива и сравнивали уровень токсичности с чистым дизельным топливом, гексаном и метанолом.

Таблица 2

Сравнительная оценка уровня токсичности различных жидкостей

Токсин/Время воздействия 24 часа LC50 96 часов LC50 7 дней LC50
Attheya ussuriensis
Hexane - >52.92 >57.37
Methanol - 77.56 (55.99-132.2) 40.29 (30-57.48)
B0 >120 29.84 (25.19-35.14) 12.82 (11.39-14.40)
B20 >40 10.41 (9.40-11.44) 0.92 (0.76-1.07)
B100 19.69 (15.88-24.22) 9.83 (8.67-11.09) 0.72 (0.423-1.02)
Porphyridium purpureum
Hexane - 10.54 (<19.23) 41.71 (<64.78)
Methanol - 13.17 (11.26-15.5) 16.53 (12.17-21.21)
B0 35.05 (24.44-50.95) 20.44 (17.08-23.95) 12.33 (7.99-16.09)
B20 2.81 (1.44-4.52) 8.25 (7.51-9.05) 5.53 (5.16-5.98)
B100 7.72 (4.66-18.82) 9.89 (8.45-11.4) 6.59 (6.24-6.94)
Chaetoceros muelleri
Hexane - 52.70 (46.91-58.09) 42.79 (42.58-43.00)
Methanol - >156.2 >108.1
B0 >120 51.81 (48.27-54.31) -
B20 10.89 (9.99-11.84) 6.50 (6.04-6.99) -
B100 6.46 (5.98-7.02) 2.53 (2.19-2.93) -
Heterosigma akashiwo
Hexane - 30.41 (29.89-31.46) 27.24 (22.07-32.86)
Methanol - 32.16 (31.26-33.05) 30.65 (26.28-33.38)
B0 >118.8 10.05 (9.01-11.14) 5.73 (4.75-6.63)
B20 13.74 (12.55-14.99) 17.51 (15.46-19.74) ~2.40
B100 6.24 (5.67-6.84) ~3.75 ~2.24

Анализы на микроводорослях в рамках заявленного способа дают статистическое преимущество перед многими тест-объектами, так как можно легко использовать большее количество клеток, требуются намного меньшие объемы проб и время тестирования, содержание запасных культур, вследствие их редкого пересевания и низкой требовательности к условиям культивирования, не требует больших затрат труда и средств. Процесс тестирования легко автоматизировать.

По результатам экспериментов для микроводорослей Attheya ussuriensis, Chaetoceros muelleri и Heterosigma akashiwo максимальный уровень токсичности показал образец чистого биодизеля B100. Для красной водоросли Porphyridium purpureum более токсичным оказался образец diesel-biodiesel blend B20.

Porphyridium purpureum как самый чувствительный из тестируемых видов по бихромату калия, гексану и метанолу, оказался самым устойчивым для B100 и B20. Кроме этого, Porphyridium purpureum и Heterosigma akashiwo показали способность к адаптации к присутствию тестируемых загрязнителей. Так для Porphyridium purpureum наблюдается увеличение LC50 для гексана и метанола на 7 дней экспозиции (хроническая токсичность) в сравнении с измерением на 96 часов (острая токсичность), а для B20 и B100 наблюдается увеличение LC50 с 24 часов на 96 часов, затем к 7 дню эксперимента проявляется хроническая токсичность и LC50 снижается. Heterosigma akashiwo в ходе эксперимента адаптируется только к B20, показывая увеличение LC50 с 24 часов на 96 часов и резкое снижение LC50 на 7 сутки. Для диатомовых водорослей Chaetoceros muelleri и Attheya ussuriensis уровень токсичности увеличивался прямо пропорционально с увеличением времени экспозиции клеток с тестируемыми веществами. Для Attheya ussuriensis B20 и B100 проявляют максимальный уровень хронической токсичности.

Тренд чувствительности используемых видов микроводорослей, предварительно определенный с помощью бихромата калия (от более чувствительного к менее чувствительному) полностью совпадает для гексана, метанола и дизельного топлива B0: Porphyridium purpureum > Heterosigma akashiwo > Attheya ussuriensis > Chaetoceros muelleri. Однако, биодизель B100 оказался напротив более токсичными для Heterosigma akashiwo и Chaetoceros muelleri и наименее токсичен для Porphyridium purpureum. Тренд чувствительности для образца B100 представлен следующим образом: Heterosigma akashiwo > Chaetoceros muelleri > Attheya ussuriensis > Porphyridium purpureum.

Уровень токсичность образца B20 во многом подобен B100. Заметное отличие наблюдается для Heterosigma akashiwo, где клетки микроводоросли показали значительно большую устойчивость к B20 по сравнению с чистым биодизелем B100.

Примечательно то, что во всех случаях уровень токсичности образцов, содержащих биодизель из отходов пищевых масел, заметно превосходит токсичность чистых гексана, метанола и дизельного топлива, что свидетельствует о низком качестве очистки исходного сырья и высокой опасности полученного биотоплива для морских гидробионтов.

Способ оценки токсичности жидкости, предусматривающий культивирование одноклеточных водорослей в контакте с этой жидкостью как тест-объекта, их освещение и определение флуоресцентных характеристик, по изменению которых судят о токсичности контролируемой жидкости, отличающийся тем, что как тест-объект используют водоросли Attheya ussuriensis, или Porphyridium purpureum, или Chaetoceros muelleri, или Heterosigma akashiwo, при этом подсчитывают количество живых водорослей через 24 часа, 96 часов и 7 дней, причем каждую водоросль регистрируют проточным цитофлуориметром как объект, имеющий автофлуоресценцию по хлорофиллу а, для чего освещают водоросли лазером с длиной волны 488 нм, а их эмиссию фиксируют фильтром эмиссии с длиной волны 690 нм, причем из общего числа водорослей исключают мертвые, для чего тест-объект еще до подсчета количества водорослей окрашивают витальным красителем Propidium Iodide и выявляют водоросли, имеющие флуоресценцию при освещении лазером с длиной волны 488 нм, а их эмиссию фиксируют фильтром эмиссии с длиной волны 610 нм, токсичность контролируемой жидкости рассчитывают статистически.
Способ оценки токсичности жидкости
Источник поступления информации: Роспатент

Показаны записи 1-10 из 171.
25.08.2017
№217.015.c02c

Способ получения лигноцеллюлозного сорбента из плодовых оболочек подсолнечника

Изобретение относится к способам получения сорбентов на основе растительного сырья и может быть использовано в фармацевтической и пищевой промышленности. Способ получения лигноцеллюлозного сорбента включает измельчение плодовых оболочек подсолнечника до размера частиц 0,160-0,500 мм, обработку...
Тип: Изобретение
Номер охранного документа: 0002616661
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.c204

Установка для центробежного литья цилиндрических оболочек

Изобретение относится к установке для изготовления трубчатых деталей способом центробежного литья. Установка содержит корпус, выполненный с возможностью размещения в нем горизонтальной трубчатой матрицы, с возможностью вращения последней, средства плавления материала, привод вращения матриц....
Тип: Изобретение
Номер охранного документа: 0002617747
Дата охранного документа: 26.04.2017
25.08.2017
№217.015.c459

Мармелад

Изобретение относится к пищевой промышленности, к кондитерской отрасли и может быть использовано для получения желейного мармелада. Предложен мармелад, содержащий сахаросодержащие и желирующие компоненты, жидкость и свежевыжатый и/или свежевыжатый быстрозамороженный сок ягод, причем в качестве...
Тип: Изобретение
Номер охранного документа: 0002618318
Дата охранного документа: 03.05.2017
25.08.2017
№217.015.c569

Способ получения мармелада

Изобретение относится к пищевой промышленности, ее кондитерской отрасли, и может быть использовано для получения желейного мармелада. Способ получения мармелада включает растворение сахаросодержащих и желирующих компонентов в жидкости, варку сиропа, введение в сироп свежевыжатого и/или...
Тип: Изобретение
Номер охранного документа: 0002618321
Дата охранного документа: 03.05.2017
25.08.2017
№217.015.c8c4

Способ нагружения корпуса судна при проведении испытаний

Изобретение относится к области судостроения, в частности к способам испытаний корпусов судов, и может быть использовано для определения их прочностных и деформационных характеристик в процессе разработки, эксплуатации и ремонта. Предложен способ нагружения корпуса судна при проведении...
Тип: Изобретение
Номер охранного документа: 0002619354
Дата охранного документа: 15.05.2017
25.08.2017
№217.015.c9b9

7β-метил-3,17αβ-дисульфамоилокси-d-гомо-6-окса-эстра-1,3,5(10),8,14-пентаен в качестве ингибитора роста клеток рака молочной железы mcf-7

Изобретение относится к 7β-метил-3,17αβ-дисульфамоилокси-D-гомо-6-окса-эстра-1,3,5(10),8,14-пентаену формулы в качестве ингибитора роста клеток рака молочной железы МСF-7. Технический результат: получено новое соединение, которое может применяться при лечении рака молочной железы. 1 пр.
Тип: Изобретение
Номер охранного документа: 0002619457
Дата охранного документа: 16.05.2017
25.08.2017
№217.015.c9cc

Беспроводное устройство для конъюнктивальной микроскопии

Изобретение относится к медицине. Беспроводное устройство для конъюнктивальной микроскопии содержит систему управления, регистрации и анализа полученных изображений, реализованную на базе ЭВМ, и оптическую систему, включающую видеокамеру и блок переноса изображений. Причем система управления,...
Тип: Изобретение
Номер охранного документа: 0002619387
Дата охранного документа: 15.05.2017
25.08.2017
№217.015.caa7

Способ приготовления вяленой рыбы

Способ включает разделку сырья в виде филе, нарезку ломтиками, посол, вяление и упаковку. Посол осуществляют при температуре 37-45°С до достижения массовой доли соли в ломтиках 2-2,5% в рассоле, содержащем молочную сыворотку, подсластитель, соль и бактериальную закваску. Вяление производят до...
Тип: Изобретение
Номер охранного документа: 0002619983
Дата охранного документа: 22.05.2017
25.08.2017
№217.015.cb2a

Сульфаматы 2-этил-6-оксаэстра-1,3,5(10),8,14-пентаенов в качестве ингибиторов пролиферации опухолевых клеток mcf-7

Изобретение относится к сульфамату 2-этил-6-оксаэстра-1,3,5(10),8,14-пентаенов формулы в качестве ингибиторов пролиферации опухолевых клеток MCF-7. Технический результат: получены новые соединения, которые могут применяться в медицине для лечения гормонозависимых онкологических заболеваний. 2 пр.
Тип: Изобретение
Номер охранного документа: 0002620084
Дата охранного документа: 23.05.2017
25.08.2017
№217.015.cbe4

Устройство для закрепления тонкостенной нежесткой детали при обработке

Изобретение относится к области обработки тонкостенных нежестких деталей и может быть использовано для закрепления таких деталей при обработке. Устройство содержит опорный стол, выполненный в виде прямоугольной рамы, содержащей параллельные продольные направляющие, связанные системой поперечных...
Тип: Изобретение
Номер охранного документа: 0002620524
Дата охранного документа: 26.05.2017
Показаны записи 1-10 из 19.
10.07.2014
№216.012.dc3f

Способ оценки экологического состояния атмосферы территории

Изобретение относится к области экологии и может быть использовано для оценки экологического состояния атмосферы территории. Сущность: на контролируемой территории отбирают пробы атмосферных осадков. Проводят гранулометрический и минералогический анализы взвесей в отобранных пробах. По...
Тип: Изобретение
Номер охранного документа: 0002522161
Дата охранного документа: 10.07.2014
10.08.2014
№216.012.e77a

Способ замеров параметров выхлопных газов двс

Изобретение может быть использовано для определения замеров параметров отработавших газов (ОГ) ДВС. Способ заключается в отборе газов в пробоотборник и последующем анализе материала пробы. Пробоотборник изолируют от окружающей среды и размещают в нем порцию дистиллированной воды, при этом...
Тип: Изобретение
Номер охранного документа: 0002525051
Дата охранного документа: 10.08.2014
10.08.2014
№216.012.e8f2

Способ приготовления стандартных образцов аэрозолей

Способ приготовления стандартных образцов аэрозолей на основе смеси тонкодисперсного порошка, содержащего определяемые элементы, отличается тем, что используют дисперсную смесь минеральных, синтетических и биологических материалов, причем предварительно с помощью гранулометрического анализа...
Тип: Изобретение
Номер охранного документа: 0002525427
Дата охранного документа: 10.08.2014
10.08.2014
№216.012.e8fb

Способ фиксации и приготовления гистологических препаратов

Изобретение относится к медицине, в частности к офтальмологии, и может быть использовано для приготовления гистологических препаратов. Способ включает взятие материала и его фиксацию в жидкости, обезвоживание и заливку в парафин, приготовление срезов. Перед фиксацией энуклированного глаза его...
Тип: Изобретение
Номер охранного документа: 0002525436
Дата охранного документа: 10.08.2014
12.01.2017
№217.015.61a5

Состав для биологически активной гелевой повязки

Изобретение относится к медицине. Описан состав для биологически активной гелевой повязки, включающий смесь, содержащую альгинат натрия и порошок природных цеолитовых пород, предпочтительно клиноптилолит-смектитовых, с крупностью, предпочтительно, 10-100 мкм, но не меньше 200 нм, при этом в...
Тип: Изобретение
Номер охранного документа: 0002588968
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.8236

Способ тестирования препаратов с предполагаемым психотропным или актопротекторным действием

Изобретение относится к экспериментальной медицине и касается исследований соединений с психотропными и актопротекторными свойствами на доклиническом этапе наблюдения. Способ включает формирование контрольной и экспериментальных групп животных (крыс), введение им препарата и тестирование...
Тип: Изобретение
Номер охранного документа: 0002601376
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.824b

Способ повышения уровня работоспособности лабораторных животных в эксперименте

Изобретение относится медицине, а именно к экспериментальной фармакологии, и касается выявления и изучения средств для повышения физической работоспособности у лабораторных животных в эксперименте. Способ включает введение животному актопротектора, в качестве которого используют...
Тип: Изобретение
Номер охранного документа: 0002601393
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.9081

Способ получения агара

Изобретение относится к пищевой промышленности. Предложен способ получения агара, включающий его экстракцию из водорослей ионной жидкостью, в качестве которой используют глубокий эвтектик с температурой плавления ниже 100°С. По окончанию процесса экстракции, полученный раствор разделяют на...
Тип: Изобретение
Номер охранного документа: 0002603912
Дата охранного документа: 10.12.2016
26.08.2017
№217.015.e5b6

Способ коррекции показателей мотивационно-энергетической и когнитивной сфер у лабораторных животных

Изобретение относится к медицине, а именно к фармакологии и физиологии, и касается коррекции показателей мотивационно-энергетической и когнитивной сфер у лабораторных животных. Для этого вводят соединение пер-6-О-(трет-бутил)(диметил)силил-β-циклодекстрина с парааминобензойной кислотой со...
Тип: Изобретение
Номер охранного документа: 0002626680
Дата охранного документа: 31.07.2017
14.02.2019
№219.016.ba14

Способ получения со2 экстракта женьшеня

Изобретение относится к фармацевтической промышленности, а именно к способу получения СО2 экстракта женьшеня, включающего его подготовку с последующим проведением СО2-экстракции при давлении 20-40 МПа в течение 120 мин, отличающегося тем, что используют корни дальневосточного женьшеня Panax...
Тип: Изобретение
Номер охранного документа: 0002679634
Дата охранного документа: 12.02.2019
+ добавить свой РИД