×
21.03.2019
219.016.eb55

Результат интеллектуальной деятельности: Способ классификации сигналов ЭЭГ при воображении двигательной активности у нетренированного оператора

Вид РИД

Изобретение

Аннотация: Изобретение относится к области цифровой обработки и анализа данных и предназначено для обработки многоканальных электроэнцефалограмм с целью выделения в режиме реального времени характерных паттернов электрической активности головного мозга, связанных с воображением двигательной активности у нетренированных операторов. Способ классификации сигналов ЭЭГ при воображении двигательной активности у нетренированного оператора заключается в том, что с помощью датчиков регистрируют сигналы ЭЭГ с затылочной, центральной и лобной областей, для которых в блоке частотно-временного анализа вычисляют значение непрерывного вейвлет-преобразования с базовым Морле-вейвлетом, рассчитывают усредненное значение энергии вейвлетного спектра в альфа 8-12 Гц диапазоне для лобной, центральной и затылочной областей и усредненное значение энергии вейвлетного спектра в дельта 1-5 Гц диапазоне для лобной области, далее в блоке адаптивной фильтрации проводят разложения полученных усредненных значений по эмпирическим модам и выделяют низкочастотную составляющую данных зависимостей, выделяя эмпирические моды четвертого порядка, затем в блоке классификации проводят анализ поведения во времени полученных эмпирических мод, при этом моменты времени, для которых амплитуда эмпирической моды, рассчитанной на основе альфа-ритма ЭЭГ сигналов для лобной, центральной и затылочной областей, возрастает, а амплитуда эмпирической моды, рассчитанной на основе дельта-ритма лобных ЭЭГ, уменьшается, классифицируют как эпизоды воображения двигательной активности. Изобретение обеспечивает достоверное детектирование паттернов электрической активности головного мозга, связанных с воображением двигательной активности, у нетренированных операторов в режиме реального времени. 2 ил.

Изобретение относится к области цифровой обработки и анализа данных и предназначено для обработки многоканальных электроэнцефалограмм (ЭЭГ) с целью выделения в режиме реального времени характерных паттернов электрической активности головного мозга, связанных с воображением двигательной активности у нетренированных операторов. Изобретение может быть эффективно использовано при разработке интерфейсов мозг-компьютер (ИМК). В частности, на основании изобретения возможна реализация алгоритмов управления ИМК, разрабатываемых специально для нетренированных операторов. Кроме того, возможно применение изобретения для создания методик обучения оператора ИМК.

Разработка интерфейсов «мозг-компьютер» (ИМК) (англ. brain-computer interface, BCI) является актуальной задачей нейрофизиологии, физики и техники. Подобная технология востребована в различных прикладных областях, включая медицину, робототехнику и другие высокотехнологичные отрасли [Т. Kawase et al. J Neural Eng, 14, 016015 (2017); M. PLoS ONE, 12, 2 (2017); K. Bowsher et al. J Neural Eng, 13, 023001 (2016); X. Chen et al. Proceedings of the National Academy of Sciences, 112, 44 (2015); J.E. et al. Nature, 479, 228 (2011); W.C. Stacey et al Nature Rewievs, 4, 4 (2008)].

Известно, что в основе ИМК лежит детектирование в реальном времени характерных форм электрической (или магнитной) активности головного мозга и преобразовании полученной информации в компьютерные команды для управления оборудованием.

Функционирование ИМК во многом определяется возможностью оператора генерировать устойчивые и воспроизводимые паттерны когнитивной активности, которые затем могут быть переведены на команды управления. В этом контексте наиболее перспективным подходом является использование характерных паттернов электрической активности мозга, ассоциирующихся с воображением двигательной активности [A. Vasilyev et al. Neuropsychologia, 97, 56(2017)].

Для обученных операторов существует множество методов анализа нейрофизиологических особенностей воображения моторной активности, при помощи которых возможно их преобразования в команды управления компьютерными системами. Среди таких методов можно выделить методики, основанные на анализе вызванных потенциалов [I.A. Basyul et al. Neuroscience and Behavioral Physiology, 45, 9, 1038 (2015)], методики, основанные на использовании методов искусственного интеллекта, таких как машинное обучение [Т. Ma et al. Journal of Neuroscience Methods, 275, 80 (2017)], машины опорных векторов [L.R. Quitadamo et al. A Review, J Neural Eng, 14, 011001 (2017)], методики, основанные на частотно-временном анализе [Y. Wang et al. J Neuroeng Rehabil, 10, 109 (2013)], методики, основанные на выявлении связей между отделами мозга [М. Hamedi et al., Neural Comput, 28, 6, 999 (2016)].

Описанные выше методики не позволяют детектировать активность мозга, отвечающую за воображаемые движения у нетренированных субъектов [В. Blankertz, G. Dornhege, М. Krauledat, K.R. G. Curio. Neurolmage 37, 539 550 (2007)].

Техническая проблема заключается в необходимости разработки универсального способа, позволяющего в режиме реального времени достоверно детектировать характерные паттерны электрической активности головного мозга, связанные с воображением двигательной активности у нетренированных операторов.

Техническим результатом изобретения является возможность достоверного детектирования паттернов электрической активности головного мозга, связанных с воображением двигательной активности, у нетренированных операторов в режиме реального времени.

Предлагаемое изобретение поясняется чертежами: на Фиг. 1. - изображены частотно-временные зависимости, иллюстрирующие увеличение (или уменьшение) энергии вейвлетных спектров, рассчитанных для фоновой ЭЭГ и ЭЭГ, регистрируемых во время воображения двигательной активности из различных участком коры головного мозга. Положения частотно-временных диаграмм соответствуют положению регистрирующих электродов. Зависимости построены в частотном диапазоне - от 1 Гц до 30 Гц на интервале времени 4 секунды и усреднены по большому числу событий. Выделенные области А и В соответствуют областям коры мозга в которых наблюдается значительное увеличение энергии α - ритма и уменьшение энергии δ - ритма, соответственно. На Фиг. 2 - представлен пример реализации способа. На Фиг. 2, (а) - продемонстрированы характерные сигналы ЭЭГ, регистрируемые в областях А и В, на Фиг. 2, (б) - показаны зависимости от времени значения энергии вейвлетного спектра и усредненные по записям ЭЭГ, регистрируемым из областей А, В, и по частотным диапазонам 8-12 Гц и 1-5 Гц, соответственно, на Фиг. 2, (в) - показаны эмпирические моды и четвертого порядка, рассчитанные для зависимостей и на Фиг. 2, (г) - показаны значения производных и , вычисленных по времени для полученных эмпирических мод. На Фиг. 2, (д) - показана бинарная последовательности, принимающая значение 1, в случае выполнения условия и значения 0 в остальных случаях.

При исследовании процессов нейронной динамики, ассоциирующих с воображением двигательной активности, проводят частотно-временной анализ многоканальных записей ЭЭГ с помощью применения процедуры вейвлетного преобразования (см. фиг 1) [Hramov А.Е., Koronovskii A.A., Makarov V.A., Pavlov A.N., Sitnikova E. Yu. Wavelets in Neuroscience. Springer Heidelberg New York Dordrecht London, 2015]. Затем проводят анализ амплитуд наиболее ярко выраженных компонент вейвлетного спектра (см. фиг 2.).

Пусть Xi(t) - набор сигналов ЭЭГ, регистрируемых с помощью датчиков с поверхности головы испытуемого при воображении движения. К каждому из рассматриваемых сигналов Xi(t) в блоке частотно-временного анализа применяется процедура непрерывного вейвлетного преобразования:

где Xi(t) - исходный сигнал, "*" обозначает комплексное сопряжение, a ψ(s, τ) - вейвлетная функция, определенная для временного масштаба s как

Здесь ψ0 - материнская вейвлетная функция, τ - параметр временного сдвига, s=1/ƒ - временной масштаб, определяющий ширину вейвлетной функции. В рамках заявленного способа в качестве материнской вейвлетной функции выбран Морле вейвлет, наиболее эффективный для задач частотно-временного анализа и выделения паттернов во временных рядах. Морле вейвлет представляется в форме:

где ω0 - центральная частота, которая была выбрана равной 2π.

Далее производят анализ модуля комплексной величины |W(s, τ)|, которая пропорциональна энергии сигнала. Анализ проводится в двух частотных диапазонах для двух областей коры головного мозга. В области А, содержащей ЭЭГ, регистрируемые в затылочной, центральной и лобной областях рассчитывается энергия колебаний, усредненная в частотной области α - ритма (8-12 Гц) В области В, содержащей ЭЭГ, регистрируемые в лобной области, рассчитывается энергия колебаний, усредненная в частотной области δ - ритма (1-5 Гц) Для расчета коэффициентов и используются соотношения

где суммирование проводится по ЭЭГ каналам, попадающим в области А и В, соответственно (Фиг. 2(б)).

Для полученных зависимостей и в блоке адаптивной фильтрации рассчитывают эмпирические моды и четвертого порядка (Фиг. 2(в)), при помощи разложения Гильберта-Хуанга [Huang, N.E., Shen, Z., Long, S.R. at al. "The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis," Proc. R. Soc. A. 454, 903 (1998)]. Для полученных эмпирических мод в блоке классификации анализируются производные и (Фиг. 2(г)).

В итоге, момент времени, связанный с воображением двигательной активности регистрирует при помощи условия (Фиг. 2(д)):

Заявляемый способ был апробирован на данных ЭЭГ 4х нетренированных операторах, регистрируемых во время сессии воображаемых движений (10 повторений). Запись электрической активности осуществлялось при помощи электроэнцефалографа-регистратора «Энцефалан-ЭЭГР-19/26» (фирма "Медиком-MTD", Таганрог), при регистрации использовалась стандартная расстановка электродов 10-20.

Согласно способу, был проведен анализ двух наборов сигналов ЭЭГ, регистрируемых в областях А и В: Область А включала ЭЭГ каналы O1, Oz, O2, Р3, Pz, Р4, С3, Cz, С4, F3, Fz, F4, Fp1, Fpz, Fp2; Область В - F3, Fz, F4, Fp1, Fpz, Fp2. Использование заявляемого способа позволило идентифицировать в среднем 9 из 10 воображаемых движений в каждой сессии.

Способ классификации сигналов ЭЭГ при воображении двигательной активности у нетренированного оператора, заключающийся в том, что с помощью датчиков регистрируют сигналы ЭЭГ с затылочной, центральной и лобной областей, для которых в блоке частотно-временного анализа вычисляют значение непрерывного вейвлет-преобразования с базовым Морле-вейвлетом, рассчитывают усредненное значение энергии вейвлетного спектра в альфа 8-12 Гц диапазоне для лобной, центральной и затылочной областей и усредненное значение энергии вейвлетного спектра в дельта 1-5 Гц диапазоне для лобной области, далее в блоке адаптивной фильтрации проводят разложения полученных усредненных значений по эмпирическим модам и выделяют низкочастотную составляющую данных зависимостей, выделяя эмпирические моды четвертого порядка, затем в блоке классификации проводят анализ поведения во времени полученных эмпирических мод, при этом моменты времени, для которых амплитуда эмпирической моды, рассчитанной на основе альфа-ритма ЭЭГ сигналов для лобной, центральной и затылочной областей, возрастает, а амплитуда эмпирической моды, рассчитанной на основе дельта-ритма лобных ЭЭГ, уменьшается, классифицируют как эпизоды воображения двигательной активности.
Способ классификации сигналов ЭЭГ при воображении двигательной активности у нетренированного оператора
Способ классификации сигналов ЭЭГ при воображении двигательной активности у нетренированного оператора
Источник поступления информации: Роспатент

Показаны записи 31-40 из 164.
25.08.2017
№217.015.bf33

Устройство для очистки и сушки изделий

Изобретение относится к машиностроению, а именно к устройствам для очистки от технологических загрязнений и сушки поверхностей деталей вращения типа колец подшипников, осей, валов, втулок, зубчатых колес. Устройство имеет механизм загрузки изделий и механизм для придания изделию вращения с...
Тип: Изобретение
Номер охранного документа: 0002617102
Дата охранного документа: 20.04.2017
25.08.2017
№217.015.bf34

Способ стабилизации геометрических параметров деталей

Изобретение относится к ультразвуковой обработке круглой пластины. Закрепляют пластину на опоре по ее краю, устанавливают источник ультразвуковых колебаний на пластине и осуществляют ее деформирование. При этом источник ультразвуковых колебаний устанавливают в центре поверхности пластины и...
Тип: Изобретение
Номер охранного документа: 0002617073
Дата охранного документа: 19.04.2017
25.08.2017
№217.015.bf54

Способ получения магний-замещенного гидроксиапатита

Изобретение относится к технологии получения неорганических веществ, а именно к способу получения магний-замещенного гидроксиапатита (Mg-ГА), используемого для получения биосовместимых покрытий, применяемых в челюстно-лицевой хирургии и травматологии. Способ включает синтез Mg-ГА с...
Тип: Изобретение
Номер охранного документа: 0002617103
Дата охранного документа: 20.04.2017
25.08.2017
№217.015.d0b2

Способ идентификации смещений осевой линии трубопровода

Использование: для идентификации потенциально опасных участков трубопровода, на которых произошло отклонение осевой линии от первоначального положения. Сущность изобретения заключается в том, что на внутритрубное подвижное устройство (ВПУ) устанавливают измерительную систему, состоящую из...
Тип: Изобретение
Номер охранного документа: 0002621219
Дата охранного документа: 01.06.2017
26.08.2017
№217.015.d5af

Способ получения керамического биосовместимого материала

Изобретение относится к медицине. Описан способ получения магний-замещенного трикальцийфосфата, используемого для получения биосовместимых покрытий, применяемых в челюстно-лицевой хирургии и травматологии для изготовления внутритканевых эндопротезов, включающий подготовку шихты, представляющую...
Тип: Изобретение
Номер охранного документа: 0002623076
Дата охранного документа: 21.06.2017
26.08.2017
№217.015.d661

Огнетушащий состав

Изобретение относится к водным растворам пенообразователей на основе поверхностно-активных веществ (ПАВ) и может быть использовано для тушения горючих материалов и легковоспламеняющихся жидкостей на открытом пространстве и в условиях объемных очагов возгорания в помещениях. Огнетушащий состав...
Тип: Изобретение
Номер охранного документа: 0002622838
Дата охранного документа: 20.06.2017
26.08.2017
№217.015.d8b8

Способ изготовления пленочного материала на основе смеси фаз vo, где x=1,5-2,02

Изобретение относится к области изготовления тонкопленочных материалов и может быть использовано для создания полупроводниковых приборов, в частности тепловых приемников. Способ включает термовакуумное напыление ванадия на подложку при комнатной температуре с последующим окислением на воздухе...
Тип: Изобретение
Номер охранного документа: 0002623573
Дата охранного документа: 27.06.2017
26.08.2017
№217.015.db0f

Смесь для получения композиционных строительных материалов

Изобретение относится к составам строительных композиций и может быть использовано для получения композиционных материалов конструкционного, отделочного, защитного назначения, таких как стеновой камень, бордюрный камень, дорожные столбики, тротуарная плитка, облицовочная плитка, черепица,...
Тип: Изобретение
Номер охранного документа: 0002623754
Дата охранного документа: 29.06.2017
26.08.2017
№217.015.e0d3

Мультисенсорный газоаналитический чип на основе титаната калия и способ его изготовления

Группа изобретений относится к области газового анализа. Мультисенсорный газоаналитический чип (МГЧ) включает диэлектрическую подложку со сформированным набором компланарных полосковых электродов, поверх которых нанесен матричный слой из вискеров титаната калия общей химической формулы КНTiO,...
Тип: Изобретение
Номер охранного документа: 0002625543
Дата охранного документа: 14.07.2017
26.08.2017
№217.015.e543

Шариковая втулка

Изобретение относится к области машиностроения, а именно к конструкции шариковых втулок, направляющих качения. Шариковая втулка имеет жесткий корпус (1), на внутренней поверхности которого установлена промежуточная втулка (2), сепаратор (3), установленный в расточке промежуточной втулки (2) и...
Тип: Изобретение
Номер охранного документа: 0002626432
Дата охранного документа: 27.07.2017
Показаны записи 11-12 из 12.
01.11.2019
№219.017.dc29

Устройство для определения в режиме реального времени степени концентрации внимания оператора при восприятии и обработке информации

Изобретение относится к диагностическому биомедицинскому оборудованию. Устройство для определения в режиме реального времени степени концентрации внимания оператора при восприятии и обработке информации включает блок регистрации биопотенциалов ЭЭГ, стимулятор, реализованный с возможностью в...
Тип: Изобретение
Номер охранного документа: 0002704562
Дата охранного документа: 29.10.2019
02.06.2023
№223.018.759b

Способ автоматического выделения физиологических состояний мелких лабораторных животных

Изобретение относится к биомедицинским технологиям автоматической обработки сигналов электрической активности головного мозга, а именно к способам диагностики физиологических состояний животных. При этом регистрируют сигнал электрокортикограммы (ЭКоГ) и осуществляют его непрерывное вейвлетное...
Тип: Изобретение
Номер охранного документа: 0002751744
Дата охранного документа: 16.07.2021
+ добавить свой РИД