×
21.03.2019
219.016.eb15

Результат интеллектуальной деятельности: СПОСОБ ОРИЕНТАЦИИ СИСТЕМ КООРДИНАТ НАБЛЮДАТЕЛЕЙ В ПАССИВНОЙ СИСТЕМЕ ВИДЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области радиосистем наблюдения. Технический результат – уменьшение вычислительных затрат за счёт введения правила выбора сопряженных пар точек или ортов направлений на эти точки. Способ ориентации систем координат наблюдателей в пассивной системе видения заключается в установлении стереопары из двух взаимно удаленных на базовое расстояние наблюдателей и формировании двух матриц изображения одной и той же сцены, содержащей m точечных объектов наблюдения, причем измеряют расстояния от центра каждого наблюдателя до m контрольных i-x объектов - наклонные дальности, определяют орты направлений на объекты в системах координат двух наблюдателей, пересчитывают координаты ортов в координаты точек и затем рассматривают m! вариантов соединения точек первого и второго наблюдателей в m неповторяющихся сопряженных пар и в системе координат первого наблюдателя составляют матричное уравнение, при этом вычисляют оценку вектора методом наименьших квадратов, далее среди m! вариантов соединения выбирают один вариант с наименьшей суммой квадратов невязок и из состава вектора, соответствующего выбранному варианту, извлекают оценки параметров для матрицы и вектора, которые помещают в состав искомой матрицы и вектора.

Изобретение относится к оптическим, тепловым и пассивным радиосистемам наблюдения за малоразмерными объектами [1, 2]. Целью наблюдения является оценивание пространственных координат объектов, которое основано на эффекте стереопары, что требует наличия как минимум двух взаимно удаленных наблюдателей и их взаимной ориентации - матрицы поворота осей координат Р и вектора параллельного переноса (базового вектора) t. При отсутствии или сбое работы навигационной системы взаимная ориентация двух систем координат осуществляется на основе нескольких пар сопряженных опорных точек, наблюдаемых в матрицах изображения.

Известен способ [2] оценивания параметров (углов поворота) матрицы Р и трех координат вектора t, рассчитанный на применение в системах видения с оптической линзой. Способ заключается в следующем.

1. Устанавливается стереопара из двух взаимно удаленных на базовое расстояние наблюдателей, и формируются две матрицы изображения одной и той же сцены, содержащей m точечных объектов наблюдения.

2. В полученных матрицах выбираются m пар сопряженных точек V1(i) и V2(i), . Каждая i-я пара соответствует i-му точечному объекту, наблюдаемому в двух матрицах.

3. Определяются координаты x1(i),y1(i) и x2(i),y2(i) сопряженных точек V1(i) и V2(i), , в системах координат {о111} и {о222} двух матриц. Точки V1(i) и V2(i) представляются в параллельных системах координат {О11,Y1,Z1} и {O2,X2,Y2,Z2}, совмещенных с центрами О1 и O2 оптических линз, как точки M1(i) и M2(i): , , где А1 и А2 - матрицы внутренних параметров камер, зависящие от фокусных расстояний ƒ1 и ƒ2; Z1 и Z2 - неизвестные третьи координаты сопряженных точек.

3. Для m пар сопряженных точек M1(i) и , представленных в системе координат первого наблюдателя, где Р - матрица поворота осей, t - вектор параллельного переноса, записывается условие компланарности M1(i), M2(i) и t - равенство нулю их смешанного произведения в матричной форме для .

4. На основе смешанного произведения составляется квадратичная форма, зависящая от параметров матрицы Р (углов поворота), и численным методом подбора параметров находится минимальное собственное число матрицы квадратичной формы и соответствующий ему собственный вектор to - орт вектора t.

5. Найденные параметры (углы) дают оценку матрицы Р, а по известному расстоянию |t|=O1O2 определяется вектор t=|t|to.

Данный способ можно представить в универсальной форме, применимой как для оптических, так и для радиотехнических сканирующих систем с антеннами, заменив пары сопряженных точек M1(i), M2(i) на соответствующие им орты направлений a1(i) и a2(i) такие, что М1(i)=r1(i)a1(i), M2(i)=r2(i)a2(i), где r11М1 и r2=O2M2 - наклонные дальности до объекта. Тогда для оптических систем орты определятся (символ i опустим):

, k=1,2,

и для радиотехнических систем:

a k=(cosθk sinϕk, sinθk, cosθk cosϕk)T, k=1,2,

где ϕkk - угловые координаты (азимут и угол места) направления линии визирования антенны на объект наблюдения; Т - символ транспонирования.

В терминах ортов а1(i) и a2(i) направлений на M1(i) и M2(i), , представим способ-прототип следующим образом.

1. Операции п. 1 соответствуют выше изложенному.

2. В матрицах наблюдателей выбираются m пар сопряженных точек V1(i) и V2(i), , и определяются для них орты a1(i) и a2(i) направлений на i-е объекты.

3. Для m пар сопряженных ортов a1(i) и , , представленных в системе координат первого наблюдателя, записывается условие компланарности a1(i), a2(i) и t - равенство нулю их смешанного произведения в матричной форме для .

4,5. Операции пп. 4, 5 соответствуют выше изложенным.

Данный способ обладает следующими недостатками.

1. Способ не показывает правила нахождения пар сопряженных точек, без которого нельзя его реализовать. Условие компланарности указанных векторов не является достаточным условием сопряжения пар точек или ортов направлений на точки и может быть использовано только после установления факта их сопряжения.

2. Способ требует больших вычислительных затрат из-за применения численных методов подбора параметров матрицы Р и нахождения собственных чисел матрицы квадратичной формы.

Предлагаемое техническое решение направлено на устранение этих недостатков, а именно на введение правила выбора сопряженных пар точек или ортов направлений на эти точки и уменьшение вычислительных затрат на реализацию способа.

Технический результат предлагаемого технического решения достигается применением способа ориентации систем координат наблюдателей в пассивной системе видения, который заключается в установлении стереопары из двух взаимно удаленных на базовое расстояние наблюдателей и формировании двух матриц изображения одной и той же сцены, содержащей m точечных объектов наблюдения, отличающийся тем, что измеряют расстояния от центра каждого наблюдателя до m контрольных i-х объектов - наклонные дальности r1(i) и r2(j), , определяют орты a1(i) и a2(j) направлений на объекты в системах координат двух наблюдателей, пересчитывают координаты ортов в координаты точек М1(i)=r1(i)a1(i) и M2(j)=r2(j)a1(j), , затем рассматривают m! вариантов соединения точек первого и второго наблюдателей в m неповторяющихся сопряженных пар М1(i) и M2(j) , ji∈{1,2,…,m}, и в системе координат первого наблюдателя составляют матричное уравнение М-В⋅С=Е, где М - блочный вектор, состоящий из М1(i), , В - матрица, составленная определенным образом из координат точек М2(ji), , Е - вектор ошибок сопряжения, С - вектор неизвестных параметров взаимной ориентации, при этом вычисляют оценку вектора С методом наименьших квадратов по формуле , далее среди m! вариантов соединения выбирают один вариант с наименьшей суммой квадратов невязок и из состава вектора , соответствующего выбранному варианту, извлекают оценки параметров для матрицы Р и вектора t, которые помещают в состав искомой матрицы и вектора .

Алгоритмически предлагаемый способ сводится к следующей последовательности действий.

1. Два наблюдателя размещают в пространстве так, что прямоугольная система координат второго наблюдателя {O2,X2,Y2,Z2} приводится к системе координат первого {О1,X1,Y1,Z1} поворотом вокруг осей O2X2, O2Y2 и параллельным переносом t=(Δx,Δy,Δz).

2. Наблюдению подлежат m(m≥11) контрольных точечных объектов или m центров малоразмерных объектов, расстояния от которых r1(i) и r2(j) до центров O1 и O2 измеряют независимо для первого и второго наблюдателей (, ), например, с помощью лазерного дальномера. При этом соответствие между i и j по принадлежности одному объекту неизвестно.

3. Определяют орты а1(i) и a2(j) направлений на объекты в системах координат двух наблюдателей, которые пересчитывают в координаты точек М1(i)=r1(i),a1(i) и M2(j)=r2(j)a1(j), .

4. Рассматривают m! вариантов соединения точек первого и второго наблюдателей в m неповторяющихся сопряженных пар М1(i) и M2(ji) , ji∈{1,2,…,m}, и в системе координат первого наблюдателя составляют систему m уравнений связи координат сопряженных точек М1(i)-РМ2 (ji)-t=ei, , где Р=PyPx - матрица поворота вокруг двух осей, ei - вектор ошибок сопряжения:

далее представляют систему (1) в матричной форме:

где М=(М1(1),М1(2),…,М1(m))T; В=(В12,…,Bm)Т; Е=(е12,…,em)T;

;

С=(sxsy cxsy cy cx sx sy sxcy cxcy Δx Δy Δz)T - вектор неизвестных параметров взаимной ориентации; cx=cosα; sx=sinα; cy=cosβ; sy=sinβ; α и β - углы поворота вокруг осей O2X2 и O2Y2.

При этом вычисляют оценку вектора С методом наименьших квадратов по формуле:

5. Среди m! вариантов соединения выбирают один вариант с наименьшим значением показателя сопряжения J, имеющего смысл суммы квадратов невязок при оценивании параметров по формуле (3):

и из состава вектора , соответствующего выбранному варианту, извлекают оценки параметров для матрицы Р и вектора t, которые помещают в состав искомой матрицы и вектора .

Замечания. 1. В случае известного вектора t вектор M1(i) в (1) заменяют на M1(i)-t, (m≥8), при этом из матрицы Bi в (2) убирают последние три столбца, а из вектора С - последние три строки.

2. В случае поворота системы координат вокруг трех осей (Р=PzPyPx) возможна последовательная процедура поворота вокруг двух осей: XY, YZ, XZ и т.д. с оцениванием параметров (3) в сторону уменьшения показателя (4). Также возможен численный поиск минимума (4) подбором одного угла поворота вокруг OZ при вычислении остальных углов по формуле (3).

Результаты моделирования

При моделировании два наблюдателя, разнесенные по координате X на 30 м, по координатам Y и Z - на 2 и 3 м, наблюдали один объект, удаленный на 100-110 м. Координаты наблюдателей на множестве реализаций эксперимента менялись в пределах нескольких метров. Наблюдателя фиксировали несколько десятков пар сопряженных точек (контрольных объектов) при неизвестной матрице Р=PyPx, при этом дальности r1(i), r2(j) считались известными. Алгоритмом находилась оценка матрицы Р на основе оценок (3), и на множестве реализаций вычислялась средняя (по числу параметров) абсолютная ошибка Δср оценивания параметров матрицы Р путем сравнения найденных и моделируемых значений. Зависимость Δср от среднеквадратической ошибки измерения координат ортов σх представлена в таблице.

По результатам моделирования следует отметить, что требуется большое количество опорных точек (сопряженных пар) для получения удовлетворительных оценок параметров матрицы Р. Для повышения точности оценок следует увеличивать точность измерения координат ортов, то есть добиваться снижения σх.

Предложенный способ может найти применение в существующих оптических и пассивных радиотехнических системах видения, развертываемых на незнакомой местности для наблюдения за объектами при отсутствии или выходе из строя навигационных приборов.

Литература

1. Пассивная радиолокация: методы обнаружения объектов / Под ред. Р.П. Быстрова и А.В. Соколова. М.: Радиотехника, 2008. 320 с.

2. Цифровая обработка изображений в информационных системах: учеб. пособие / И.С. Грузман, B.C. Киричук и др. Новосибирск: Изд-во НГТУ, 2002. 352 с.

Способ ориентации систем координат наблюдателей в пассивной системе видения, заключающийся в установлении стереопары из двух взаимно удаленных на базовое расстояние наблюдателей и формировании двух матриц изображения одной и той же сцены, содержащей m точечных объектов наблюдения, отличающийся тем, что измеряют расстояния от центра каждого наблюдателя до m контрольных i-x объектов - наклонные дальности r(i) и r(j), определяют орты a(i) и a(j) направлений на объекты в системах координат двух наблюдателей, пересчитывают координаты ортов в координаты точек М(i)=r(i)а(i) и М(j)=r(j)а(j), затем рассматривают m! вариантов соединения точек первого и второго наблюдателей в m неповторяющихся сопряженных пар М(i) и M(j) j∈{1,2, …, m}, и в системе координат первого наблюдателя составляют матричное уравнение М-В⋅С=Е, где М - блочный вектор, состоящий из М(i), В - матрица, составленная определенным образом из координат точек M(j), Е - вектор ошибок сопряжения, С - вектор неизвестных параметров взаимной ориентации, при этом вычисляют оценку вектора С методом наименьших квадратов по формуле , далее среди m! вариантов соединения выбирают один вариант с наименьшей суммой квадратов невязок и из состава вектора , соответствующего выбранному варианту, извлекают оценки параметров для матрицы Р и вектора t, которые помещают в состав искомой матрицы и вектора .
СПОСОБ ОРИЕНТАЦИИ СИСТЕМ КООРДИНАТ НАБЛЮДАТЕЛЕЙ В ПАССИВНОЙ СИСТЕМЕ ВИДЕНИЯ
СПОСОБ ОРИЕНТАЦИИ СИСТЕМ КООРДИНАТ НАБЛЮДАТЕЛЕЙ В ПАССИВНОЙ СИСТЕМЕ ВИДЕНИЯ
СПОСОБ ОРИЕНТАЦИИ СИСТЕМ КООРДИНАТ НАБЛЮДАТЕЛЕЙ В ПАССИВНОЙ СИСТЕМЕ ВИДЕНИЯ
СПОСОБ ОРИЕНТАЦИИ СИСТЕМ КООРДИНАТ НАБЛЮДАТЕЛЕЙ В ПАССИВНОЙ СИСТЕМЕ ВИДЕНИЯ
СПОСОБ ОРИЕНТАЦИИ СИСТЕМ КООРДИНАТ НАБЛЮДАТЕЛЕЙ В ПАССИВНОЙ СИСТЕМЕ ВИДЕНИЯ
СПОСОБ ОРИЕНТАЦИИ СИСТЕМ КООРДИНАТ НАБЛЮДАТЕЛЕЙ В ПАССИВНОЙ СИСТЕМЕ ВИДЕНИЯ
СПОСОБ ОРИЕНТАЦИИ СИСТЕМ КООРДИНАТ НАБЛЮДАТЕЛЕЙ В ПАССИВНОЙ СИСТЕМЕ ВИДЕНИЯ
СПОСОБ ОРИЕНТАЦИИ СИСТЕМ КООРДИНАТ НАБЛЮДАТЕЛЕЙ В ПАССИВНОЙ СИСТЕМЕ ВИДЕНИЯ
СПОСОБ ОРИЕНТАЦИИ СИСТЕМ КООРДИНАТ НАБЛЮДАТЕЛЕЙ В ПАССИВНОЙ СИСТЕМЕ ВИДЕНИЯ
СПОСОБ ОРИЕНТАЦИИ СИСТЕМ КООРДИНАТ НАБЛЮДАТЕЛЕЙ В ПАССИВНОЙ СИСТЕМЕ ВИДЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 11-20 из 88.
26.08.2017
№217.015.ee51

Вычислитель для режектирования помех

Изобретение относится к вычислительной технике и предназначено для выделения сигналов движущихся целей на фоне пассивных помех при групповой перестройке несущей частоты зондирующих импульсов. Техническим результатом является повышение эффективности выделения сигналов движущихся целей....
Тип: Изобретение
Номер охранного документа: 0002628904
Дата охранного документа: 22.08.2017
19.01.2018
№218.016.00bd

Зонд атомно-силового микроскопа с программируемым спектральным портретом излучающего элемента, легированного квантовыми точками структуры ядро-оболочка

Изобретение относится к измерительной технике и может быть использовано в зондовой сканирующей микроскопии и атомно-силовой микроскопии для диагностирования и исследования наноразмерных структур. Сущность изобретения заключается в том, что кантилевер соединен с электропроводящей зондирующей...
Тип: Изобретение
Номер охранного документа: 0002629713
Дата охранного документа: 31.08.2017
19.01.2018
№218.016.00ce

Вычислитель доплеровской скорости движения объекта

Изобретение относится к вычислительной технике. Технический результат заключается в повышении точности измерения скорости за счет меньшего числа функциональных преобразований и расширении диапазона однозначно измеряемой доплеровской скорости. Вычислитель доплеровской скорости движения объекта...
Тип: Изобретение
Номер охранного документа: 0002629642
Дата охранного документа: 30.08.2017
19.01.2018
№218.016.010c

Фазометр когерентных неэквидистантных импульсов

Изобретение относится к измерительной технике и предназначено для измерения доплеровских сдвигов фаз (радиальной скорости объекта) когерентных неэквидистантных импульсов на фоне шума и может быть использовано в радиолокационных и навигационных системах для однозначного измерения доплеровской...
Тип: Изобретение
Номер охранного документа: 0002629710
Дата охранного документа: 31.08.2017
19.01.2018
№218.016.01fd

Градиентное защитное покрытие

Изобретение относится к области электротехники, а именно к защитному покрытию электрических контактов, например магнитоуправлемых контактов (герконов), микроэлектромеханических (МЭМС) коммутаторов, слаботочных и сильноточных контактов коммутационных приборов, электромагнитных реле, и может быть...
Тип: Изобретение
Номер охранного документа: 0002629954
Дата охранного документа: 05.09.2017
19.01.2018
№218.016.089c

Способ получения покрытий на основе нанопористого диоксида титана

Изобретение относится к области электрохимии, в частности к технологии получения пористого покрытия, представляющего собой высокоупорядоченный массив нанотрубок диоксида титана, и может быть использовано в устройствах для очистки воды и воздуха от органических соединений, в производстве...
Тип: Изобретение
Номер охранного документа: 0002631780
Дата охранного документа: 26.09.2017
19.01.2018
№218.016.09c0

Способ обнаружения механического воздействия для идентификации пользователя и устройство для его осуществления

Предлагаемое изобретение относится к средствам распознавания с использованием электронных средств. Технический результат – повышение вероятности идентификации. Для этого предложен способ, который основан на сравнении на интервале времени анализа бинарного кода, формируемого из...
Тип: Изобретение
Номер охранного документа: 0002631977
Дата охранного документа: 29.09.2017
20.01.2018
№218.016.125d

Вычислитель для подавления помех

Изобретение относится к вычислительной технике и предназначено для выделения сигналов движущихся целей на фоне пассивных помех при групповой перестройке несущей частоты зондирующих импульсов. Технический результат заключается в повышении эффективности выделения сигналов движущихся целей....
Тип: Изобретение
Номер охранного документа: 0002634190
Дата охранного документа: 24.10.2017
20.01.2018
№218.016.126c

Вычислитель для режекции помех

Изобретение относится к вычислительной технике и предназначено для выделения сигналов движущихся целей на фоне пассивных помех при групповой перестройке несущей частоты зондирующих импульсов. Технический результат заключается в повышении эффективности выделения сигналов движущихся целей....
Тип: Изобретение
Номер охранного документа: 0002634191
Дата охранного документа: 24.10.2017
20.01.2018
№218.016.13af

Фильтр режектирования помех

Изобретение относится к радиолокационной технике и предназначено для выделения сигналов движущихся целей на фоне пассивных помех при групповой перестройке несущей частоты зондирующих импульсов. Достигаемый технический результат - повышение эффективности выделения сигналов движущихся целей....
Тип: Изобретение
Номер охранного документа: 0002634615
Дата охранного документа: 02.11.2017
Показаны записи 11-20 из 31.
04.04.2018
№218.016.3753

Способ формирования изображений объектов в радиометре с двумя антеннами

Изобретение относится к пассивным радиотеплолокационным системам наблюдения за объектами с помощью сканирующего радиометра с двумя антеннами, принимающими сигналы в двух частотных диапазонах. Достигаемый технический результат – повышение пространственного разрешения изображения в первой...
Тип: Изобретение
Номер охранного документа: 0002646434
Дата охранного документа: 06.03.2018
10.05.2018
№218.016.3dc7

Способ наблюдения за объектами с помощью радиометра с двумя антеннами

Изобретение относится к радиотеплолокации, а именно к радиотеплолокационным (пассивным) системам наблюдения за объектами с помощью сканирующего радиометра, работающего в миллиметровом диапазоне длин волн в условиях повышенного шага сканирования антенны радиометра. Достигаемый технический...
Тип: Изобретение
Номер охранного документа: 0002648270
Дата охранного документа: 23.03.2018
09.06.2018
№218.016.5d5f

Способ повышения разрешающей способности изображений в многоканальных ртлс

Изобретение относится к радиотеплолокации, а именно к пассивным системам наблюдения за объектами с помощью многоканальных радиотеплолокационных станций (РТЛС) или радиометров со сканирующими антеннами. Достигаемый технический результат - повышение пространственного разрешения изображений в...
Тип: Изобретение
Номер охранного документа: 0002656355
Дата охранного документа: 05.06.2018
14.06.2018
№218.016.61e8

Способ формирования температурной карты местности

Изобретение относится к способам формирования температурной карты местности путем регистрации электромагнитного излучения, испущенного находящимися на местности объектами. Предложен способ формирования температурной карты местности, включающий регистрацию посредством радиометра...
Тип: Изобретение
Номер охранного документа: 0002657331
Дата охранного документа: 13.06.2018
19.07.2018
№218.016.7263

Способ формирования радиотеплового изображения

Изобретение относится к пассивным радиотеплолокационным системам (РТЛС) наблюдения миллиметрового диапазона длин волн, предназначенным для формирования радиотеплового изображения объектов в зоне обзора. Достигаемый технический результат - обеспечение возможности на базе сканирующего радиометра...
Тип: Изобретение
Номер охранного документа: 0002661491
Дата охранного документа: 17.07.2018
24.07.2018
№218.016.73f5

Способ выделения спектральных отсчетов в многоканальной доплеровской рлс

Изобретение относится к радиолокации, а именно к бортовым импульсно-доплеровским радиолокационным станциям (РЛС), работающим в режиме узкополосной доплеровской фильтрации и предназначенным для наблюдения за наземными или воздушными объектами. Достигаемый технический результат - выделение...
Тип: Изобретение
Номер охранного документа: 0002661913
Дата охранного документа: 23.07.2018
24.07.2018
№218.016.7427

Способ повышения разрешающей способности радиометрических изображений

Изобретение относится к пассивной радиолокации, а именно к радиотеплолокационным станциям (РТЛС) наблюдения за поверхностью и воздушной обстановкой. Технический результат изобретения - повышение разрешающей способности радиометрического изображения при сохранении информации о тепловых...
Тип: Изобретение
Номер охранного документа: 0002661903
Дата охранного документа: 23.07.2018
11.03.2019
№219.016.d5f7

Способ определения траекторий движения объектов в радиометрической системе видения

Изобретение относится к пассивным радиометрическим системам наблюдения за движущимися малоразмерными объектами. Достигаемый технический результат – повышение точности определения траектории движения объектов. Радиометрическая система состоит из нескольких радиометров, работающих с перекрытием...
Тип: Изобретение
Номер охранного документа: 0002681519
Дата охранного документа: 07.03.2019
11.03.2019
№219.016.d621

Способ определения дальностей до объектов в пассивных системах видения

Изобретение относится к пассивным системам видения оптического, инфракрасного и миллиметрового диапазонов длин волн, предназначенным для наблюдения за малоразмерными объектами. Достигаемый технический результат - определение дальностей как в оптических, так и в радиосистемах при наличии...
Тип: Изобретение
Номер охранного документа: 0002681518
Дата охранного документа: 07.03.2019
21.03.2019
№219.016.ebe2

Способ повышения надежности и точности пассивной системы видения

Изобретение относится к области пассивных радиосистем. Технический результат – повышение надежности и точности оценивания пространственных координат системы наблюдения. Способ повышения надежности и точности пассивной системы видения заключается в расположении удаленных наблюдателей, выполнении...
Тип: Изобретение
Номер охранного документа: 0002682376
Дата охранного документа: 19.03.2019
+ добавить свой РИД